Coronaviruses

Author(s): Alok Bharadwaj*

DOI: 10.2174/0126667975284845231205102151

DownloadDownload PDF Flyer Cite As
Impact of MDRs on COVID-19 Patients Among Developing Countries

Article ID: e310124226566 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

increased during epidemics, leading to the spread of MDRs. Although antibiotic use is increasing in both developed and developing countries, the utility level and abuse are higher in developing countries. This could have negative consequences for the vaccine, especially considering that many developing countries reported the emergence of many resistant microbes even before the pandemic. Infectious diseases, social and cultural pressures, and telemedicine facilities can all contribute to the overuse of antibiotics. The emergence of multidrug resistance is a major concern, especially in developing countries where health services are already inadequate and diagnostic capacity and facilities for disease prevention and control are inadequate. This might be the major cause of the extensive spread of such diseases. Improper waste management and disposal in hospitals and communities make it easy for clean water to leak from the area, causing many diseases and causing many antibiotics. The potential for microplastics to be turned into anti-bacterial products is also of particular concern for low- and middle-income countries. In the present review, we aim to examine the impact of multidrug resistance in ESKAPE infections coupled with healthcare-associated infections and determine their risk of secondary infection in COVID-19 patients in low- and middle-income countries during the COVID-19 epidemic from a multidisciplinary perspective, identify the challenge for developing countries and seek solutions to solve this problem.

Keywords: Coronavirus, antibiotic resistance, ESKAPE group, global pandemic, microplastics, immune system.

[1]
Khan, S.; Siddique, R.; Bai, Q. Coronaviruses disease 2019 (COVID-19): Causative agent, mental health concerns, and potential management options. J. Infect. Public Health, 2020, 13(12), 1840-1844.
[http://dx.doi.org/10.1016/j.jiph.2020.07.010] [PMID: 32741731]
[2]
Mogasale, V.V.; Saldanha, P.; Pai, V.; Rekha, P.D.; Mogasale, V. A descriptive analysis of antimicrobial resistance patterns of WHO priority pathogens isolated in children from a tertiary care hospital in India. Sci. Rep., 2021, 11(1), 5116.
[http://dx.doi.org/10.1038/s41598-021-84293-8] [PMID: 33664307]
[3]
Tenforde, M.W.; Self, W.H.; Adams, K. Association between mRNA vaccination and COVID-19 hospitalization and disease severity. JAMA, 2021, 326(20), 2043-2054.
[http://dx.doi.org/10.1001/jama.2021.19499] [PMID: 34734975]
[4]
López-Jácome, L.E.; Fernández-Rodríguez, D.; Franco-Cendejas, R. Increment antimicrobial resistance during the COVID-19 pandemic: Results from the Invifar Network. Microb. Drug Resist., 2022, 28(3), 338-345.
[PMID: 34870473]
[5]
de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med., 2016, 13(11), e1002184.
[http://dx.doi.org/10.1371/journal.pmed.1002184] [PMID: 27898664]
[6]
Cooke, J. Antimicrobial resistance: A major priority for global focus. Eur. J. Hosp. Pharm. Sci. Pract., 2022, 29(2), 63-64.
[http://dx.doi.org/10.1136/ejhpharm-2022-003241] [PMID: 35190449]
[7]
Burki, T.K. Superbugs: an arms race against bacteria. Lancet Respir. Med., 2018, 6(9), 668.
[http://dx.doi.org/10.1016/S2213-2600(18)30271-6] [PMID: 29937248]
[8]
Mirzaei, R.; Goodarzi, P.; Asadi, M. Bacterial co‐infections with SARS‐CoV ‐2. IUBMB Life, 2020, 72(10), 2097-2111.
[http://dx.doi.org/10.1002/iub.2356] [PMID: 32770825]
[9]
Langford, B.J.; So, M.; Raybardhan, S. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect., 2020, 26(12), 1622-1629.
[http://dx.doi.org/10.1016/j.cmi.2020.07.016] [PMID: 32711058]
[10]
Holubar, M. Antimicrobial resistance: A global public health emergency further exacerbated by international travel. J. Travel Med., 2020, 27(1), taz095.
[http://dx.doi.org/10.1093/jtm/taz095] [PMID: 31776565]
[11]
Rasheed, F.; Saeed, M.; Alikhan, N.F. Emergence of resistance to fluoroquinolones and third-generation cephalosporins in Salmonella typhi in Lahore, Pakistan. Microorganisms, 2020, 8(9), 1336.
[http://dx.doi.org/10.3390/microorganisms8091336] [PMID: 32883020]
[12]
Getahun, H.; Smith, I.; Trivedi, K.; Paulin, S.; Balkhy, H.H. Tackling antimicrobial resistance in the COVID-19 pandemic. Bull. World Health Organ., 2020, 98(7), 442-442A.
[http://dx.doi.org/10.2471/BLT.20.268573] [PMID: 32742026]
[13]
Rossato, L.; Negrão, F.J.; Simionatto, S. Could the COVID-19 pandemic aggravate antimicrobial resistance? Am. J. Infect. Control, 2020, 48(9), 1129-1130.
[http://dx.doi.org/10.1016/j.ajic.2020.06.192] [PMID: 32603851]
[14]
Bengoechea, J.A.; Bamford, C.G.G. SARS ‐CoV‐2, bacterial co‐infections, and AMR: the deadly trio in COVID ‐19? EMBO Mol. Med., 2020, 12(7), e12560.
[http://dx.doi.org/10.15252/emmm.202012560] [PMID: 32453917]
[15]
Murray, A.K. The novel coronavirus COVID-19 outbreak: Global implications for antimicrobial resistance. Front. Microbiol., 2020, 11, 1020.
[http://dx.doi.org/10.3389/fmicb.2020.01020] [PMID: 32574253]
[16]
Iwu, C.J.; Jordan, P.; Jaja, I.F.; Iwu, C.D.; Wiysonge, C.S. Treatment of COVID-19: Implications for antimicrobial resistance in Africa. Pan Afr. Med. J., 2020, 35(S2), 119.
[17]
Murni, I.K.; Duke, T.; Kinney, S.; Daley, A.J.; Soenarto, Y. Reducing hospital-acquired infections and improving the rational use of antibiotics in a developing country: An effectiveness study. Arch. Dis. Child., 2015, 100(5), 454-459.
[http://dx.doi.org/10.1136/archdischild-2014-307297] [PMID: 25503715]
[18]
Larsen, J.; Raisen, C.L.; Ba, X. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature, 2022, 602(7895), 135-141.
[http://dx.doi.org/10.1038/s41586-021-04265-w] [PMID: 34987223]
[19]
Ghosh, S.; Bornman, C.; Zafer, M.M. Antimicrobial Resistance Threats in the emerging COVID-19 pandemic: Where do we stand? J. Infect. Public Health, 2021, 14(5), 555-560.
[http://dx.doi.org/10.1016/j.jiph.2021.02.011] [PMID: 33848884]
[20]
Cantón, R.; Gijón, D.; Ruiz-Garbajosa, P. Antimicrobial resistance in ICUs: An update in the light of the COVID-19 pandemic. Curr. Opin. Crit. Care, 2020, 26(5), 433-441.
[http://dx.doi.org/10.1097/MCC.0000000000000755] [PMID: 32739970]
[21]
Murray, C.J.L.; Ikuta, K.S.; Sharara, F. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 2022, 399(10325), 629-655.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[22]
Planta, M.B. The role of poverty in antimicrobial resistance. J. Am. Board Fam. Med., 2007, 20(6), 533-539.
[http://dx.doi.org/10.3122/jabfm.2007.06.070019] [PMID: 17954860]
[23]
Wirtz, V.J.; Dreser, A.; Gonzales, R. Trends in antibiotic utilization in eight Latin American countries, 1997-2007. Rev. Panam. Salud Publica, 2010, 27(3), 219-225.
[http://dx.doi.org/10.1590/S1020-49892010000300009] [PMID: 20414511]
[24]
Domínguez, D.C.; Chacón, L.M.; Wallace, D.J. Anthropogenic activities and the problem of antibiotic resistance in Latin America: a water issue. Water, 2021, 13(19), 2693.
[http://dx.doi.org/10.3390/w13192693]
[25]
Browne, A.J.; Chipeta, M.G.; Haines-Woodhouse, G. Global antibiotic consumption and usage in humans, 2000–18: A spatial modelling study. Lancet Planet. Health, 2021, 5(12), e893-e904.
[http://dx.doi.org/10.1016/S2542-5196(21)00280-1] [PMID: 34774223]
[26]
Lancet, T. The antimicrobial crisis: Enough advocacy, more action. Lancet, 2020, 395(10220), 247.
[http://dx.doi.org/10.1016/S0140-6736(20)30119-7] [PMID: 31982048]
[27]
Rawson, T.M.; Moore, L.S.P.; Zhu, N. Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin. Infect. Dis., 2020, 71(9), 2459-2468.
[PMID: 32358954]
[28]
Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control, 2017, 6(1), 47.
[http://dx.doi.org/10.1186/s13756-017-0208-x] [PMID: 28515903]
[29]
Rice, L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis., 2008, 197(8), 1079-1081.
[http://dx.doi.org/10.1086/533452] [PMID: 18419525]
[30]
Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/2475067] [PMID: 27274985]
[31]
Iguchi, S.; Mizutani, T.; Hiramatsu, K.; Kikuchi, K. Rapid acquisition of linezolid resistance in methicillin-resistant Staphylococcus aureus: Role of hypermutation and homologous recombination. PLoS One, 2016, 11(5), e0155512.
[http://dx.doi.org/10.1371/journal.pone.0155512] [PMID: 27182700]
[32]
Naylor, N.R.; Atun, R.; Zhu, N. Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control, 2018, 7(1), 58.
[http://dx.doi.org/10.1186/s13756-018-0336-y] [PMID: 29713465]
[33]
Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A review on antibiotic resistance: Alarm bells are ringing. Cureus, 2017, 9(6), e1403.
[http://dx.doi.org/10.7759/cureus.1403] [PMID: 28852600]
[34]
Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev., 2018, 31(4), e00088-e17.
[http://dx.doi.org/10.1128/CMR.00088-17] [PMID: 30068738]
[35]
Woodford, N.; Ellington, M.J. The emergence of antibiotic resistance by mutation. Clin. Microbiol. Infect., 2007, 13(1), 5-18.
[http://dx.doi.org/10.1111/j.1469-0691.2006.01492.x] [PMID: 17184282]
[36]
Zhen, X.; Lundborg, C.S.; Sun, X.; Hu, X.; Dong, H. Economic burden of antibiotic resistance in ESKAPE organisms: A systematic review. Antimicrob. Resist. Infect. Control, 2019, 8(1), 137.
[http://dx.doi.org/10.1186/s13756-019-0590-7] [PMID: 31417673]
[37]
Marturano, J.E.; Lowery, T.J. ESKAPE pathogens in bloodstream infections are associated with higher cost and mortality but can be predicted using diagnoses upon admission. Open Forum Infect. Dis., 2019, 6(12), ofz503.
[http://dx.doi.org/10.1093/ofid/ofz503] [PMID: 31844639]
[38]
De Angelis, G.; Fiori, B.; Menchinelli, G. Incidence and antimicrobial resistance trends in bloodstream infections caused by ESKAPE and Escherichia coli at a large teaching hospital in Rome, a 9-year analysis (2007–2015). Eur. J. Clin. Microbiol. Infect. Dis., 2018, 37(9), 1627-1636.
[http://dx.doi.org/10.1007/s10096-018-3292-9] [PMID: 29948360]
[39]
Founou, R.C.; Founou, L.L.; Essack, S.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS One, 2017, 12(12), e0189621.
[http://dx.doi.org/10.1371/journal.pone.0189621] [PMID: 29267306]
[40]
De Socio, G.V.; Rubbioni, P.; Botta, D. Measurement and prediction of antimicrobial resistance in bloodstream infections by ESKAPE pathogens and Escherichia coli. J. Glob. Antimicrob. Resist., 2019, 19, 154-160.
[http://dx.doi.org/10.1016/j.jgar.2019.05.013] [PMID: 31112804]
[41]
Ayobami, O.; Brinkwirth, S.; Eckmanns, T.; Markwart, R. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: A systematic review and meta-analysis. Emerg. Microbes Infect., 2022, 11(1), 443-451.
[http://dx.doi.org/10.1080/22221751.2022.2030196] [PMID: 35034585]
[42]
Karami, Z.; Knoop, B.T.; Dofferhoff, A.S.M. Few bacterial co-infections but frequent empiric antibiotic use in the early phase of hospitalized patients with COVID-19: Results from a multicentre retrospective cohort study in The Netherlands. Infect Dis, 2021, 53(2), 102-110.
[http://dx.doi.org/10.1080/23744235.2020.1839672] [PMID: 33103530]
[43]
Klein, E.Y.; Monteforte, B.; Gupta, A. The frequency of influenza and bacterial coinfection: A systematic review and meta‐analysis. Influenza Other Respir. Viruses, 2016, 10(5), 394-403.
[http://dx.doi.org/10.1111/irv.12398] [PMID: 27232677]
[44]
Zhou, F.; Yu, T.; Du, R. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[45]
Firth, A.; Prathapan, P. Azithromycin: The first broad-spectrum therapeutic. Eur. J. Med. Chem., 2020, 207, 112739.
[http://dx.doi.org/10.1016/j.ejmech.2020.112739] [PMID: 32871342]
[46]
Huang, C.; Wang, Y.; Li, X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[47]
Beović, B.; Doušak, M.; Ferreira-Coimbra, J. Antibiotic use in patients with COVID-19: A ‘snapshot’ Infectious Diseases International Research Initiative (ID-IRI) survey. J. Antimicrob. Chemother., 2020, 75(11), 3386-3390.
[http://dx.doi.org/10.1093/jac/dkaa326] [PMID: 32766706]
[48]
Cherry, G.; Rocke, J.; Chu, M. Loss of smell and taste: A new marker of COVID-19? Tracking reduced sense of smell during the coronavirus pandemic using search trends. Expert Rev. Anti Infect. Ther., 2020, 18(11), 1165-1170.
[http://dx.doi.org/10.1080/14787210.2020.1792289] [PMID: 32673122]
[49]
Pink, I.; Raupach, D.; Fuge, J. C-reactive protein and procalcitonin for antimicrobial stewardship in COVID-19. Infection, 2021, 49(5), 935-943.
[http://dx.doi.org/10.1007/s15010-021-01615-8] [PMID: 34021897]
[50]
Landry, A.; Docherty, P.; Ouellette, S.; Cartier, L.J. Causes and outcomes of markedly elevated C-reactive protein levels. Can. Fam. Physician, 2017, 63(6), e316-e323.
[PMID: 28615410]
[51]
Knight, G.M.; Glover, R.E.; McQuaid, C.F. Antimicrobial resistance and COVID-19: Intersections and implications. eLife, 2021, 10, e64139.
[http://dx.doi.org/10.7554/eLife.64139] [PMID: 33588991]
[52]
Ukuhor, H.O. The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics. J. Infect. Public Health, 2021, 14(1), 53-60.
[http://dx.doi.org/10.1016/j.jiph.2020.10.018] [PMID: 33341485]
[53]
Maurer, F.P.; Christner, M.; Hentschke, M.; Rohde, H. Advances in rapid identification and susceptibility testing of bacteria in the clinical microbiology laboratory: Implications for patient care and antimicrobial stewardship programs. Infect. Dis. Rep., 2017, 9(1), 6839.
[http://dx.doi.org/10.4081/idr.2017.6839] [PMID: 28458798]
[54]
Dryden, M.; Johnson, A.P.; Ashiru-Oredope, D.; Sharland, M. Using antibiotics responsibly: Right drug, right time, right dose, right duration. J. Antimicrob. Chemother., 2011, 66(11), 2441-2443.
[http://dx.doi.org/10.1093/jac/dkr370] [PMID: 21926080]
[55]
Finch, R. Innovation—drugs and diagnostics. J. Antimicrob. Chemother., 2007, 60(S1), i79-i82.
[http://dx.doi.org/10.1093/jac/dkm165] [PMID: 17656390]
[56]
Vogels, C.B.F.; Brito, A.F.; Wyllie, A.L. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nat. Microbiol., 2020, 5(10), 1299-1305.
[http://dx.doi.org/10.1038/s41564-020-0761-6] [PMID: 32651556]
[57]
Prasetyoputri, A. Detection of bacterial co-infection in COVID-19 patients is a missing piece of the puzzle in the COVID-19 management in Indonesia. ACS Infect. Dis., 2021, 7(2), 203-205.
[http://dx.doi.org/10.1021/acsinfecdis.1c00006] [PMID: 33502840]
[58]
Bogdan, I.; Citu, C.; Bratosin, F. The impact of multiplex PCR in diagnosing and managing bacterial infections in COVID-19 patients self-medicated with antibiotics. Antibiotics. Antibiotics, 2022, 11(4), 437.
[http://dx.doi.org/10.3390/antibiotics11040437] [PMID: 35453189]
[59]
Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA, 2020, 323(18), 1824-1836.
[http://dx.doi.org/10.1001/jama.2020.6019] [PMID: 32282022]
[60]
Ng, T.S.B.; Leblanc, K.; Yeung, D.F.; Tsang, T.S.M. Medication use during COVID-19. Can. Fam. Physician, 2021, 67(3), 171-179.
[http://dx.doi.org/10.46747/cfp.6703171] [PMID: 33727376]
[61]
Chauhan, V.; Galwankar, S.; Raina, S.; Krishnan, V. Proctoring hydroxychloroquine consumption for health-care workers in india as per the revised national guidelines. J. Emerg. Trauma Shock, 2020, 13(2), 172-173.
[http://dx.doi.org/10.4103/JETS.JETS_75_20] [PMID: 33013102]
[62]
Erku, D.A.; Belachew, S.A.; Abrha, S. When fear and misinformation go viral: Pharmacists’ role in deterring medication misinformation during the ‘infodemic’ surrounding COVID-19. Res. Social Adm. Pharm., 2021, 17(1), 1954-1963.
[http://dx.doi.org/10.1016/j.sapharm.2020.04.032] [PMID: 32387230]
[63]
Kim, M.S.; An, M.H.; Kim, W.J.; Hwang, T.H. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med., 2020, 17(12), e1003501.
[http://dx.doi.org/10.1371/journal.pmed.1003501] [PMID: 33378357]
[64]
Quincho-Lopez, A.; Benites-Ibarra, C.A.; Hilario-Gomez, M.M.; Quijano-Escate, R.; Taype-Rondan, A. Self-medication practices to prevent or manage COVID-19: A systematic review. PLoS One, 2021, 16(11), e0259317.
[http://dx.doi.org/10.1371/journal.pone.0259317] [PMID: 34727126]
[65]
Bharadwaj, A.; Rastogi, A.; Pandey, S.; Gupta, S.; Sohal, J.S. Multidrug-resistant bacteria: Their mechanism of action and prophylaxis. BioMed Res. Int., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/5419874] [PMID: 36105930]
[66]
Saxena, A.; Chaudhary, U.; Bharadwaj, A. A lung transcriptomic analysis for exploring host response in COVID-19. J. Pure Appl. Microbiol., 2020, 14(S1), 1077-1081.
[http://dx.doi.org/10.22207/JPAM.14.SPL1.47]
[67]
Bharadwaj, A.; Wahi, N.; Saxena, A.; Chaudhary, D. Proteome organization of COVID-19: Illustrating targets for vaccine development. J. Pure Appl. Microbiol., 2020, 14(S1), 831-840.
[http://dx.doi.org/10.22207/JPAM.14.SPL1.20]
[68]
Zavala-Flores, E.; Salcedo-Matienzo, J.; Zavala-Flores, E. Salcedo- Matienzo J. Medicacion prehospitalaria en pacientes hospitalizados por COVID-19 en un hospital publico de Lima-Peru. Acta Medica Peruana Colegio Medico del Peru, 2020, 37, 393-395.
[69]
Zhang, A.; Hobman, E.V.; De Barro, P.; Young, A.; Carter, D.J.; Byrne, M. Self-medication with antibiotics for protection against COVID-19: The role of psychological distress, knowledge of, and experiences with antibiotics. Antibiotics, 2021, 10(3), 232.
[http://dx.doi.org/10.3390/antibiotics10030232] [PMID: 33668953]
[70]
Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Antibiotic resistance: Moving from individual health norms to social norms in one health and global health. Front. Microbiol., 2020, 11, 1914.
[http://dx.doi.org/10.3389/fmicb.2020.01914] [PMID: 32983000]
[71]
Ray, K.N.; Shi, Z.; Gidengil, C.A.; Poon, S.J.; Uscher-Pines, L.; Mehrotra, A. Antibiotic prescribing during pediatric direct- to-consumer telemedicine visits. Pediatrics, 2019, 143(5), e20182491.
[http://dx.doi.org/10.1542/peds.2018-2491] [PMID: 30962253]
[72]
Gwenzi, W. Leaving no stone unturned in light of the COVID-19 faecal-oral hypothesis? A water, sanitation and hygiene (WASH) perspective targeting low-income countries. Sci. Total Environ., 2021, 753, 141751.
[http://dx.doi.org/10.1016/j.scitotenv.2020.141751] [PMID: 32911161]
[73]
Usman, M.; Farooq, M.; Hanna, K. Environmental side effects of the injudicious use of antimicrobials in the era of COVID-19. Sci. Total Environ., 2020, 745, 141053.
[http://dx.doi.org/10.1016/j.scitotenv.2020.141053] [PMID: 32702547]
[74]
Gudapuri, L. Cross-resistance between antiseptic agents and antimicrobial agents. J Epidemiol Infect Dis Cross Resist, 2017, 1(2), 00009.
[75]
Pérez Jorge, G. Rodrigues dos SGIC, Gontijo MTP. Les misérables: A parallel between antimicrobial resistance and COVID-19 in underdeveloped and developing countries. Curr. Infect. Dis. Rep., 2022, 24(11), 175-186.
[http://dx.doi.org/10.1007/s11908-022-00788-z] [PMID: 36211535]
[76]
Arshad, A.R.; Ijaz, F.; Siddiqui, M.S.; Khalid, S.; Fatima, A.; Aftab, R.K. COVID-19 pandemic and antimicrobial resistance in developing countries. Discoveries, 2021, 9(2), e127.
[http://dx.doi.org/10.15190/d.2021.6] [PMID: 34754900]
[77]
Joo, S.H.; Choi, H. Field grand challenge with emerging superbugs and the novel coronavirus (SARS-CoV-2) on plastics and in water. J. Environ. Chem. Eng., 2021, 9(1), 104721.
[http://dx.doi.org/10.1016/j.jece.2020.104721] [PMID: 33173752]
[78]
Berendonk, T.U.; Manaia, C.M.; Merlin, C. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol., 2015, 13(5), 310-317.
[http://dx.doi.org/10.1038/nrmicro3439] [PMID: 25817583]
[79]
Guerrero-Latorre, L.; Ballesteros, I.; Villacrés-Granda, I.; Granda, M.G.; Freire-Paspuel, B.; Ríos-Touma, B. SARS-CoV-2 in river water: Implications in low sanitation countries. Sci. Total Environ., 2020, 743, 140832.
[http://dx.doi.org/10.1016/j.scitotenv.2020.140832] [PMID: 32679506]
[80]
Zhang, Y.; Lu, J.; Wu, J.; Wang, J.; Luo, Y. Potential risks of microplastics combined with superbugs: Enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system. Ecotoxicol. Environ. Saf., 2020, 187, 109852.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109852] [PMID: 31670243]
[81]
Gao, W.; Howden, B.P.; Stinear, T.P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr. Opin. Microbiol., 2018, 41, 76-82.
[http://dx.doi.org/10.1016/j.mib.2017.11.030] [PMID: 29227922]
[82]
Ahmad-Mansour, N.; Loubet, P.; Pouget, C. Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins , 2021, 13(10), 677.
[http://dx.doi.org/10.3390/toxins13100677] [PMID: 34678970]
[83]
Annavajhala, M.K.; Gomez-Simmonds, A.; Uhlemann, A.C. Multidrugresistant Enterobacter cloacae complex emerging as a global, diversifying threat. Front. Microbiol., 2019, 10, 44.
[http://dx.doi.org/10.3389/fmicb.2019.00044] [PMID: 30766518]
[84]
Adams-Haduch, J.M.; Paterson, D.L.; Sidjabat, H.E. Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania. Antimicrob. Agents Chemother., 2008, 52(11), 3837-3843.
[http://dx.doi.org/10.1128/AAC.00570-08] [PMID: 18725452]
[85]
Alonso, B.; Fernández-Barat, L.; Di Domenico, E.G. Characterization of the virulence of Pseudomonas aeruginosa strains causing ventilator-associated pneumonia. BMC Infect. Dis., 2020, 20(1), 909.
[http://dx.doi.org/10.1186/s12879-020-05534-1] [PMID: 33261585]
[86]
Azevedo, P.A.A.; Furlan, J.P.R.; Oliveira-Silva, M.; Nakamura-Silva, R.; Gomes, C.N.; Costa, K.R.C. Detection of virulence and β-lactamase encoding genes in Enterobacter aerogenes and Enterobacter cloacae clinical isolates from Brazil. Braz. J. Microbiol., 2018, 49(S1), 224-228.