In-vitro Interactions between Fluconazole and Diphenyl Diselenide against Various Candida Species

Article ID: e310124226578 Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: In the immunocompromised population, Candida species are the most aetiologic agents causing severe nosocomial fungal infections. Candida species, irrespective of being commensals in the human microbiome, are the fourth most prevalent source of potentially fatal yeast infections. Monotherapy is frequently employed to treat invasive fungal infections, but sometimes, patients do not favor the monotherapy treatment regime. It may be because of the reduced susceptibility of the pathogen toward traditional antimycotic drugs. Antimycotic drug combination therapy could be a better choice in such specific circumstances. In our study, we evaluated the interactions of fluconazole with diphenyl diselenide.

Methods: The antimycotic susceptibilities of Candida species for fluconazole and diphenyl diselenide were determined by broth microdilution assay, and the in-vitro interactions of fluconazole with diphenyl diselenide were studied by using disc diffusion assay and chequerboard assay. The nature of the interactions was assessed by calculating the fractional inhibitory concentration index (FICI). The interactions were also analyzed by the response surface approach.

Results: The minimum inhibitory concentrations (MICs) for fluconazole and diphenyl diselenide as determined by the broth microdilution assay against Candida species were 4 μg/ml-512 μg/ml and 1 μg/ml-32 μg/ml, respectively. The FICI values varied from 0.375 to 2.

Conclusion: Our finding demonstrated that there is no antagonism interaction between fluconazole and diphenyl diselenide in Candida species. Thus, this innovative combination should be explored in the future.

[1]
Hoenigl, M.; Seidel, D.; Sprute, R.; Cunha, C.; Oliverio, M.; Goldman, G.H.; Ibrahim, A.S.; Carvalho, A. COVID-19-associated fungal infections. Nat. Microbiol., 2022, 7(8), 1127-1140.
[http://dx.doi.org/10.1038/s41564-022-01172-2] [PMID: 35918423]
[2]
Mina, S.; Yaakoub, H.; Annweiler, C.; Dubée, V.; Papon, N. COVID-19 and fungal infections: A double debacle. Microbes Infect., 2022, 24(8), 105039.
[http://dx.doi.org/10.1016/j.micinf.2022.105039] [PMID: 36030024]
[3]
Chiurlo, M.; Mastrangelo, A.; Ripa, M.; Scarpellini, P. Invasive fungal infections in patients with COVID-19: A review on pathogenesis, epidemiology, clinical features, treatment, and outcomes. New Microbiol., 2021, 44(2), 71-83.
[PMID: 34240742]
[4]
Khalifa, H.O.; Majima, H.; Watanabe, A.; Kamei, K. In vitro characterization of twenty-one antifungal combinations against echinocandin-resistant and -susceptible candida glabrata. In: J. Fungus; , 2021; p. 7.
[5]
Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine, 2009, 16(2-3), 97-110.
[http://dx.doi.org/10.1016/j.phymed.2008.12.018] [PMID: 19211237]
[6]
Poester, V.R.; Mattei, A.S.; Mendes, J.F.; Klafke, G.B.; Ramis, I.B.; Sanchotene, K.O.; Xavier, M.O. Antifungal activity of diphenyl diselenide alone and in combination with itraconazole against Sporothrix brasiliensis. Med. Mycol., 2019, 57(3), 328-331.
[http://dx.doi.org/10.1093/mmy/myy044] [PMID: 29924365]
[7]
Reference Method for Broth Dilution Antifungal susceptibility testing of yeast. Clin Lab Stand Inst., 2012, 32, 1-23.
[8]
Schwarz, P.; Bidaud, A.L.; Dannaoui, E. In vitro synergy of isavuconazole in combination with colistin against Candida auris. Sci. Rep., 2020, 10(1), 21448.
[http://dx.doi.org/10.1038/s41598-020-78588-5] [PMID: 33293607]
[9]
Dahiya, S.; Sharma, N.; Punia, A.; Choudhary, P.; Gulia, P.; Parmar, V.S.; Chhillar, A.K. Antimycotic drugs and their mechanisms of resistance to candida species. Curr. Drug Targets, 2022, 23(2), 116-125.
[http://dx.doi.org/10.2174/1389450122666210719124143] [PMID: 34551694]
[10]
Allen, D.; Wilson, D.; Drew, R.; Perfect, J. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev. Anti Infect. Ther., 2015, 13(6), 787-798.
[http://dx.doi.org/10.1586/14787210.2015.1032939] [PMID: 25843556]
[11]
Johnson, M.D.; Perfect, J.R. Combination antifungal therapy: What can and should we expect? Bone Marrow Transplant., 2007, 40(4), 297-306.
[http://dx.doi.org/10.1038/sj.bmt.1705687] [PMID: 17563740]
[12]
Di Veroli, G.Y.; Fornari, C.; Wang, D.; Mollard, S.; Bramhall, J.L.; Richards, F.M.; Jodrell, D.I. Combenefit: An interactive platform for the analysis and visualization of drug combinations. Bioinformatics, 2016, 32(18), 2866-2868.
[http://dx.doi.org/10.1093/bioinformatics/btw230] [PMID: 27153664]
[13]
Grecka, K.; Szweda, P. Synergistic effects of propolis combined with 2-phenoxyethanol and antipyretics on the growth of staphylococcus aureus. Pharmaceutics, 2021, 13(2), 215.
[http://dx.doi.org/10.3390/pharmaceutics13020215] [PMID: 33557393]
[14]
Heard, K.L.; Hughes, S.; Mughal, N.; Moore, L.S.P. COVID-19 and fungal superinfection; The Lancet; Microbe: England, 2020, Vol. 1, p. e107.
[15]
Sanguinetti, M.; Posteraro, B.; Lass-Flörl, C. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycoses, 2015, 58(S2)(Suppl. 2), 2-13.
[http://dx.doi.org/10.1111/myc.12330] [PMID: 26033251]
[16]
Garcia-Rubio, R.; Cuenca-Estrella, M.; Mellado, E. Triazole resistance in aspergillus species: An emerging problem. Drugs, 2017, 77(6), 599-613.
[http://dx.doi.org/10.1007/s40265-017-0714-4] [PMID: 28236169]
[17]
Moreira Rosa, R.; de Oliveira, R.B.; Saffi, J.; Braga, A.L.; Roesler, R.; Dal-Pizzol, F.; Fonseca Moreira, J.C.; Brendel, M.; Pêgas Henriques, J.A. Pro-oxidant action of diphenyl diselenide in the yeast Saccharomyces cerevisiae exposed to ROS-generating conditions. Life Sci., 2005, 77(19), 2398-2411.
[http://dx.doi.org/10.1016/j.lfs.2005.01.029] [PMID: 15932762]
[18]
Nogueira, CW; Quinhones, EB; Jung, EAC; Zeni, G; Rocha, JBT Anti-inflammatory and antinociceptive activity of diphenyl diselenide. Inflamm Res Off J Eur Histamine Res Soc, 2003, 52(2), 56-63.
[http://dx.doi.org/10.1007/s000110300001]
[19]
Brito, V.B.; Rocha, J.B.T.; Folmer, V.; Erthal, F. Diphenyl diselenide and diphenyl ditelluride increase the latency for 4-aminopyridine-induced chemical seizure and prevent death in mice. Acta Biochim. Pol., 2009, 56(1), 125-134.
[http://dx.doi.org/10.18388/abp.2009_2524] [PMID: 19238257]
[20]
Prigol, M.; Luchese, C.; Nogueira, C.W. Antioxidant effect of diphenyl diselenide on oxidative stress caused by acute physical exercise in skeletal muscle and lungs of mice. Cell Biochem. Funct., 2009, 27(4), 216-222.
[http://dx.doi.org/10.1002/cbf.1559] [PMID: 19382129]
[21]
Wilhelm, E.A.; Jesse, C.R.; Leite, M.R.; Nogueira, C.W. Studies on preventive effects of diphenyl diselenide on acetaminophen-induced hepatotoxicity in rats. Pathophysiology, 2009, 16(1), 31-37.
[http://dx.doi.org/10.1016/j.pathophys.2008.12.002] [PMID: 19162454]
[22]
De Bem, A.F.; Portella, R.L.; Farina, M.; Perottoni, J.; Paixão, M.W.; Nogueira, C.W.; Rocha, J.B.T. Low toxicity of diphenyl diselenide in rabbits: A long-term study. Basic Clin. Pharmacol. Toxicol., 2007, 101(1), 47-55.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00073.x] [PMID: 17577316]
[23]
de Bem, A.F.; de Lima Portella, R.; Perottoni, J.; Becker, E.; Bohrer, D.; Paixão, M.W.; Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Changes in biochemical parameters in rabbits blood after oral exposure to diphenyl diselenide for long periods. Chem. Biol. Interact., 2006, 162(1), 1-10.
[http://dx.doi.org/10.1016/j.cbi.2006.04.005] [PMID: 16737689]
[24]
Nogueira, C.W.; Rocha, J.B.T. Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch. Toxicol., 2011, 85(11), 1313-1359.
[http://dx.doi.org/10.1007/s00204-011-0720-3] [PMID: 21720966]
[25]
Nogueira, C.W.; Meotti, F.C.; Curte, E.; Pilissão, C.; Zeni, G.; Rocha, J.B.T. Investigations into the potential neurotoxicity induced by diselenides in mice and rats. Toxicology, 2003, 183(1-3), 29-37.
[http://dx.doi.org/10.1016/S0300-483X(02)00423-7] [PMID: 12504340]
[26]
Lo, W.H.; Deng, F.S.; Chang, C.J.; Lin, C.H. Synergistic antifungal activity of chitosan with fluconazole against candida albicans, candida tropicalis, and fluconazole-resistant strains. Molecules, 2020, 25(21), 5114.
[http://dx.doi.org/10.3390/molecules25215114] [PMID: 33153228]
[27]
Zhu, B.; Li, Z.; Yin, H.; Hu, J.; Xue, Y.; Zhang, G.; Zheng, X.; Chen, W.; Hu, X. Synergistic antibiofilm effects of pseudolaric acid a combined with fluconazole against candida albicans via inhibition of adhesion and yeast-to-hypha transition. Microbiol. Spectr., 2022, 10(2), e01478-e21.
[http://dx.doi.org/10.1128/spectrum.01478-21] [PMID: 35297651]
[28]
Hao, W.; Wang, Y.; Xi, Y.; Yang, Z.; Zhang, H.; Ge, X. Activity of chlorhexidine acetate in combination with fluconazole against suspensions and biofilms of Candida auris. J. Infect. Chemother., 2022, 28(1), 29-34.
[http://dx.doi.org/10.1016/j.jiac.2021.09.018] [PMID: 34674944]
[29]
Liu, S.; Hou, Y.; Chen, X.; Gao, Y.; Li, H.; Sun, S. Combination of fluconazole with non-antifungal agents: A promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int. J. Antimicrob. Agents, 2014, 43(5), 395-402.https://www.sciencedirect.com/science/article/pii/S0924857914000028
[http://dx.doi.org/10.1016/j.ijantimicag.2013.12.009] [PMID: 24503221]
[30]
Gao, Y.; Zhang, Z.; Lun, Z.; Gong, L.; Xu, A.; Li, X. Synergistic effects of fluconazole combined with doxycycline against dual-species cultures of candida albicans and staphylococcus epidermidis and the mechanisms of action. Microb. Drug Resist., 2022, 28(5), 525-535.
[http://dx.doi.org/10.1089/mdr.2021.0301] [PMID: 35363560]
[31]
Venturini, T.P.; Chassot, F.; Loreto, É.S.; Keller, J.T.; Azevedo, M.I.; Zeni, G.; Santurio, J.M.; Alves, S.H. Antifungal activities of diphenyl diselenide and ebselen alone and in combination with antifungal agents against Fusarium spp. Med. Mycol., 2016, 54(5), 550-555.
[http://dx.doi.org/10.1093/mmy/myv120] [PMID: 26773133]
[32]
Felli Kubiça, T.; Bedin Denardi, L.; Silva de Loreto, É.; Zeni, G.; Weiblen, C.; Oliveira, V.; Morais Santurio, J.; Hartz Alves, S. In vitro activity of diphenyl diselenide and ebselen alone and in combination with antifungal agents against Trichosporon asahii. Mycoses, 2019, 62(5), 428-433.
[http://dx.doi.org/10.1111/myc.12906] [PMID: 30784136]
[33]
Melo, A.M.; Poester, V.R.; Trapaga, M.; Nogueira, C.W.; Zeni, G.; Martinez, M.; Sass, G.; Stevens, D.A.; Xavier, M.O. Diphenyl diselenide and its interaction with antifungals against Aspergillus spp. Med. Mycol., 2021, 59(6), 528-536.
[http://dx.doi.org/10.1093/mmy/myaa072] [PMID: 32844203]
[34]
Rossato, L.; Loreto, E.S.; Venturini, T.P.; de Azevedo, M.I.; Al-Hatmi, A.M.S.; Santurio, J.M.; Alves, S.H. In vitro combination between antifungals and diphenyl diselenide against Cryptococcus species. Mycoses, 2019, 62(6), 508-512.
[http://dx.doi.org/10.1111/myc.12905] [PMID: 30776159]