P4PC: A Portal for Bioinformatics Resources of piRNAs and circRNAs

Page: [873 - 878] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: PIWI-interacting RNAs (piRNAs) and circular RNAs (circRNAs) are two kinds of non-coding RNAs (ncRNAs) that play important roles in epigenetic regulation, transcriptional regulation, post-transcriptional regulation of many biological processes. Although there exist various resources, it is still challenging to select such resources for specific research projects on ncRNAs.

Method: In order to facilitate researchers in finding the appropriate bioinformatics sources for studying ncRNAs, we created a novel portal named P4PC that provides computational tools and data sources of piRNAs and circRNAs.

Result: 249 computational tools, 126 databases and 420 papers are manually curated in P4PC. All entries in P4PC are classified in 5 groups and 26 subgroups. The list of resources is summarized in the first page of each group.

Conclusion: According to their research proposes, users can quickly select proper resources for their research projects by viewing detail information and comments in P4PC. Database URL is http://www.ibiomedical.net/Portal4PC/ and https://43.138.46.5/Portal4PC/.

[1]
van Bakel H, Nislow C, Blencowe BJ, Hughes TR. Most “dark matter” transcripts are associated with known genes. PLoS Biol 2010; 8(5): e1000371.
[http://dx.doi.org/10.1371/journal.pbio.1000371] [PMID: 20502517]
[2]
Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007; 447(7146): 799-816.
[http://dx.doi.org/10.1038/nature05874] [PMID: 17571346]
[3]
Brosius J. Waste not, want not – transcript excess in multicellular eukaryotes. Trends Genet 2005; 21(5): 287-8.
[http://dx.doi.org/10.1016/j.tig.2005.02.014] [PMID: 15851065]
[4]
Cheng J, Kapranov P, Drenkow J, et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 2005; 308(5725): 1149-54.
[http://dx.doi.org/10.1126/science.1108625] [PMID: 15790807]
[5]
Hüttenhofer A, Schattner P, Polacek N. Non-coding RNAs: Hope or hype? Trends Genet 2005; 21(5): 289-97.
[http://dx.doi.org/10.1016/j.tig.2005.03.007] [PMID: 15851066]
[6]
Morris KV. Non-coding RNAs and epigenetic regulation of gene expression: Drivers of natural selection. Caister Acad Press 2012.
[7]
Washietl S, Pedersen JS, Korbel JO, et al. Structured RNAs in the ENCODE selected regions of the human genome. Genome Res 2007; 17(6): 852-64.
[http://dx.doi.org/10.1101/gr.5650707] [PMID: 17568003]
[8]
Lukasik A, Wójcikowski M, Zielenkiewicz P. Tools4miRs – one place to gather all the tools for miRNA analysis. Bioinformatics 2016; 32(17): 2722-4.
[http://dx.doi.org/10.1093/bioinformatics/btw189] [PMID: 27153626]
[9]
Chen L, Heikkinen L, Wang C, Yang Y, Knott KE, Wong G. miRToolsGallery: A tag-based and rankable microRNA bioinformatics resources database portal. Database 2018; 2018: bay004.
[http://dx.doi.org/10.1093/database/bay004] [PMID: 29688355]
[10]
Aghaee-Bakhtiari SH, Arefian E, Lau P. miRandb: A resource of online services for miRNA research. Brief Bioinform 2018; 19(2): 254-62.
[PMID: 28049134]
[11]
Stępień E, Costa M, Enguita F. miRNAtools: Advanced training using the miRNA web of knowledge. Noncoding RNA 2018; 4(1): 5.
[http://dx.doi.org/10.3390/ncrna4010005] [PMID: 29657302]
[12]
Solomon J, Kern F, Fehlmann T. Meese E, Keller A, Humi R. HumiR Web services, tools and databases for exploring human microRNA data. Biomolecules 2020; 10(11): 1576.
[http://dx.doi.org/10.3390/biom10111576] [PMID: 33233537]
[13]
Paschoal AR, Maracaja-Coutinho V, Setubal JC, Simões ZLP, Verjovski-Almeida S. Non-coding transcription characterization and annotation. RNA Biology 2012; 9(3): 274-82.
[14]
Liu Y, Li A, Xie G, Liu G, Hei X. Computational methods and online resources for identification of piRNA-related molecules. Interdiscip Sci 2021; 13(2): 176-91.
[http://dx.doi.org/10.1007/s12539-021-00428-5] [PMID: 33886096]
[15]
Zoch A, Auchynnikava T, Berrens RV, et al. SPOCD1 is an essential executor of piRNA-directed de novo DNA methylation. Nature 2020; 584(7822): 635-9.
[http://dx.doi.org/10.1038/s41586-020-2557-5] [PMID: 32674113]
[16]
Mugat B, Nicot S, Varela-Chavez C, et al. The Mi-2 nucleosome remodeler and the Rpd3 histone deacetylase are involved in piRNA-guided heterochromatin formation. Nat Commun 2020; 11(1): 2818.
[http://dx.doi.org/10.1038/s41467-020-16635-5] [PMID: 32499524]
[17]
Dai P, Wang X, Gou LT, et al. A translation-activating function of MIWI/piRNA during mouse spermiogenesis. Cell 2019; 179(7): 1566-1581.e16.
[http://dx.doi.org/10.1016/j.cell.2019.11.022] [PMID: 31835033]
[18]
Fei R, Wan Y, Hu B, Li A. A novel network core structure extraction algorithm utilized variational autoencoder for community detection. Expert Syst Appl 2023; 222: 119775.
[19]
Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2012; 7(2): e30733.
[http://dx.doi.org/10.1371/journal.pone.0030733] [PMID: 22319583]
[20]
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19(2): 141-57.
[http://dx.doi.org/10.1261/rna.035667.112] [PMID: 23249747]
[21]
Glažar P, Papavasileiou P, Rajewsky N. circBase: A database for circular RNAs. RNA 2014; 20(11): 1666-70.
[http://dx.doi.org/10.1261/rna.043687.113] [PMID: 25234927]