An Insight into the Repurposing of Phytoconstituents obtained from Delhi’s Aravalli Biodiversity Park as Antifungal Agents

Article ID: e020224226666 Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

The global prevalence of fungal infections is alarming in both the pre- and post- COVID period. Due to a limited number of antifungal drugs, there are hurdles in treatment strategies for fungal infections due to toxic potential, drug interactions, and the development of fungal resistance. All the antifungal targets (existing and newer) and pipeline molecules showing promise against these targets are reviewed. The objective was to predict or repurpose phyto-based antifungal compounds based on a dual target inhibition approach (Sterol-14-α- demethylase and HSP-90) using a case study. In pursuit of repurposing the phytochemicals as antifungal agents, a team of researchers visited Aravalli Biodiversity Park (ABP), Delhi, India, to collect information on available medicinal plants. From 45 plants, a total of 1149 ligands were collected, and virtual screening was performed using Schrodinger Suite 2016 software to get 83 hits against both the target proteins: Sterol-14-α-demethylase and HSP-90. After analysis of docking results, ligands were selected based on their interaction against both the target proteins and comparison with respective standard ligands (fluconazole and ganetespib). We have selected Isocarthamidin, Quercetin and Boeravinone B based on their docking score and binding interaction against the HSP-90 (Docking Score -9.65, -9.22 and -9.21, respectively) and 14-α-demethylase (Docking Score -9.19, -10.76 and -9.74 respectively). The docking protocol was validated and MM/GBSA studies depicted better stability of selected three ligands (Isocarthamidin, Quercetin, Boeravinone B) complex as compared to standard complex. Further, MD simulation studies were performed using the Desmond (67) software package version 2018-4. All the findings are presented as a case study for the prediction of dual targets for the repurposing of certain phytochemicals as antifungal agents.

Graphical Abstract

[1]
Odds FC, Brown AJP, Gow NAR. Antifungal agents: Mechanisms of action. Trends Microbiol 2003; 11(6): 272-9.
[http://dx.doi.org/10.1016/S0966-842X(03)00117-3] [PMID: 12823944]
[2]
Dubey R, Sen KK, Mohanty SS, Panda S, Goyal M, Menon SM. The rising burden of invasive fungal infections in COVID-19, can structured CT thorax change the game. Egypt J Radiol Nucl Med 2022; 53(1): 18.
[http://dx.doi.org/10.1186/s43055-022-00694-3]
[3]
Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: A systematic review and meta-analysis. J Infect 2020; 81(2): 266-75.
[http://dx.doi.org/10.1016/j.jinf.2020.05.046] [PMID: 32473235]
[4]
Fungal Disease Frequency. Available from: www.gaffi.org (Accessed on: Dec 7, 2022).
[5]
Seagle EE, Williams SL, Chiller TM. Recent trends in the epidemiology of fungal infections. Infect Dis Clin North Am 2021; 35(2): 237-60.
[http://dx.doi.org/10.1016/j.idc.2021.03.001] [PMID: 34016277]
[6]
Antibiotic resistance threats in the United States 2019. Available from: www.cdc.gov
[8]
Denning DW. Echinocandin antifungal drugs. Lancet 2003; 362(9390): 1142-51.
[http://dx.doi.org/10.1016/S0140-6736(03)14472-8] [PMID: 14550704]
[9]
Patil A, Majumdar S. Echinocandins in antifungal pharmacotherapy. J Pharm Pharmacol 2017; 69(12): 1635-60.
[http://dx.doi.org/10.1111/jphp.12780] [PMID: 28744860]
[10]
Grover N. Echinocandins: A ray of hope in antifungal drug therapy. Indian J Pharmacol 2010; 42(1): 9-11.
[http://dx.doi.org/10.4103/0253-7613.62396] [PMID: 20606829]
[11]
Au-Young J, Robbins PW. Isolation of a chitin synthase gene (CHS 1) from Candida albicans by expression in Saccharomyces cerevisiae. Mol Microbiol 1990; 4(2): 197-207.
[http://dx.doi.org/10.1111/j.1365-2958.1990.tb00587.x] [PMID: 2140148]
[12]
Ruiz-Herrera J, San-Blas G. Chitin synthesis as target for antifungal drugs. Curr Drug Targets Infect Disord 2003; 3(1): 77-91.
[http://dx.doi.org/10.2174/1568005033342064] [PMID: 12570735]
[13]
Chaudhary PM, Tupe SG, Deshpande MV. Chitin synthase inhibitors as antifungal agents. Mini Rev Med Chem 2013; 13(2): 222-36.
[PMID: 22512590]
[14]
Schroepfer GJ Jr. Sterol biosynthesis. Annu Rev Biochem 1982; 51(1): 555-85.
[http://dx.doi.org/10.1146/annurev.bi.51.070182.003011] [PMID: 6810750]
[15]
Daum G, Lees ND, Bard M, Dickson R. Biochemistry, cell biology and molecular biology of lipids ofSaccharomyces cerevisiae. Yeast 1998; 14(16): 1471-510.
[http://dx.doi.org/10.1002/(SICI)1097-0061(199812)14:16<1471:AID-YEA353>3.0.CO;2-Y] [PMID: 9885152]
[16]
Monk BC, Sagatova AA, Hosseini P, Ruma YN, Wilson RK, Keniya MV. Fungal Lanosterol 14α-demethylase: A target for next-generation antifungal design. Biochim Biophys Acta Proteins Proteomics 2020; 1868(3): 140206.
[http://dx.doi.org/10.1016/j.bbapap.2019.02.008] [PMID: 30851431]
[17]
Georgopapadakou NH, Dix BA, Smith SA, Freudenberger J, Funke PT. Effect of antifungal agents on lipid biosynthesis and membrane integrity in Candida albicans. Antimicrob Agents Chemother 1987; 31(1): 46-51.
[http://dx.doi.org/10.1128/AAC.31.1.46] [PMID: 3551826]
[18]
Aoki Y, Yoshihara F, Kondoh M, Nakamura Y, Nakayama N, Arisawa M. Ro 09-1470 is a selective inhibitor of P-450 lanosterol C-14 demethylase of fungi. Antimicrob Agents Chemother 1993; 37(12): 2662-7.
[http://dx.doi.org/10.1128/AAC.37.12.2662] [PMID: 8109933]
[19]
Petranyi G, Ryder NS, Stütz A. Allylamine derivatives: New class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science 1984; 224(4654): 1239-41.
[http://dx.doi.org/10.1126/science.6547247] [PMID: 6547247]
[20]
Georgopapadakou NH, Bertasso A. Effects of squalene epoxidase inhibitors on Candida albicans. Antimicrob Agents Chemother 1992; 36(8): 1779-81.
[http://dx.doi.org/10.1128/AAC.36.8.1779]
[21]
Iwatani W, Arika T, Yamaguchi H. Two mechanisms of butenafine action in Candida albicans. Antimicrob Agents Chemother 1993; 37(4): 785-8.
[http://dx.doi.org/10.1128/AAC.37.4.785] [PMID: 8494375]
[22]
Bolard J. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta Rev Biomembr 1986; 864(3-4): 257-304.
[http://dx.doi.org/10.1016/0304-4157(86)90002-X] [PMID: 3539192]
[23]
Warnock DW. Amphotericin B: An introduction. J Antimicrob Chemother 1991; 28 (Suppl B): 27-38.
[http://dx.doi.org/10.1093/jac/28.suppl_B.27]
[24]
Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012; 2012: 1-26.
[http://dx.doi.org/10.1155/2012/713687] [PMID: 22187560]
[25]
Mazu TK, Bricker BA, Flores-Rozas H, Ablordeppey SY. The mechanistic targets of antifungal agents: An overview. Mini Rev Med Chem 2016; 16(7): 555-78.
[http://dx.doi.org/10.2174/1389557516666160118112103] [PMID: 26776224]
[26]
Moen MD, Lyseng-Williamson KA, Scott LJ. Liposomal amphotericin B: A review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs 2009; 69(3): 361-92.
[http://dx.doi.org/10.2165/00003495-200969030-00010] [PMID: 19275278]
[27]
Hu Z, He B, Ma L, Sun Y, Niu Y, Zeng B. Recent advances in ergosterol biosynthesis and regulation mechanisms in saccharomyces cerevisiae. Indian J Microbiol 2017; 57(3): 270-7.
[http://dx.doi.org/10.1007/s12088-017-0657-1] [PMID: 28904410]
[28]
Prasad R, Goffeau A. Yeast ATP-binding cassette transporters conferring multidrug resistance. Annu Rev Microbiol 2012; 66(1): 39-63.
[http://dx.doi.org/10.1146/annurev-micro-092611-150111] [PMID: 22703054]
[29]
Toda M, Williams SR, Berkow EL, et al. Population-based active surveillance for culture-confirmed candidemia - four sites, United States, 2012-2016. MMWR Surveill Summ 2019; 68(8): 1-15.
[http://dx.doi.org/10.15585/mmwr.ss6808a1]
[30]
Denning DW. Antifungal drug resistance: An update. Eur J Hosp Pharm Sci Pract 2022; 29(2): 109-12.
[http://dx.doi.org/10.1136/ejhpharm-2020-002604] [PMID: 35190454]
[31]
Bongomin F, Olum R, Nsenga L, Baluku JB. Burden of tinea capitis among children in Africa: Protocol for a systematic review and meta-analysis of observational studies, 1990–2020. BMJ Open 2020; 10(9): e041230.
[http://dx.doi.org/10.1136/bmjopen-2020-041230] [PMID: 32963073]
[32]
Dragoš V, Lunder M. Lack of efficacy of 6-week treatment with oral terbinafine for tinea capitis due to Microsporum canis in children. Pediatr Dermatol 1997; 14(1): 46-8.
[http://dx.doi.org/10.1111/j.1525-1470.1997.tb00427.x] [PMID: 9050765]
[33]
EUCAST AFST. Overview of antifungal ECOFFs and clinical breakpoints for yeasts, moulds and dermatophytes using the EUCAST E.Def 7.3, E.Def 9.3 and E.Def 11.0 procedures. 2021. Available from: https://www.eucast.org/astoffungi/clinicalbreakpointsforantifu ngals/ (Accessed on: 22 Apr 2021).
[34]
Kano R, Kimura U, Kakurai M, et al. Trichophyton indotineae sp. nov.: A new highly terbinafine-resistant anthropophilic dermatophyte species. Mycopathologia 2020; 185(6): 947-58.
[35]
Arendrup MC, Jørgensen KM, Guinea J, et al. Multicentre validation of a EUCAST method for the antifungal susceptibility testing of microconidia-forming dermatophytes. J Antimicrob Chemother 2020; 75(7): 1807-19.
[http://dx.doi.org/10.1093/jac/dkaa111] [PMID: 32303059]
[36]
Schelenz S, Barnes RA, Barton RC, et al. British Society for Medical Mycology best practice recommendations for the diagnosis of serious fungal diseases. Lancet Infect Dis 2015; 15(4): 461-74.
[http://dx.doi.org/10.1016/S1473-3099(15)70006-X] [PMID: 25771341]
[37]
Jallow S, Govender NP. Ibrexafungerp: A First-in-Class Oral Triterpenoid Glucan Synthase Inhibitor. J Fungi (Basel) 2021; 7(3): 163.
[http://dx.doi.org/10.3390/jof7030163] [PMID: 33668824]
[38]
Ghannoum M, Arendrup MC, Chaturvedi VP, et al. Ibrexafungerp: A novel oral triterpenoid antifungal in development for the treatment of candida auris infections. Antibiotics 2020; 9(9): 539.
[http://dx.doi.org/10.3390/antibiotics9090539] [PMID: 32854252]
[39]
Wiederhold NP. Review of the novel investigational antifungal olorofim. J Fungi 2020; 6(3): 122.
[http://dx.doi.org/10.3390/jof6030122] [PMID: 32751765]
[40]
Shaw KJ, Ibrahim AS. Fosmanogepix: A review of the first-in-class broad spectrum agent for the treatment of invasive fungal infections. J Fungi (Basel) 2020; 6(4): 239.
[http://dx.doi.org/10.3390/jof6040239] [PMID: 33105672]
[41]
Miesel L, Lin KY, Ong V. Rezafungin treatment in mouse models of invasive candidiasis and aspergillosis: Insights on the PK/PD pharmacometrics of rezafungin efficacy. Pharmacol Res Perspect 2019; 7(6): e00546.
[http://dx.doi.org/10.1002/prp2.546] [PMID: 31763045]
[42]
Thompson GR III, Soriano A, Skoutelis A, et al. Rezafungin versus caspofungin in a phase 2, randomized, double-blind study for the treatment of candidemia and invasive candidiasis: The STRIVE trial. Clin Infect Dis 2021; 73(11): e3647-55.
[http://dx.doi.org/10.1093/cid/ciaa1380] [PMID: 32955088]
[43]
Sandison T, Ong V, Lee J, Thye D. Safety and pharmacokinetics of CD101 IV, a novel echinocandin, in healthy adults. Antimicrob Agents Chemother 2017; 61(2): e01627-16.
[http://dx.doi.org/10.1128/AAC.01627-16] [PMID: 27919901]
[44]
Zhao Y, Prideaux B, Nagasaki Y, et al. Unraveling drug penetration of echinocandin antifungals at the site of infection in an intra-abdominal abscess model. Antimicrob Agents Chemother 2017; 61(10): e01009-17.
[http://dx.doi.org/10.1128/AAC.01009-17] [PMID: 28739797]
[45]
Tan BH, Chakrabarti A, Li RY, et al. Incidence and species distribution of candidaemia in Asia: A laboratory-based surveillance study. Clin Microbiol Infect 2015; 21(10): 946-53.
[http://dx.doi.org/10.1016/j.cmi.2015.06.010]
[46]
Van Daele R, Spriet I, Wauters J, et al. Antifungal drugs: What brings the future? Med Mycol 2019; 57(S3): S328-43.
[http://dx.doi.org/10.1093/mmy/myz012] [PMID: 31292663]
[47]
Alkhazraji S, Gebremariam T, Alqarihi A, et al. Fosmanogepix (APX001) is effective in the treatment of immunocompromised mice infected with invasive pulmonary scedosporiosis or disseminated fusariosis. Antimicrob Agents Chemother 2020; 64(3): e01735-19.
[http://dx.doi.org/10.1128/AAC.01735-19] [PMID: 31818813]
[48]
Oliver JD, Sibley GEM, Beckmann N, et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci 2016; 113(45): 12809-14.
[http://dx.doi.org/10.1073/pnas.1608304113] [PMID: 27791100]
[49]
Yamashita K, Miyazaki T, Fukuda Y, et al. The novel arylamidine T-2307 selectively disrupts yeast mitochondrial function by inhibiting respiratory chain complexes. Antimicrob Agents Chemother 2019; 63(8): e00374-19.
[http://dx.doi.org/10.1128/AAC.00374-19] [PMID: 31182539]
[50]
Singh SB, Liu W, Li X, et al. Antifungal spectrum, in vivo efficacy, and structure-activity relationship of ilicicolin h. ACS Med Chem Lett 2012; 3(10): 814-7.
[http://dx.doi.org/10.1021/ml300173e] [PMID: 24900384]
[51]
Mota Fernandes C, Dasilva D, Haranahalli K, et al. The future of antifungal drug therapy: Novel compounds and targets. Antimicrob Agents Chemother 2021; 65(2): e01719-20.
[http://dx.doi.org/10.1128/AAC.01719-20] [PMID: 33229427]
[52]
McCarty TP, Pappas PG. Antifungal pipeline. Front Cell Infect Microbiol 2021; 11: 732223.
[http://dx.doi.org/10.3389/fcimb.2021.732223] [PMID: 34552887]
[53]
Gintjee TJ, Donnelley MA, Thompson GR III. Aspiring antifungals: Review of current antifungal pipeline developments. J Fungi 2020; 6(1): 28.
[http://dx.doi.org/10.3390/jof6010028] [PMID: 32106450]
[54]
Munshi MA, Gardin JM, Singh A, et al. The role of ceramide synthases in the pathogenicity of cryptococcus neoformans. Cell Rep 2018; 22(6): 1392-400.
[http://dx.doi.org/10.1016/j.celrep.2018.01.035] [PMID: 29425496]
[55]
Bae M, Kim H, Moon K, et al. Mohangamides A and B, new dilactone-tethered pseudo-dimeric peptides inhibiting Candida albicans isocitrate lyase. Org Lett 2015; 17(3): 712-5.
[http://dx.doi.org/10.1021/ol5037248] [PMID: 25622093]
[56]
Derengowski LS, Tavares AH, Silva S, Procópio LS, Felipe MSS, Silva-Pereira I. Upregulation of glyoxylate cycle genes upon Paracoccidioides brasiliensis internalization by murine macrophages and in vitro nutritional stress condition. Med Mycol 2008; 46(2): 125-34.
[http://dx.doi.org/10.1080/13693780701670509] [PMID: 18324491]
[57]
Perfect JR, Tenor JL, Miao Y, Brennan RG. Trehalose pathway as an antifungal target. Virulence 2017; 8(2): 143-9.
[http://dx.doi.org/10.1080/21505594.2016.1195529] [PMID: 27248439]
[58]
Nambu M, Covel JA, Kapoor M, et al. A calcineurin antifungal strategy with analogs of FK506. Bioorg Med Chem Lett 2017; 27(11): 2465-71.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.004] [PMID: 28412204]
[59]
Marcyk PT, LeBlanc EV, Kuntz DA, et al. Fungal-selective resorcylate aminopyrazole Hsp90 inhibitors: Optimization of whole-cell anticryptococcal activity and insights into the structural origins of cryptococcal selectivity. J Med Chem 2021; 64(2): 1139-69.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01777] [PMID: 33444025]
[60]
Yuan R, Tu J, Sheng C, Chen X, Liu N. Effects of Hsp90 inhibitor ganetespib on inhibition of azole-resistant Candida albicans. Front Microbiol 2021; 12: 680382.
[http://dx.doi.org/10.3389/fmicb.2021.680382] [PMID: 34093502]
[61]
Cowen LE, Singh SD, Köhler JR, et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci 2009; 106(8): 2818-23.
[http://dx.doi.org/10.1073/pnas.0813394106] [PMID: 19196973]
[62]
Whitesell L, Robbins N, Huang DS, et al. Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus. Nat Commun 2019; 10(1): 402.
[http://dx.doi.org/10.1038/s41467-018-08248-w] [PMID: 30679438]
[63]
Lamoth F, Juvvadi PR, Steinbach WJ. Heat shock protein 90 (Hsp90) in fungal growth and pathogenesis. Curr Fungal Infect Rep 2014; 8(4): 296-301.
[http://dx.doi.org/10.1007/s12281-014-0195-9]
[64]
Lamoth F, Juvvadi PR, Fortwendel JR, Steinbach WJ. Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus. Eukaryot Cell 2012; 11(11): 1324-32.
[http://dx.doi.org/10.1128/EC.00032-12] [PMID: 22822234]
[65]
Yu W, MacKerell AD Jr. Computer-aided drug design methods. Methods Mol Biol 2017; 1520: 85-106.
[http://dx.doi.org/10.1007/978-1-4939-6634-9_5] [PMID: 27873247]