Vitamin D as a Modulator of Neuroinflammation: Implications for Brain Health

Page: [323 - 332] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Neuroinflammation represents a critical immune response within the brain, playing a pivotal role in defense against injury and infection. However, when this response becomes chronic, it can contribute to the development of various neurodegenerative and psychiatric disorders. This bibliographic review delves into the role of vitamin D in modulating neuroinflammation and its implications for brain health, particularly in the context of neurological and psychiatric disorders. While vitamin D is traditionally associated with calcium homeostasis and bone health, it also exerts immunomodulatory and neuroprotective effects within the central nervous system. Through comprehensive analysis of preclinical and clinical studies, we uncover how vitamin D, acting through its receptors in glial cells, may influence the production of proinflammatory cytokines and antioxidants, potentially mitigating the cascade of events leading to neuronal damage. Clinical research has identified vitamin D deficiency as a common thread in the increased risks of multiple sclerosis, Parkinson's disease, Alzheimer's, and depression, among others. Furthermore, preclinical models suggest vitamin D's regulatory capacity over inflammatory mediators, its protective role against neuronal apoptosis, and its contribution to neurogenesis and synaptic plasticity. These insights underscore the potential of vitamin D supplementation not only in slowing the progression of neurodegenerative diseases but also in improving the quality of life for patients suffering from psychiatric conditions. Future clinical studies are essential to validate these findings and further our understanding of vitamin D's capacity to prevent or alleviate symptoms, opening new avenues for therapeutic strategies against neuroinflammation-related pathologies. Neuroinflammation is a crucial immune response in the brain against injuries or infections, but its persistence can lead to diseases such as Alzheimer's, Parkinson's, multiple sclerosis, and depression. Cholecalciferol (Vitamin D3) emerges as a regulator of neuroinflammation, present in brain cells such as astrocytes and microglia, modulating immune function. Vitamin D's mechanisms of action include cytokine modulation and regulation of nuclear and mitochondrial genes. It adjusts inflammatory mediators and antioxidants, resulting in neuroprotective effects. Additionally, vitamin D impacts neurotransmitter synthesis and brain plasticity. This positions vitamin D as a potential adjunct in treating diseases like Alzheimer's and Parkinson's. Lastly, its role in intestinal microbiota and serotonin synthesis contributes to psychiatric disorders like schizophrenia and depression. Thus, vitamin D presents a novel therapeutic approach for neuroinflammatory, neurodegenerative, and neuropsychiatric diseases.

[1]
Holick MF. Vitamin D: A d-lightful solution for health. J Investig Med 2011; 59(6): 872-80.
[http://dx.doi.org/10.2310/JIM.0b013e318214ea2d] [PMID: 21415774]
[2]
Lips P. Worldwide status of vitamin D nutrition. J Steroid Biochem Mol Biol 2010; 121(1-2): 297-300.
[http://dx.doi.org/10.1016/j.jsbmb.2010.02.021] [PMID: 20197091]
[3]
DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 2004; 80(6)(Suppl): 1689S-1696S.
[http://dx.doi.org/10.1093/ajcn/80.6.1689S] [PMID: 15585789]
[4]
Aranow C. Vitamin D and the immune system. J Investig Med 2011; 59(6): 881-6.
[http://dx.doi.org/10.2310/JIM.0b013e31821b8755] [PMID: 21527855]
[5]
Autier P, Boniol M, Pizot C, Mullie P. Vitamin D status and ill health: A systematic review. Lancet Diabetes Endocrinol 2014; 2(1): 76-89.
[http://dx.doi.org/10.1016/S2213-8587(13)70165-7] [PMID: 24622671]
[6]
Anglin RES, Samaan Z, Walter SD, McDonald SD. Vitamin D deficiency and depression in adults: Systematic review and meta-analysis. Br J Psychiatry 2013; 202(2): 100-7.
[http://dx.doi.org/10.1192/bjp.bp.111.106666] [PMID: 23377209]
[7]
Brouwer-Brolsma EM, Dhonukshe-Rutten RAM, van Wijngaarden JP, et al. Cognitive performance: A cross-sectional study on serum vitamin D and its interplay with glucose homeostasis in Dutch older adults. J Am Med Dir Assoc 2015; 16(7): 621-7.
[http://dx.doi.org/10.1016/j.jamda.2015.02.013] [PMID: 25838206]
[8]
Nowson CA, McGrath JJ, Ebeling PR, et al. Vitamin D and health in adults in Australia and New Zealand: A position statement. Med J Aust 2012; 196(11): 686-7.
[http://dx.doi.org/10.5694/mja11.10301] [PMID: 22708765]
[9]
van der Mei IAF, Ponsonby AL, Engelsen O, et al. The high prevalence of vitamin D insufficiency across Australian populations is only partly explained by season and latitude. Environ Health Perspect 2007; 115(8): 1132-9.
[http://dx.doi.org/10.1289/ehp.9937] [PMID: 17687438]
[10]
Kimlin MG, Lucas RM, Harrison SL, et al. The contributions of solar ultraviolet radiation exposure and other determinants to serum 25-hydroxyvitamin D concentrations in Australian adults: The AusD study. Am J Epidemiol 2014; 179(7): 864-74.
[http://dx.doi.org/10.1093/aje/kwt446] [PMID: 24573539]
[11]
Pasco JA, Henry MJ, Nicholson GC, Sanders KM, Kotowicz MA. Vitamin D status of women in the Geelong osteoporosis study: Association with diet and casual exposure to sunlight. Med J Aust 2001; 175(8): 401-5.
[http://dx.doi.org/10.5694/j.1326-5377.2001.tb143643.x] [PMID: 11700831]
[12]
Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease-A brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2012; 2(1): a006346.
[http://dx.doi.org/10.1101/cshperspect.a006346] [PMID: 22315714]
[13]
Liddelow SA, Barres BA. Reactive astrocytes: Production, function, and therapeutic potential. Immunity 2017; 46(6): 957-67.
[http://dx.doi.org/10.1016/j.immuni.2017.06.006] [PMID: 28636962]
[14]
Kunze R, Fischer S, Marti HH, Preissner KT. Brain alarm by self-extracellular nucleic acids: From neuroinflammation to neurodegeneration. J Biomed Sci 2023; 30(1): 64.
[http://dx.doi.org/10.1186/s12929-023-00954-y] [PMID: 37550658]
[15]
Smith JA, Das A, Ray SK, Banik NL. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 2012; 87(1): 10-20.
[http://dx.doi.org/10.1016/j.brainresbull.2011.10.004] [PMID: 22024597]
[16]
Gupta A, Bansal R, Gupta V, Goyal S. Vitamin D deficiency and disease correlation. Int J Med Sci Public Health 2014; 3(9): 1056-9.
[17]
Cui P, Lu W, Wang J, et al. Microglia/macrophages require vitamin D signaling to restrain neuroinflammation and brain injury in a murine ischemic stroke model. J Neuroinflammation 2023; 20(1): 63.
[http://dx.doi.org/10.1186/s12974-023-02705-0] [PMID: 36890539]
[18]
Oliveira SR, Simão ANC, Alfieri DF, et al. Vitamin D deficiency is associated with disability and disease progression in multiple sclerosis patients independently of oxidative and nitrosative stress. J Neurol Sci 2017; 381: 213-9.
[http://dx.doi.org/10.1016/j.jns.2017.07.046] [PMID: 28991684]
[19]
Ostkamp P, Salmen A, Pignolet B, et al. Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity. Proc Natl Acad Sci USA 2021; 118(1): e2018457118.
[http://dx.doi.org/10.1073/pnas.2018457118] [PMID: 33376202]
[20]
Netto EC, Silva AC, Pedroso C, Brites C. Hypovitaminosis D is associated with higher levels of inflammatory cytokines and with HAM/TSP in HTLV-infected patients. Viruses 2021; 13(11): 2223.
[http://dx.doi.org/10.3390/v13112223]
[21]
Jayedi A, Rashidy-Pour A, Shab-Bidar S. Vitamin D status and risk of dementia and Alzheimer’s disease: A meta-analysis of dose-response. Nutr Neurosci 2019; 22(11): 750-9.
[http://dx.doi.org/10.1080/1028415X.2018.1436639] [PMID: 29447107]
[22]
Melo van Lent D, Egert S, Wolfsgruber S. Low serum vitamin D status is associated with incident Alzheimer's dementia in the oldest old. Nutrients 2022; 15(1): 61.
[http://dx.doi.org/10.3390/nu15010061]
[23]
Geng T, Lu Q, Wan Z. Association of serum 25-hydroxyvitamin D concentrations with risk of dementia among individuals with type 2 diabetes: A cohort study in the UK Biobank. PLoS Med 2022; 19(1): e1003906.
[http://dx.doi.org/10.1371/journal.pmed.1003906]
[24]
Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1α-hydroxylase in human brain. J Chem Neuroanat 2005; 29(1): 21-30.
[http://dx.doi.org/10.1016/j.jchemneu.2004.08.006] [PMID: 15589699]
[25]
Gombash SE, Lee PW, Sawdai E, Lovett-Racke AE. Vitamin D as a risk factor for multiple sclerosis: Immunoregulatory or neuroprotective? Front Neurol 2022; 13: 796933.
[http://dx.doi.org/10.3389/fneur.2022.796933]
[26]
Wang W, Li Y, Meng X. Vitamin D and neurodegenerative diseases. Heliyon 2023; 9(1): e12877.
[http://dx.doi.org/10.1016/j.heliyon.2023.e12877] [PMID: 36820164]
[27]
Cheataini F, Ballout N, Al Sagheer T. The effect of neuroinflammation on the cerebral metabolism at baseline and after neural stimulation in neurodegenerative diseases. J Neurosci Res 2023; 101(8): 1360-79.
[http://dx.doi.org/10.1002/jnr.25198] [PMID: 37186320]
[28]
Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 2017; 35(1): 441-68.
[http://dx.doi.org/10.1146/annurev-immunol-051116-052358] [PMID: 28226226]
[29]
Das S, Basu A. Inflammation: A new era in the pathogenesis of neurodegenerative diseases. Curr Neuropharmacol 2021; 19(4): 437-51.
[http://dx.doi.org/10.2174/1570159X18666201006111907]
[30]
Thakur S, Dhapola R, Sarma P, Medhi B, Reddy DH. Neuroinflammation in Alzheimer’s disease: Current progress in molecular signaling and therapeutics. Inflammation 2023; 46(1): 1-17.
[http://dx.doi.org/10.1007/s10753-022-01721-1] [PMID: 35986874]
[31]
Ai Y, Du Y, Chen L, Liu SH, Liu Q, Cheng Y. Brain inflammatory marker abnormalities in major psychiatric diseases: A systematic review of postmortem brain studies. Mol Neurobiol 2023; 60(4): 2116-34.
[http://dx.doi.org/10.1007/s12035-022-03199-2] [PMID: 36600081]
[32]
Mohapatra L, Mishra D, Shiomurti Tripathi A, Kumar Parida S. Immunosenescence as a convergence pathway in neurodegeneration. Int Immunopharmacol 2023; 121: 110521.
[http://dx.doi.org/10.1016/j.intimp.2023.110521] [PMID: 37385122]
[33]
Sulimai N, Brown J, Lominadze D. Vascular effects on cerebrovascular permeability and neurodegeneration. Biomolecules 2023; 13(4): 648.
[http://dx.doi.org/10.3390/biom13040648] [PMID: 37189395]
[34]
Lasoń W, Jantas D, Leśkiewicz M, Regulska M, Basta-Kaim A. The vitamin D receptor as a potential target for the treatment of age-related neurodegenerative diseases such as Alzheimer's and Parkinson's diseases: A narrative review. Cells 2023; 12(4): 660.
[http://dx.doi.org/10.3390/cells12040660]
[35]
Holick MF, Mazzei L, García Menéndez S, Martín Giménez VM, Al Anouti F, Manucha W. Genomic or non-genomic? A question about the pleiotropic roles of vitamin D in inflammatory-based diseases. Nutrients 2023; 15(3): 767.
[http://dx.doi.org/10.3390/nu15030767] [PMID: 36771473]
[36]
Farghali M, Ruga S, Morsanuto V, Uberti F. Can brain health be supported by vitamin D-based supplements? A critical review. Brain Sci 2020; 10(9): 660.
[http://dx.doi.org/10.3390/brainsci10090660] [PMID: 32972010]
[37]
Żmijewski MA. Nongenomic activities of vitamin D. Nutrients 2022; 14(23): 5104.
[http://dx.doi.org/10.3390/nu14235104]
[38]
Morello M, Landel V, Lacassagne E, et al. Vitamin D improves neurogenesis and cognition in a mouse model of Alzheimer’s disease. Mol Neurobiol 2018; 55(8): 6463-79.
[http://dx.doi.org/10.1007/s12035-017-0839-1] [PMID: 29318446]
[39]
Sharma S, Borski C, Hanson J, et al. Identifying an optimal neuroinflammation treatment using a nanoligomer discovery engine. ACS Chem Neurosci 2022; 13(23): 3247-56.
[http://dx.doi.org/10.1021/acschemneuro.2c00365] [PMID: 36410860]
[40]
Kim MS, Kim YH, Kim MS, Kwon B, Cho HR. Efficacy and safety of early anti-inflammatory drug therapy for secondary injury in traumatic brain injury. World Neurosurg 2023; 172: e646-54.
[http://dx.doi.org/10.1016/j.wneu.2023.01.110] [PMID: 36738958]
[41]
Smolders J, Thewissen M, Peelen E, et al. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One 2009; 4(8): e6635.
[http://dx.doi.org/10.1371/journal.pone.0006635] [PMID: 19675671]
[42]
Petta I, Fraussen J, Somers V, Kleinewietfeld M. Interrelation of diet, gut microbiome, and autoantibody production. Front Immunol 2018; 9: 439.
[http://dx.doi.org/10.3389/fimmu.2018.00439]
[43]
Sayeed I, Turan N, Stein DG, Wali B. Vitamin D deficiency increases blood-brain barrier dysfunction after ischemic stroke in male rats. Exp Neurol 2019; 312: 63-71.
[http://dx.doi.org/10.1016/j.expneurol.2018.11.005] [PMID: 30502340]
[44]
Li Y, Li X, Xu S, et al. 1,25-D3 attenuates cerebral ischemia injury by regulating mitochondrial metabolism via the AMPK/AKT/GSK3β pathway. Front Aging Neurosci 2022; 14: 1015453.
[http://dx.doi.org/10.3389/fnagi.2022.1015453] [PMID: 36325190]
[45]
Rastegar-Moghaddam SH, Alipour F, Hosseini M, Ebrahimzadeh-bideskan A. Anti-apoptotic and neurogenic properties in the hippocampus as possible mechanisms for learning and memory improving impacts of vitamin D in hypothyroid rats during the growth period. Life Sci 2023; 312: 121209.
[http://dx.doi.org/10.1016/j.lfs.2022.121209] [PMID: 36410409]
[46]
Elseweidy MM, Mahrous M, Ali SI, Shaheen MA, Younis NN. RETRACTED ARTICLE: Vitamin D alleviates cognitive dysfunction and brain damage induced by copper sulfate intake in experimental rats: Focus on its combination with donepezil. Naunyn Schmiedebergs Arch Pharmacol 2023; 396(9): 1931-42.
[http://dx.doi.org/10.1007/s00210-023-02449-x] [PMID: 36864348]
[47]
Ghorbani Z, Togha M, Rafiee P, et al. Vitamin D3 might improve headache characteristics and protect against inflammation in migraine: A randomized clinical trial. Neurol Sci 2020; 41(5): 1183-92.
[http://dx.doi.org/10.1007/s10072-019-04220-8] [PMID: 31897949]
[48]
Bäcker-Koduah P, Infante-Duarte C, Ivaldi F, et al. Effect of vitamin D supplementation on N-glycan branching and cellular immunophenotypes in MS. Ann Clin Transl Neurol 2020; 7(9): 1628-41.
[http://dx.doi.org/10.1002/acn3.51148] [PMID: 32830462]
[49]
Vellekkatt F, Menon V, Rajappa M, Sahoo J. Effect of adjunctive single dose parenteral vitamin D supplementation in major depressive disorder with concurrent vitamin D deficiency: A double-blind randomized placebo-controlled trial. J Psychiatr Res 2020; 129: 250-6.
[http://dx.doi.org/10.1016/j.jpsychires.2020.07.037] [PMID: 32823218]
[50]
Rihal V, khan H, Kaur A, Singh TG, Abdel-Daim MM. Therapeutic and mechanistic intervention of vitamin D in neuropsychiatric disorders. Psychiatry Res 2022; 317: 114782.
[http://dx.doi.org/10.1016/j.psychres.2022.114782] [PMID: 36049434]
[51]
Renteria K, Nguyen H, Koh GY. The role of vitamin D in depression and anxiety disorders: A review of the literature. Nutr Neurosci 2023; 2023: 1-9.
[http://dx.doi.org/10.1080/1028415X.2023.2186318] [PMID: 36877601]
[52]
Chen WY, Huang MC, Chiu CC, et al. The interactions between vitamin D and neurofilament light chain levels on cognitive domains in bipolar disorder. BJPsych Open 2022; 8(6): e207.
[http://dx.doi.org/10.1192/bjo.2022.608] [PMID: 36437810]
[53]
Ali A, Cui X, Eyles D. Developmental vitamin D deficiency and autism: Putative pathogenic mechanisms. J Steroid Biochem Mol Biol 2018; 175: 108-18.
[http://dx.doi.org/10.1016/j.jsbmb.2016.12.018] [PMID: 28027915]
[54]
Song L, Luo X, Jiang Q, et al. Vitamin D supplementation is beneficial for children with autism spectrum disorder: A meta-analysis. Clin Psychopharmacol Neurosci 2020; 18(2): 203-13.
[http://dx.doi.org/10.9758/cpn.2020.18.2.203] [PMID: 32329301]
[55]
Valipour G, Saneei P, Esmaillzadeh A. Serum vitamin D levels in relation to schizophrenia: A systematic review and meta-analysis of observational studies. J Clin Endocrinol Metab 2014; 99(10): 3863-72.
[http://dx.doi.org/10.1210/jc.2014-1887] [PMID: 25050991]
[56]
Zoghbi M, Haddad C, Hallit S, et al. Cognition and physical functioning in patients with schizophrenia: Any role for vitamin D? Nutr Neurosci 2020; 23(11): 911-9.
[http://dx.doi.org/10.1080/1028415X.2019.1580830] [PMID: 30774039]
[57]
Roy NM, Al-Harthi L, Sampat N, et al. Impact of vitamin D on neurocognitive function in dementia, depression, schizophrenia and ADHD. Front Biosci 2021; 26(3): 566-611.
[http://dx.doi.org/10.2741/4908] [PMID: 33049684]
[58]
Ye X, Zhou Q, Ren P, Xiang W, Xiao L. The synaptic and circuit functions of vitamin D in neurodevelopment disorders. Neuropsychiatr Dis Treat 2023; 19: 1515-30.
[http://dx.doi.org/10.2147/NDT.S407731] [PMID: 37424961]
[59]
Hadden MK. Hedgehog and vitamin D signaling pathways in development and disease. Vitam Horm 2016; 100: 231-53.
[http://dx.doi.org/10.1016/bs.vh.2015.10.006] [PMID: 26827954]
[60]
Eyles DW, Vitamin D. Brain and behavior. JBMR Plus 2021; 5(1): e10419.
[http://dx.doi.org/10.1002/jbm4.10419] [PMID: 33553986]
[61]
Thu VTA, Hoang TX, Kim JY. 1,25-dihydroxy vitamin D3 facilitates the M2 polarization and β-amyloid uptake by human microglia in a TREM2-dependent manner. Biomed Res Int 2023; 2023: 3483411.
[http://dx.doi.org/10.1155/2023/3483411]
[62]
Li J, Cao Y, Xu J. Vitamin D improves cognitive impairment and alleviates ferroptosis via the NRF2 signaling pathway in aging mice. Int J Mol Sci 2023; 24(20): 15315.
[http://dx.doi.org/10.3390/ijms242015315]
[63]
Gezen-Ak D, Alaylıoğlu M, Yurttaş Z, et al. Vitamin D receptor regulates transcription of mitochondrial DNA and directly interacts with mitochondrial DNA and TFAM. J Nutr Biochem 2023; 116: 109322.
[http://dx.doi.org/10.1016/j.jnutbio.2023.109322] [PMID: 36963731]
[64]
Jiang P, Zhang LH, Cai HL, et al. Neurochemical effects of chronic administration of calcitriol in rats. Nutrients 2014; 6(12): 6048-59.
[http://dx.doi.org/10.3390/nu6126048] [PMID: 25533012]
[65]
Kar P, Goswami R. Effect of calcitriol and calcium on basal ganglia calcification in hypoparathyroidism: Experimental models. J Mol Endocrinol 2023; 70(2): e220108.
[http://dx.doi.org/10.1530/JME-22-0108] [PMID: 36445941]
[66]
Kasatkina LA, Tarasenko AS, Krupko OO, Kuchmerovska TM, Lisakovska OO, Trikash IO. Vitamin D deficiency induces the excitation/inhibition brain imbalance and the proinflammatory shift. Int J Biochem Cell Biol 2020; 119: 105665.
[http://dx.doi.org/10.1016/j.biocel.2019.105665] [PMID: 31821883]
[67]
Sharma P, Rani N, Gangwar A, Singh R, Kaur R, Upadhyaya K. Diabetic neuropathy: A repercussion of vitamin D deficiency. Curr Diabetes Rev 2023; 19(6): e170822207592.
[http://dx.doi.org/10.2174/1573399819666220817121551] [PMID: 35980059]
[68]
Koshkina A, Dudnichenko T, Baranenko D, Fedotova J, Drago F. Effects of vitamin D3 in long-term ovariectomized rats subjected to chronic unpredictable mild stress: BDNF, NT-3, and NT-4 implications. Nutrients 2019; 11(8): 1726.
[http://dx.doi.org/10.3390/nu11081726] [PMID: 31357443]
[69]
Shirazi HA, Rasouli J, Ciric B, Rostami A, Zhang GX. 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation. Exp Mol Pathol 2015; 98(2): 240-5.
[http://dx.doi.org/10.1016/j.yexmp.2015.02.004] [PMID: 25681066]
[70]
Jia J, Hu J, Huo X, Miao R, Zhang Y, Ma F. Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: A randomised, double-blind, placebo-controlled trial. J Neurol Neurosurg Psychiatry 2019; 90(12): 320199.
[http://dx.doi.org/10.1136/jnnp-2018-320199] [PMID: 31296588]