N-Acylhydrazone Pharmacophore's Analgesic and Anti-inflammatory Profile: Recent Advancements during the Past Ten Years

Page: [333 - 351] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Due to its important biological and pharmacological properties, in the field of medicinal chemistry and drug discovery, the N-acylhydrazone motif has shown to be extremely adaptable and promising. This scaffold has become a crucial component in the synthesis of numerous bioactive agents. N-Acylhydrazones are also interesting biological and synthetic tools due to their easy and straightforward synthesis. The current review provides a summary of the analgesic and anti-inflammatory activities of N-acylhydrazone derivatives over the past ten years. A brief discussion of structure-activity relationships is also provided which may guide researchers in medicinal chemistry to develop derivatives based on N-acylhydrazone scaffold as potent anti-inflammatory candidates.

[1]
Medzhitov R. Origin and physiological roles of inflammation. Nature 2008; 454(7203): 428-35.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[2]
Allison MC, Howatson AG, Torrance CJ, Lee FD, Russell RI. Gastrointestinal damage associated with the use of nonsteroidal antiinflammatory drugs. N Engl J Med 1992; 327(11): 749-54.
[http://dx.doi.org/10.1056/NEJM199209103271101] [PMID: 1501650]
[3]
DuBose TD Jr, Molony DA, Verani R, McDonald G. Nephrotoxicity of non-steroidal anti-inflammatory drugs. Lancet 1994; 344(8921): 515-8.
[http://dx.doi.org/10.1016/S0140-6736(94)91902-X] [PMID: 7914617]
[4]
Marnett LJ, Kalgutkar AS. Cyclooxygenase 2 inhibitors: Discovery, selectivity and the future. Trends Pharmacol Sci 1999; 20(11): 465-9.
[http://dx.doi.org/10.1016/S0165-6147(99)01385-1] [PMID: 10542447]
[5]
Shimizu T. Lipid mediators in health and disease: Enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu Rev Pharmacol Toxicol 2009; 49(1): 123-50.
[http://dx.doi.org/10.1146/annurev.pharmtox.011008.145616] [PMID: 18834304]
[6]
Penning TD, Talley JJ, Bertenshaw SR, et al. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: Identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J Med Chem 1997; 40(9): 1347-65.
[http://dx.doi.org/10.1021/jm960803q] [PMID: 9135032]
[7]
Talley JJ, Brown DL, Carter JS, et al. 4-[5-Methyl-3-phenylisoxazol-4-yl]-benzenesulfonamide, valdecoxib: A potent and selective inhibitor of COX-2. J Med Chem 2000; 43(5): 775-7.
[http://dx.doi.org/10.1021/jm990577v] [PMID: 10715145]
[8]
Brophy JM. Cardiovascular effects of cyclooxygenase-2 inhibitors. Curr Opin Gastroenterol 2007; 23(6): 617-24.
[PMID: 17906437]
[9]
Neha S, Ritu R, Manju K, Birendra K. A review on biological activities of hydrazone derivatives. Int J Pharm Clin Res 2016; 8: 162-6.
[10]
Sharma PC, Sharma D, Sharma A, et al. Hydrazone comprising compounds as promising anti-infective agents: Chemistry and structure-property relationship. Mater Today Chem 2020; 18: 100349.
[http://dx.doi.org/10.1016/j.mtchem.2020.100349]
[11]
Thota S, Rodrigues DA, Pinheiro PSM, Lima LM, Fraga CAM, Barreiro EJ. N-Acylhydrazones as drugs. Bioorg Med Chem Lett 2018; 28(17): 2797-806.
[http://dx.doi.org/10.1016/j.bmcl.2018.07.015] [PMID: 30006065]
[12]
Hantgan RR, Stahle MC. Integrin priming dynamics: Mechanisms of integrin antagonist-promoted alphaIIbbeta3:PAC-1 molecular recognition. Biochemistry 2009; 48(35): 8355-65.
[http://dx.doi.org/10.1021/bi900475k] [PMID: 19640007]
[13]
Liang Z, Zhang D, Ai J, et al. Identification and synthesis of N′-(2-oxoindolin-3-ylidene)hydrazide derivatives against c-Met kinase. Bioorg Med Chem Lett 2011; 21(12): 3749-54.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.064] [PMID: 21561768]
[14]
Hsu DC, Roth HS, West DC, et al. Parallel synthesis and biological evaluation of 837 analogues of procaspase-activating compound 1 (PAC-1). ACS Comb Sci 2012; 14(1): 44-50.
[http://dx.doi.org/10.1021/co2001372] [PMID: 22007686]
[15]
Fraga C, Barreiro E. Medicinal chemistry of N-acylhydrazones: New lead-compounds of analgesic, antiinflammatory and antithrombotic drugs. Curr Med Chem 2006; 13(2): 167-98.
[http://dx.doi.org/10.2174/092986706775197881] [PMID: 16472212]
[16]
Sudo RT, Zapata-Sudo G, Barreiro EJ. The new compound, LASSBio 294, increases the contractility of intact and saponin-skinned cardiac muscle from Wistar rats. Br J Pharmacol 2001; 134(3): 603-13.
[http://dx.doi.org/10.1038/sj.bjp.0704291] [PMID: 11588115]
[17]
Costa DG, da Silva JS, Kümmerle AE, et al. LASSBio-294, A compound with inotropic and lusitropic activity, decreases cardiac remodeling and improves Ca²(+) influx into sarcoplasmic reticulum after myocardial infarction. Am J Hypertens 2010; 23(11): 1220-7.
[http://dx.doi.org/10.1038/ajh.2010.157] [PMID: 20671720]
[18]
da Silva J, Gabriel-Costa D, Sudo R, et al. Adenosine A2A receptor agonist prevents cardiac remodeling and dysfunction in spontaneously hypertensive male rats after myocardial infarction. Drug Des Devel Ther 2017; 11: 553-62.
[http://dx.doi.org/10.2147/DDDT.S113289] [PMID: 28293100]
[19]
do Amaral DN, Cavalcanti BC, Bezerra DP, et al. Docking, synthesis and antiproliferative activity of N-acylhydrazone derivatives designed as combretastatin A4 analogues. PLoS One 2014; 9(3): e85380.
[http://dx.doi.org/10.1371/journal.pone.0085380] [PMID: 24614859]
[20]
Rodrigues DA, Ferreira-Silva GÀ, Ferreira ACS, et al. Design, synthesis, and pharmacological evaluation of novel N-acylhydrazone derivatives as potent histone deacetylase 6/8 dual inhibitors. J Med Chem 2016; 59(2): 655-70.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01525] [PMID: 26705137]
[21]
Kümmerle AE, Schmitt M, Cardozo SVS, et al. Design, synthesis, and pharmacological evaluation of N-acylhydrazones and novel conformationally constrained compounds as selective and potent orally active phosphodiesterase-4 inhibitors. J Med Chem 2012; 55(17): 7525-45.
[http://dx.doi.org/10.1021/jm300514y] [PMID: 22891752]
[22]
Abdel-Aziz HA, Aboul-Fadl T, Al-Obaid ARM, Ghazzali M, Al-Dhfyan A, Contini A. Design, synthesis and pharmacophoric model building of novel substituted nicotinic acid hydrazones with potential antiproliferative activity. Arch Pharm Res 2012; 35(9): 1543-52.
[http://dx.doi.org/10.1007/s12272-012-0904-2] [PMID: 23054710]
[23]
Qin M, Liao W, Xu C, et al. Synthesis and biological evaluation of novel 4-(2-fluorophenoxy)-2-(1H-tetrazol-1-yl)pyridines bearing semicarbazone moieties as potent antitumor agents. Arch Pharm 2013; 346(11): 840-50.
[http://dx.doi.org/10.1002/ardp.201300188] [PMID: 24114959]
[24]
Liu Z, Wu S, Wang Y, et al. Design, synthesis and biological evaluation of novel thieno[3,2-d]pyrimidine derivatives possessing diaryl semicarbazone scaffolds as potent antitumor agents. Eur J Med Chem 2014; 87: 782-93.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.022] [PMID: 25440879]
[25]
Cardoso LNF, Nogueira TCM, Rodrigues FAR, et al. N-acylhydrazones containing thiophene nucleus: A new anticancer class. Med Chem Res 2017; 26(8): 1605-8.
[http://dx.doi.org/10.1007/s00044-017-1832-y]
[26]
Kassab AE, Gedawy EM. Novel ciprofloxacin hybrids using biology oriented drug synthesis (BIODS) approach: Anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis, topoisomerase II inhibition, and antibacterial activity. Eur J Med Chem 2018; 150: 403-18.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.026] [PMID: 29547830]
[27]
Kassab AE, Hassan RA. Novel benzotriazole N-acylarylhydrazone hybrids: Design, synthesis, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and FAK inhibition. Bioorg Chem 2018; 80: 531-44.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.008] [PMID: 30014921]
[28]
Abdelhaleem EF, Kassab AE, El-Nassan HB, Khalil OM. Design and synthesis of novel celecoxib analogues with potential cytotoxic and pro-apoptotic activity against breast cancer cell line MCF-7. Med Chem 2022; 18(8): 903-14.
[http://dx.doi.org/10.2174/1573406418666220309123648] [PMID: 35264093]
[29]
Kassab AE, Gedawy EM, Hamed MIA, Doghish AS, Hassan RA. Design, synthesis, anticancer evaluation, and molecular modelling studies of novel tolmetin derivatives as potential VEGFR-2 inhibitors and apoptosis inducers. J Enzyme Inhib Med Chem 2021; 36(1): 922-39.
[http://dx.doi.org/10.1080/14756366.2021.1901089] [PMID: 33896327]
[30]
Kassab AE. Anticancer agents incorporating the N-acylhydrazone scaffold: Progress from 2017 to present. Arch Pharm 2023; 356(5): e2200548.
[http://dx.doi.org/10.1002/ardp.202200548]
[31]
Swedan HK, Kassab AE, Gedawy EM, Elmeligie SE. Design, synthesis, and biological evaluation of novel ciprofloxacin derivatives as potential anticancer agents targeting topoisomerase II enzyme. J Enzyme Inhib Med Chem 2023; 38(1): 118-37.
[http://dx.doi.org/10.1080/14756366.2022.2136172] [PMID: 36305290]
[32]
Salgın-Gökşen U, Gökhan-Kelekçi N, Yabanoglu-Çiftci S, Yelekçi K, Uçar G. Synthesis, molecular modeling, and in vitro screening of monoamine oxidase inhibitory activities of some novel hydrazone derivatives. J Neural Transm 2013; 120(6): 883-91.
[http://dx.doi.org/10.1007/s00702-013-0968-2] [PMID: 23328949]
[33]
Dias Viegas FP, de Freitas Silva M, Divino da Rocha M, et al. Design, synthesis and pharmacological evaluation of N-benzyl-piperidinyl-aryl-acylhydrazone derivatives as donepezil hybrids: Discovery of novel multi-target anti-alzheimer prototype drug candidates. Eur J Med Chem 2018; 147: 48-65.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.066] [PMID: 29421570]
[34]
de Freitas Silva M, Tardelli Lima E, Pruccoli L, et al. Design, synthesis and biological evaluation of novel triazole N-acylhydrazone hybrids for Alzheimer’s disease. Molecules 2020; 25(14): 3165.
[http://dx.doi.org/10.3390/molecules25143165] [PMID: 32664425]
[35]
Macedo Vaz S, de Freitas Silva M, Dos Reis Rosa Franco G, et al. Synthesis and biological evaluation of 4-hydroxy-methylpiperidinyl-N-benzyl-acylarylhydrazone hybrids designed as novel multifunctional drug candidates for Alzheimer’s disease. Bioorg Med Chem 2022; 71: 116952.
[http://dx.doi.org/10.1016/j.bmc.2022.116952] [PMID: 35930852]
[36]
Che Z, Tian Y, Liu S, Hu M, Chen G. Discovery of N-arylsulfonyl-3-acylindole benzoyl hydrazone derivatives as anti-HIV-1 agents. Braz J Pharm Sci 2018; 54(4): e17543.
[http://dx.doi.org/10.1590/s2175-97902018000417543]
[37]
Dascalu AE, Ghinet A, Lipka E, et al. Design, synthesis and evaluation of hydrazine and acyl hydrazone derivatives of 5-pyrrolidin-2-one as antifungal agents. Bioorg Med Chem Lett 2020; 30(13): 127220.
[http://dx.doi.org/10.1016/j.bmcl.2020.127220] [PMID: 32386979]
[38]
Yang P, Luo JB, Wang ZZ, et al. Synthesis and in vitro antibacterial activity of N-acylarylhydrazone-ciprofloxacin hybrids as novel fluoroquinolone derivatives. J Mol Struct 2022; 1262: 133007.
[http://dx.doi.org/10.1016/j.molstruc.2022.133007]
[39]
Guay DR. An update on the role of nitrofurans in the management of urinary tract infections. Drugs 2001; 61(3): 353-64.
[http://dx.doi.org/10.2165/00003495-200161030-00004] [PMID: 11293646]
[40]
Passali GC, De Corso E, Bastanza G, Di Gennaro L. An old drug for a new application: Carbazochrome-sodium-sulfonate in HHT. J Clin Pharmacol 2015; 55(5): 601-2.
[http://dx.doi.org/10.1002/jcph.452] [PMID: 25644784]
[41]
Begovic B, Ahmetagic S, Calkic L, et al. Open clinical trial on using nifuroxazide compared to probiotics in treating acute diarrhoeas in adults. Mater Sociomed 2016; 28(6): 454-8.
[http://dx.doi.org/10.5455/msm.2016.28.454-458] [PMID: 28144199]
[42]
Krause T, Gerbershagen MU, Fiege M, Weißhorn R, Wappler F. Dantrolene – A review of its pharmacology, therapeutic use and new developments. Anaesthesia 2004; 59(4): 364-73.
[http://dx.doi.org/10.1111/j.1365-2044.2004.03658.x] [PMID: 15023108]
[43]
Murineddu G, Loriga G, Gavini E, Peana AT, Mulè AC, Pinna GA. Synthesis and analgesic-antiinflammatory activities of novel acylarylhydrazones with a 5-phenyl-4-R-3-pyrrolyl-acyl moiety. Arch Pharm 2001; 334(12): 393-8.
[http://dx.doi.org/10.1002/1521-4184(200112)334:12<393::AID-ARDP393>3.0.CO;2-P] [PMID: 11852535]
[44]
Almasirad A, Tajik M, Bakhtiari D, et al. Synthesis and analgesic activity of N-arylhydrazone derivatives of mefenamic acid. J Pharm Pharm Sci 2005; 8(3): 419-25.
[PMID: 16401392]
[45]
Shekarchi M, Navidpour L, Rajabi Khorami A, et al. Synthesis of N-arylidene-2-(2-phenoxyphenyl) acetohydrazides as anti-inflammatory agents. Iran J Pharm Res 2011; 10(2): 369-77.
[PMID: 24250367]
[46]
Leite LFCC, Ramos MN, da Silva JBP, Miranda ALP, Fraga CAM, Barreiro EJ. Synthesis and analgesic profile of novel N-containing heterocycle derivatives: Arylidene 3-phenyl-1,2,4-oxadiazole-5-carbohydrazide. Farmaco 1999; 54(11-12): 747-57.
[http://dx.doi.org/10.1016/S0014-827X(99)00094-4] [PMID: 10668174]
[47]
Silva YKC, Augusto CV, Barbosa MLC, et al. Synthesis and pharmacological evaluation of pyrazine N-acylhydrazone derivatives designed as novel analgesic and anti-inflammatory drug candidates. Bioorg Med Chem 2010; 18(14): 5007-15.
[http://dx.doi.org/10.1016/j.bmc.2010.06.002] [PMID: 20598893]
[48]
Barreiro EJ, Fraga CAM, Miranda ALP, Rodrigues CR. A química medicinal de N-acilidrazonas: Novos compostos-protótipos de fármacos analgésicos, antiinflamatórios e anti-trombóticos. Quim Nova 2002; 25(1): 129-48.
[http://dx.doi.org/10.1590/S0100-40422002000100022]
[49]
Mahy JP, Gaspard S, Mansuy D. Phenylhydrazones as new good substrates for the dioxygenase and peroxidase reactions of prostaglandin synthase: Formation of iron(III)-.sigma.-phenyl complexes. Biochemistry 1993; 32(15): 4014-21.
[http://dx.doi.org/10.1021/bi00066a023] [PMID: 8471609]
[50]
Lacerda RB, da Silva LL, de Lima CKF, et al. Discovery of novel orally active anti-inflammatory N-phenylpyrazolyl-N-glycinyl-hydrazone derivatives that inhibit TNF-α production. PLoS One 2012; 7(10): e46925.
[http://dx.doi.org/10.1371/journal.pone.0046925] [PMID: 23056531]
[51]
Hernández P, Cabrera M, Lavaggi ML, et al. Discovery of new orally effective analgesic and anti-inflammatory hybrid furoxanyl N-acylhydrazone derivatives. Bioorg Med Chem 2012; 20(6): 2158-71.
[http://dx.doi.org/10.1016/j.bmc.2012.01.034] [PMID: 22356737]
[52]
Ulloora S, Shabaraya R, Ranganathan R, Adhikari AV. Synthesis, anticonvulsant and anti-inflammatory studies of new 1,4-dihydropyridin-4-yl-phenoxyacetohydrazones. Eur J Med Chem 2013; 70: 341-9.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.010] [PMID: 24177360]
[53]
Kheradmand A, Navidpour L, Shafaroodi H, Saeedi-Motahar G, Shafiee A. Design and synthesis of niflumic acid-based N-acylhydrazone derivatives as novel anti-inflammatory and analgesic agents. Med Chem Res 2013; 22(5): 2411-20.
[http://dx.doi.org/10.1007/s00044-012-0235-3]
[54]
Rajitha G, Prasad KVSRG, Umamaheswari A, Pradhan D, Bharathi K. Synthesis, biological evaluation, and molecular docking studies of N-(α-acetamido cinnamoyl) aryl hydrazone derivatives as antiinflammatory and analgesic agents. Med Chem Res 2014; 23(12): 5204-14.
[http://dx.doi.org/10.1007/s00044-014-1091-0]
[55]
Navidpour L, Shafaroodi H, Saeedi-Motahar G, Shafiee A. Synthesis, anti-inflammatory and analgesic activities of arylidene-2-(3-chloroanilino)nicotinic acid hydrazides. Med Chem Res 2014; 23(6): 2793-802.
[http://dx.doi.org/10.1007/s00044-013-0860-5]
[56]
Silva Y, Reyes C, Rivera G, et al. 3-Aminothiophene-2-acylhydrazones: Non-toxic, analgesic and anti-inflammatory lead-candidates. Molecules 2014; 19(6): 8456-71.
[http://dx.doi.org/10.3390/molecules19068456] [PMID: 24955640]
[57]
Turan-Zitouni G, Yurttaş L, Kaplancıklı ZA, Can ÖD, Demir Özkay Ü. Synthesis and anti-nociceptive, anti-inflammatory activities of new aroyl propionic acid derivatives including N-acylhydrazone motif. Med Chem Res 2015; 24(6): 2406-16.
[http://dx.doi.org/10.1007/s00044-014-1309-1]
[58]
Silva TF, Bispo Júnior W, Alexandre-Moreira MS, et al. Novel orally active analgesic and anti-inflammatory cyclohexyl-N-acylhydrazone derivatives. Molecules 2015; 20(2): 3067-88.
[http://dx.doi.org/10.3390/molecules20023067] [PMID: 25685912]
[59]
Azizian H, Mousavi Z, Faraji H, et al. Arylhydrazone derivatives of naproxen as new analgesic and anti-inflammatory agents: Design, synthesis and molecular docking studies. J Mol Graph Model 2016; 67: 127-36.
[http://dx.doi.org/10.1016/j.jmgm.2016.05.009] [PMID: 27311100]
[60]
Silva JC, Oliveira Júnior RG, Silva MG, et al. LASSBio-1586, an N-acylhydrazone derivative, attenuates nociceptive behavior and the inflammatory response in mice. PLoS One 2018; 13(7): e0199009.
[http://dx.doi.org/10.1371/journal.pone.0199009] [PMID: 30059558]
[61]
Guedes IA, Freitas RHCN, Cordeiro NM, et al. LASSBio-1829 hydrochloride: Development of a new orally active N-acylhydrazone IKK2 inhibitor with anti-inflammatory properties. ChemMedChem 2016; 11(2): 234-44.
[http://dx.doi.org/10.1002/cmdc.201500266] [PMID: 26306006]
[62]
Cordeiro NM, Freitas RHCN, Fraga CAM, Fernandes PD. Discovery of novel orally active tetrahydro-naphthyl-N-acylhydrazones with in vivo anti-TNF-α effect and remarkable anti-inflammatory properties. PLoS One 2016; 11(5): e0156271.
[http://dx.doi.org/10.1371/journal.pone.0156271] [PMID: 27227468]
[63]
Mahajan PS, Nikam MD, Khedkar VM, Jha PC, Sarkar D, Gill CH. Synthesis, biological evaluation and molecular docking studies of N-acylheteroaryl hydrazone derivatives as antioxidant and anti-inflammatory agents. Res Chem Intermed 2016; 42(3): 2707-29.
[http://dx.doi.org/10.1007/s11164-015-2176-1]
[64]
Gorantla V, Gundla R, Jadav SS, et al. Molecular hybrid design, synthesis and biological evaluation of N-phenyl sulfonamide linked N-acyl hydrazone derivatives functioning as COX-2 inhibitors: New anti-inflammatory, anti-oxidant and anti-bacterial agents. New J Chem 2017; 41(22): 13516-32.
[http://dx.doi.org/10.1039/C7NJ03332J]
[65]
Gorantla V, Gundla R, Jadav SS, et al. New anti-inflammatory hybrid N-acyl hydrazone-linked isoxazole derivatives as COX-2 inhibitors: Rational design, synthesis and biological evaluation. ChemistrySelect 2017; 2(26): 8091-100.
[http://dx.doi.org/10.1002/slct.201701421]
[66]
Freitas RHCN, Cordeiro NM, Carvalho PR, et al. Discovery of naphthyl-N-acylhydrazone p38α MAPK inhibitors with in vivo anti-inflammatory and anti-TNF-α activity. Chem Biol Drug Des 2018; 91(2): 391-7.
[http://dx.doi.org/10.1111/cbdd.13085] [PMID: 28815968]
[67]
Moraes ADTO, Miranda MDS, Jacob ÍTT, et al. Synthesis, in vitro and in vivo biological evaluation, COX-1/2 inhibition and molecular docking study of indole-N-acylhydrazone derivatives. Bioorg Med Chem 2018; 26(20): 5388-96.
[http://dx.doi.org/10.1016/j.bmc.2018.07.024] [PMID: 30293795]
[68]
Bastos I, Pinheiro P, Costa F, et al. Design, synthesis, experimental and theoretical characterization of a new multitarget 2-thienyl-N-acylhydrazone derivative. Pharmaceuticals 2018; 11(4): 119.
[http://dx.doi.org/10.3390/ph11040119] [PMID: 30388818]
[69]
Meira CS, dos Santos Filho JM, Sousa CC, et al. Structural design, synthesis and substituent effect of hydrazone-N-acylhydrazones reveal potent immunomodulatory agents. Bioorg Med Chem 2018; 26(8): 1971-85.
[http://dx.doi.org/10.1016/j.bmc.2018.02.047] [PMID: 29523468]
[70]
Cerqueira JV, Meira CS, Santos ES, et al. Anti-inflammatory activity of SintMed65, an N-acylhydrazone derivative, in a mouse model of allergic airway inflammation. Int Immunopharmacol 2019; 75: 105735.
[http://dx.doi.org/10.1016/j.intimp.2019.105735] [PMID: 31306982]
[71]
da Silva Monteiro CE, Franco ÁX, Sousa JAO, et al. Gastroprotective effects of N-acylarylhydrazone derivatives on ethanol-induced gastric lesions in mice are dependent on the NO/cGMP/ KATP pathway. Biochem Pharmacol 2019; 169: 113629.
[http://dx.doi.org/10.1016/j.bcp.2019.113629] [PMID: 31491412]
[72]
Cordeiro NM, Freitas RHCN, Fraga CAM, Fernandes PD. New 2-amino-pyridinyl-N-acylhydrazones: Synthesis and identification of their mechanism of anti-inflammatory action. Biomed Pharmacother 2020; 123: 109739.
[http://dx.doi.org/10.1016/j.biopha.2019.109739] [PMID: 31918210]
[73]
Osmaniye D, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Design, synthesis and biological evaluation of new N-acyl hydrazones with a methyl sulfonyl moiety as selective COX-2 inhibitors. Chem Biodivers 2021; 18(11): e2100521.
[http://dx.doi.org/10.1002/cbdv.202100521] [PMID: 34411436]
[74]
Altıntop MD, Sever B, Temel HE, Kaplancıklı ZA, Özdemir A. Design, synthesis and in vitro COX inhibitory profiles of a new series of tetrazole-based hydrazones. EJLS 2022; 1(1): 20-7.
[http://dx.doi.org/10.55971/EJLS.1095818]
[75]
Darwish SA, El-Kerdawy MM, Elsheakh AR, et al. New tilomisole-based benzimidazothiazole derivatives as anti-inflammatory agents: Synthesis, in vivo, in vitro evaluation, and in silico studies. Bioorg Chem 2022; 120: 105644.
[http://dx.doi.org/10.1016/j.bioorg.2022.105644] [PMID: 35121552]
[76]
da Costa Salomé D, de Freitas RHCN, Fraga CAM, Fernandes PD, Fraga M, Fernandes PD. Novel regioisomeric analogues of naphthyl-N-acylhydrazone derivatives and their anti-inflammatory effects. Int J Mol Sci 2022; 23(21): 13562.
[http://dx.doi.org/10.3390/ijms232113562] [PMID: 36362349]
[77]
dos Santos NM, Pereira NC, de Albuquerque APS, et al. 3-Hydroxy-piperidinyl-N-benzyl-acyl-arylhydrazone derivatives reduce neuropathic pain and increase thermal threshold mediated by opioid system. Biomed Pharmacother 2018; 99: 492-8.
[http://dx.doi.org/10.1016/j.biopha.2018.01.077] [PMID: 29665651]
[78]
Herrmann S, Schübel T, Costa FN, et al. Synthesis, X-ray diffraction study and pharmacological evaluation of 3-amino-4-methylthiophene-2-acylcarbohydrazones. An Acad Bras Cienc 2018; 90(S2): 1073-88.
[http://dx.doi.org/10.1590/0001-3765201820170796] [PMID: 29873669]