Thiourea-Ammonium Chloride Mediated Knoevenagel Condensation as an Intermediate in the Synthesis of Pyrimidine Scaffolds under Solvent-free Condition

Page: [749 - 755] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

In this paper, we have reported solvent solvent-free method for Knoevenagel condensation reaction of various aldehydes with active methylene compounds using thiourea and ammonium chloride. The developed method demonstrated high efficiency in the formation of C-C bond. The reaction proceeds smoothly under mild and solvent-free conditions and the products obtained are in excellent yield in very short duration. This method is applicable to a wide range of aldehydes with active methylene compounds.

Graphical Abstract

[1]
Tanaka, K.; Toda, F. Chem. Rev., 2000, 100(3), 1025-1074.
[http://dx.doi.org/10.1021/cr940089p] [PMID: 11749257]
[2]
Loupy, A. Top. Curr., 2000, 206, 155-196.
[3]
Yang, Y.; Chan, T.H. J. Am. Chem. Soc., 2000, 122(2), 402-403.
[http://dx.doi.org/10.1021/ja9928778]
[4]
Organic Synthesis in Water; Grieco, P.A., Ed.; Balackie Academic & Professional: London, 1998.
[http://dx.doi.org/10.1007/978-94-011-4950-1]
[5]
Lubineau, A.; Augé, J.; Queneau, Y. Synthesis, 1994, 1994(8), 741-760.
[http://dx.doi.org/10.1055/s-1994-25562]
[6]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory & Practice; Oxford University Press: Oxford, 1998.
[7]
Heravi, M.M.; Janati, F.; Zadsirjan, V. Monatsh. Chem., 2020, 151(4), 439-482.
[http://dx.doi.org/10.1007/s00706-020-02586-6]
[8]
Gawande, M.B.; Jayaram, R.V. Catal. Commun., 2006, 7(12), 931-935.
[http://dx.doi.org/10.1016/j.catcom.2006.03.008]
[9]
Kraus, G.A.; Krolski, M.E. J. Org. Chem., 1986, 51(17), 3347-3350.
[http://dx.doi.org/10.1021/jo00367a017]
[10]
Tokala, R.; Bora, D.; Shankaraiah, N. ChemMedChem, 2022, 17(8), e202100736.
[http://dx.doi.org/10.1002/cmdc.202100736]
[11]
Liang, F.; Pu, Y.J.; Kurata, T.; Kido, J.; Nishide, H. Polymer, 2005, 46(11), 3767-3775.
[http://dx.doi.org/10.1016/j.polymer.2005.03.036]
[12]
Shanthan Rao, P.; Venkataratnam, R.V. Tetrahedron Lett., 1991, 32(41), 5821-5822.
[http://dx.doi.org/10.1016/S0040-4039(00)93564-0]
[13]
de la Cruz, P.; Díez-Barra, E.; Loupy, A.; Langa, F. Tetrahedron Lett., 1996, 37(7), 1113-1116.
[http://dx.doi.org/10.1016/0040-4039(95)02318-6]
[14]
Balalaie, S.; Nemati, N. Synth. Commun., 2000, 30(5), 869-875.
[http://dx.doi.org/10.1080/00397910008087099]
[15]
Bigi, F.; Conforti, M.L.; Maggi, R.; Piccinno, A.; Sartori, G. Green Chem., 2000, 2(3), 101-103.
[http://dx.doi.org/10.1039/b001246g]
[16]
de Resende Filho, J.B.M.; Pires, G.P.; de Oliveira Ferreira, J.M.G.; Teotonio, E.E.S.; Vale, J.A. Catal. Lett., 2017, 147(1), 167-180.
[http://dx.doi.org/10.1007/s10562-016-1916-1]
[17]
Lolak, N.; Kuyuldar, E.; Burhan, H.; Goksu, H.; Akocak, S.; Sen, F. ACS Omega, 2019, 4(4), 6848-6853.
[http://dx.doi.org/10.1021/acsomega.9b00485] [PMID: 31459802]
[18]
Maltsev, S.S.; Mironov, M.A.; Bakulev, V.A. Mendeleev Commun., 2006, 16(4), 201-202.
[http://dx.doi.org/10.1070/MC2006v016n04ABEH002354]
[19]
Saghian, M.; Dehghanpour, S.; bayatani, Z. Sci. Rep., 2023, 13(1), 15563.
[http://dx.doi.org/10.1038/s41598-023-42832-5] [PMID: 37731034]
[20]
Schijndel, J.V.; Canalle, L.A.; Molendijk, D.; Meuldijk, J. Green Chem., 2017, 10, 404-411.
[21]
Wang, W. ACS Sustain. Chem. Eng., 2018, 7, 1-5.
[22]
Pawara, H.S.; Wagha, A.S.; Lali, A.M. New J. Chem., 2013, 40, 1-8.
[23]
Song, H.; Jin, R.; Jin, F.; Kang, M.; Li, Z.; Chen, J. Organocatalyst, 2016, 6(106), 1-8.
[24]
Bigi, F.; Quarantelli, C. Curr. Curr. Org. Synth., 2012, 9(1), 31-39.
[http://dx.doi.org/10.2174/157017912798889198]
[25]
Kubota, Y.; Nishizaki, Y.; Sugi, Y. Chem. Lett., 2000, 29(9), 998-999.
[http://dx.doi.org/10.1246/cl.2000.998]
[26]
Pal, R.; Sarkar, T. Int. J. Org. Chem., 2014, 4(2), 106-115.
[http://dx.doi.org/10.4236/ijoc.2014.42012]
[27]
Shearer, C.; Desaunay, O.; Zorc, S.; Richaud, A.D.; Samanta, S.S.; Jeedimalla, N.; Roche, S.P. Tetrahedron, 2019, 75(43), 130606.
[http://dx.doi.org/10.1016/j.tet.2019.130606] [PMID: 31741543]
[28]
van Schijndel, J.; Molendijk, D.; Spakman, H.; Knaven, E.; Canalle, L.A.; Meuldijk, J. Green Chem. Lett. Rev., 2019, 12(3), 323-331.
[http://dx.doi.org/10.1080/17518253.2019.1643931]
[29]
Burate, P.A. Synth. Cataly., 2018, 3, 3-6.
[30]
Abaee, M.S.; Mojtahedi, M.M.; Zahedi, M.M.; Khanalizadeh, G. ARKIVOC, 2006, 2006(15), 48-52.
[http://dx.doi.org/10.3998/ark.5550190.0007.f06]
[31]
Badiger, K. B. Org. Commun., 2021, 14(1), 81-91.
[32]
Wei, J.; Shen, W.; Zhao, J.; Zhang, C.; Zhou, Y.; Liu, H. Catal. Today, 2018, 316, 199-205.
[http://dx.doi.org/10.1016/j.cattod.2018.02.041]
[33]
Martins, L.; Vieira, K.M.; Rios, L.M.; Cardoso, D. Catal. Today, 2008, 133-135, 706-710.
[http://dx.doi.org/10.1016/j.cattod.2007.12.043]
[34]
Thirupathi, G.; Venkatanarayana, M.; Dubey, P.K.; Kumari, Y.B. Org. Chem. Int., 2012, 2012, 1-4.
[http://dx.doi.org/10.1155/2012/191584]
[35]
Stankovlc, E.; Elecko, P.; Toma, S. Chem. Pap., 1996, 50, 68-71.
[36]
China, P.R.; Li, Y-Q. J. Chem. Res., 2000, 5, 524-525.
[37]
Parida, K.M.; Rath, D. J. Mol. Catal. Chem., 2009, 310(1-2), 93-100.
[http://dx.doi.org/10.1016/j.molcata.2009.06.001]
[38]
Kubota, Y.; Nishizaki, Y.; Ikeya, H.; Saeki, M.; Hida, T.; Kawazu, S.; Yoshida, M.; Fujii, H.; Sugi, Y. Microporous Mesoporous Mater., 2004, 70(1-3), 135-149.
[http://dx.doi.org/10.1016/j.micromeso.2004.02.017]
[39]
Tuci, G.; Luconi, L.; Rossin, A.; Berretti, E.; Housseinou Ba, M. ACS Appl. Mater. Interfaces, 2016, 8, 1-20.
[http://dx.doi.org/10.1021/acsami.6b09033]
[40]
Mangala, K.; Sreekumar, K. Appl. Organomet. Chem., 2013, 27(2), 73-78.
[http://dx.doi.org/10.1002/aoc.2941]
[41]
Jia, Y.; Fang, Y.; Zhang, Y.; Miras, H.N.; Song, Y.F. Chemistry, 2015, 21(42), 14862-14870.
[http://dx.doi.org/10.1002/chem.201501953] [PMID: 26337902]
[42]
Yadav, J.S.; Reddy, B.V.S.; Basak, A.K.; Visali, B.; Narsaiah, A.V.; Nagaiah, K. Eur. J. Org. Chem., 2004, 2004(3), 546-551.
[http://dx.doi.org/10.1002/ejoc.200300513]
[43]
Rajabi, F.; Ebrahimi, A.Z.; Rabiee, A.; Pineda, A.; Luque, R. Materials, 2020, 13(5), 1097.
[http://dx.doi.org/10.3390/ma13051097] [PMID: 32121622]
[44]
Moemeni, M.H.; Amrollahi, M.A.; Tamaddon, F. Bulg. Chem. Commun., 2015, 47, 7-12.
[45]
Horiuchi, Y.; Toyao, T.; Fujiwaki, M.; Dohshi, S.; Kim, T-H.; Matsuoka, M. RSC Adv., 2015, 5(31), 24687-24690.
[http://dx.doi.org/10.1039/C5RA02410B]
[46]
Appaturi, J.N.; Pulingam, T.; Rajabathar, J.R.; Khoerunnisa, F.; Ling, T.C.; Tan, S.H.; Ng, E-P. Microporous Mesoporous Mater., 2021, 320, 111091.
[http://dx.doi.org/10.1016/j.micromeso.2021.111091]
[47]
Rioux, B.; Peyrot, C.; Mention, M.M.; Brunissen, F.; Allais, F. Antioxidants, 2020, 9(4), 331.
[http://dx.doi.org/10.3390/antiox9040331] [PMID: 32325641]
[48]
Cabello, J.A.; Campelo, J.M.; Garcia, A.; Luna, D.; Marinas, J.M. J. Org. Chem., 1984, 49, 5195-5519.
[http://dx.doi.org/10.1021/jo00200a036]
[49]
Zhang, X.R.; Chao, W.; Chuai, Y.T.; Ma, Y.; Hao, R.; Zou, D.C.; Wei, Y.G.; Wang, Y. Org. Lett., 2006, 8(12), 2563-2566.
[http://dx.doi.org/10.1021/ol060756o] [PMID: 16737314]
[50]
Wu, J.; Hua, W.; Yue, Y.; Gao, Z. Catalysts, 2020, 10(6), 712.
[http://dx.doi.org/10.3390/catal10060712]
[51]
Yue, C.; Mao, A.; Wei, Y.; Lü, M. Catal. Commun., 2008, 9(7), 1571-1574.
[http://dx.doi.org/10.1016/j.catcom.2008.01.002]
[52]
Xu, D.Z.; Liu, Y.; Shi, S.; Wang, Y. Green Chem., 2010, 12(3), 514-517.
[http://dx.doi.org/10.1039/b918595j]
[53]
Rodriguez, I.; Sastre, G.; Corma, A.; Iborra, S. J. Catal., 1999, 183(1), 14-23.
[http://dx.doi.org/10.1006/jcat.1998.2380]
[54]
Li, J.P.H.; Adesina, A.A.; Kennedy, E.M.; Stockenhuber, M. Phys. Chem. Chem. Phys., 2017, 19(39), 26630-26644.
[http://dx.doi.org/10.1039/C7CP04743F] [PMID: 28956036]
[55]
Kudale, P.; Gavali, K.; Pinjari, D.; Chaturbunj, G. Results Chem., 2023, 100833.
[56]
Yamazaki, S.; Katayama, K.; Wang, Z.; Mikata, Y.; Morimoto, T.; Ogawa, A. ACS Omega, 2021, 6(42), 28441-28454.
[http://dx.doi.org/10.1021/acsomega.1c05283] [PMID: 34723041]
[57]
Chowdhury, A.; Bhattacharjee, S.; Chongdar, S.; Malakar, B.; Maity, A.; Bhaumik, A. Catalysts, 2023, 13(7), 1053.
[http://dx.doi.org/10.3390/catal13071053]
[58]
Sonawane, J.P.; Chaudhari, B.; Patil, S.S.; Sonawane, M.V. Int. J. Chem. Phy. Sci, 2015, 4, 60-63.
[59]
Paliwal, K.S.; Mitra, A.; Biswas, T.; Mandal, S.; Mahalingam, V. J. Mol. Eng. Mater., 2022, 10(01n02), 2240001-2240011.
[http://dx.doi.org/10.1142/S2251237322400019]
[60]
Rao, S.S. Austin J. Anal. Pharm. Chem., 2018, 5, 1097.
[61]
Ossowicz, P.; Rozwadowski, Z.; Gano, M.; Janus, E. Pol. J. Chem. Technol., 2016, 18(4), 90-95.
[http://dx.doi.org/10.1515/pjct-2016-0076]
[62]
Waghmare, S.R. Indian J. Chem., 2021, 60B, 849-855.
[63]
Nanda, P. J. Emerg. Technol. Innov. Res., 2019, 6, 412-414.
[64]
Janvier, P.; Sun, X.; Bienaymé, H.; Zhu, J. J. Am. Chem. Soc., 2002, 124(11), 2560-2567.
[http://dx.doi.org/10.1021/ja017563a] [PMID: 11890807]
[65]
Bonne, D.; Dekhane, M.; Zhu, J. J. Am. Chem. Soc., 2005, 127(19), 6926-6927.
[http://dx.doi.org/10.1021/ja0511220] [PMID: 15884916]
[66]
Pirali, T.; Tron, G.C.; Masson, G.; Zhu, J. Org. Lett., 2007, 9(25), 5275-5278.
[http://dx.doi.org/10.1021/ol7024372] [PMID: 17990892]
[67]
Chang, M.Y.; Guo, C-R.; Ho, C-H. J. Mol. Struct., 2023, 1285, 135478.
[http://dx.doi.org/10.1016/j.molstruc.2023.135478]
[68]
Gaware, M.R.; Aher, J.S.; Lokhande, D.D.; Tambade, P.J.; Bhagare, A.M. Ind. J. Chem., 2017, 56B, 997-999.
[69]
Aher, J.S.; kardel, A.V.; Gaware, M.R.; Lokhande, D.D.; Bhagare, A.M. J. Chem. Sci., 2019, 131(7), 54-4.
[http://dx.doi.org/10.1007/s12039-019-1633-6]
[70]
Purba, W.T.; Roy, P.S.; Jannat, S.; Begum, S.A.; Rahman, M.M. Bang. J. Sci. Ind. Res., 2020, 55, 159-164.