Mini-Reviews in Organic Chemistry

Author(s): Jyoti Kuchhadiya and Khushal Kapadiya*

DOI: 10.2174/0118756298288651240103062430

DownloadDownload PDF Flyer Cite As
Last Decades’ Overview on Tandem Catalysis: Intrigue in Organo-metallic Chemistry

Page: [85 - 98] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Catalytic transformations have been observed in every reaction to provide a specific product and to formulate regio and stereo-selective adducts in well-defined pathways. Among various catalytic processes used in current chemistry, tandem catalysis has been proven to be an effective technology by applying the technology for better and time-saving ways of production. It has shown its usability in various fields of research like organic reactions, inorganic salt extractions, isolation, and purification of intermediates, photoprotection of dye, pigment, and polymer chemistry, specifically in paint industries, biological sequencing and natural product chemistry. Ideally, it is a single molecule conversation to the desired product (beneficial to both research and industries) with many competing effects in spatial arrangement with almost no major equipment in operation. The advantages of tandem catalysis in the field of chemistry (Organic/Biochemistry/ Polymer chemistry etc.) by utilizing the positive side is a newer way for energetic and favourable technology.

Keywords: Concurrent tandem catalysis, one-pot synthesis, catalytic diversifications, tandem catalysed heterocycles, multimetal strategic synthesis, organo-metallic chemistry.

Graphical Abstract

[1]
Liao, H.H.; Hsiao, C.C.; Atodiresei, I.; Rueping, M. Multiple hydrogen‐bond activation in asymmetric brønsted acid catalysis. Chemistry, 2018, 24(30), 7718-7723.
[http://dx.doi.org/10.1002/chem.201800677] [PMID: 29722908]
[2]
Ardevines, S.; Marqués-López, E.; Herrera, R.P. Horizons in asymmetric organocatalysis: en route to the sustainability and new applications. Catalysts, 2022, 12(1), 101-114.
[http://dx.doi.org/10.3390/catal12010101]
[3]
Nikoshvili, L.Z.; Matveeva, V.G. Recent progress in Pd-catalyzed tandem processes. Catalysts, 2023, 13(8), 1213.
[http://dx.doi.org/10.3390/catal13081213]
[4]
Corpas, J.; Gomez-Mendoza, M.; Ramírez-Cárdenas, J.; de la Peña O’Shea, V.A.; Mauleón, P.; Gómez Arrayás, R.; Carretero, J.C. One-metal/two-ligand for dual activation tandem catalysis: Photoinduced cu-catalyzed anti-hydroboration of alkynes. J. Am. Chem. Soc., 2022, 144(28), 13006-13017.
[http://dx.doi.org/10.1021/jacs.2c05805] [PMID: 35786909]
[5]
Melián-Cabrera, I.; Catalytic, M. Catalytic materials: Concepts to understand the pathway to implementation. Ind. Eng. Chem. Res., 2021, 60(51), 18545-18559.
[http://dx.doi.org/10.1021/acs.iecr.1c02681]
[6]
Wei, M.; Kuang, Y.; Duan, Z.; Li, H. The crucial role of catalyst wettability for hydrogenation of biomass and carbon dioxide over heterogeneous catalysts. Cell Rep. Phys. Sci., 2023, 4(5), 101340-101370.
[http://dx.doi.org/10.1016/j.xcrp.2023.101340]
[7]
Lohr, T.L.; Marks, T.J. Orthogonal tandem catalysis. Nat. Chem., 2015, 7(6), 477-482.
[http://dx.doi.org/10.1038/nchem.2262] [PMID: 25991525]
[8]
Utkarsh, C.; Senthil, K.; Hridya, A.; Sai, P.; Hariharan, V.; Mathew, P. Vishal venkatarangan, velmurugan paramasivam, “complex nanomaterials in catalysis for chemically significant applications: From synthesis and hydrocarbon processing to renewable energy applications”. Adv. Mater. Sci. Eng., 2022, 2022, 1-72.
[9]
Zhao, Y.; Shuaishuai, Z.; Xiaojing, L.; Xiaoyu, Z.; Jing, Xu.; Bijin, X.; Yong, W.; Xingping, X.; Xiaolin, X. Aluminum porphyrin complex mediated auto-tandem catalysis for one-pot synthesis of block copolymers. J. Chin. Chem. Soc., 2022, 4(1), 122-131.
[10]
Campos, J.F.; Berteina-Raboin, S. Tandem catalysis: Synthesis of nitrogen-containing heterocycles. Catalysts, 2020, 10(6), 631-684.
[http://dx.doi.org/10.3390/catal10060631]
[11]
Schnitzer, T.; Vantomme, G. Synthesis of complex molecular systems—the foreseen role of organic chemists. ACS Cent. Sci., 2020, 6(11), 2060-2070.
[http://dx.doi.org/10.1021/acscentsci.0c00974] [PMID: 33274282]
[12]
Brown, D.G.; Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: Where have all the new reactions gone? J. Med. Chem., 2016, 59(10), 4443-4458.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01409] [PMID: 26571338]
[13]
Trowbridge, A.; Walton, S.M.; Gaunt, M.J.; Matthew, J.; Gaunt, G. New strategies for the transition-metal catalyzed synthesis of aliphatic amines. Chem. Rev., 2020, 120(5), 2613-2692.
[http://dx.doi.org/10.1021/acs.chemrev.9b00462] [PMID: 32064858]
[14]
Fogg, D.E.; dos Santos, E.N. Tandem catalysis: A taxonomy and illustrative review. Coord. Chem. Rev., 2004, 248(21-24), 2365-2379.
[http://dx.doi.org/10.1016/j.ccr.2004.05.012]
[15]
Wang, S.; Zhelavskyi, O.; Lee, J.; Argüelles, A.J.; Khomutnyk, Y.Y.; Mensah, E.; Guo, H.; Hourani, R.; Zimmerman, P.M.; Nagorny, P.; Zimmerman, N.; Pavel, N. Studies of catalyst-controlled regioselective acetalization and its application to single-pot synthesis of differentially protected saccharides. J. Am. Chem. Soc., 2021, 143(44), 18592-18604.
[http://dx.doi.org/10.1021/jacs.1c08448] [PMID: 34705439]
[16]
Lee, K.; Jing, Y.; Wang, Y.; Yan, N. A unified view on catalytic conversion of biomass and waste plastics. Nat. Rev. Chem., 2022, 6(9), 635-652.
[http://dx.doi.org/10.1038/s41570-022-00411-8] [PMID: 37117711]
[17]
Horbaczewskyj, C.S.; Fairlamb, I.J.S.; Ian, J.; Fairlamb, S. Pd-catalyzed cross-couplings: On the importance of the catalyst quantity descriptors, mol % and ppm. Org. Process Res. Dev., 2022, 26(8), 2240-2269.
[http://dx.doi.org/10.1021/acs.oprd.2c00051] [PMID: 36032362]
[18]
Sunbal, A.; Alamzeb, M.; Omer, M.; Abid, O.U.R.; Ullah, M.; Sohail, M.; Ullah, I. Chemical insights into the synthetic chemistry of five-membered saturated heterocycles—a transition metal–catalyzed approach. Front Chem., 2023, 11(11), 1185669-1185694.
[http://dx.doi.org/10.3389/fchem.2023.1185669] [PMID: 37564110]
[19]
Afewerki, S.; Edlund, U. Combined catalysis: A powerful strategy for engineering multifunctional sustainable lignin-based materials. ACS Nano, 2023, 17(8), 7093-7108.
[http://dx.doi.org/10.1021/acsnano.3c00436] [PMID: 37014848]
[20]
Hunter, A.C.; Moghimi, S.M. Smart polymers in drug delivery: A biological perspective. Polym. Chem., 2017, 8(1), 41-51.
[http://dx.doi.org/10.1039/C6PY00676K]
[21]
Prajapati, S.K.; Jain, A.; Jain, A.; Jain, S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur. Polym. J., 2019, 120, 109191-109207.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.08.018]
[22]
Wang, Y.; Zhao, H. Tandem reactions combining biocatalysts and chemical catalysts for asymmetric synthesis. Catalysts, 2016, 6(12), 194-225.
[http://dx.doi.org/10.3390/catal6120194]
[23]
Omidvar, M.; Zdarta, J.; Sigurdardóttir, S.B.; Pinelo, M. Mimicking natural strategies to create multi-environment enzymatic reactors: From natural cell compartments to artificial polyelectrolyte reactors. Biotechnol. Adv., 2022, 54, 107798-107814.
[http://dx.doi.org/10.1016/j.biotechadv.2021.107798] [PMID: 34265377]
[24]
Martínez, S.; Veth, L.; Lainer, B.; Dydio, P. Challenges and opportunities in multicatalysis. ACS Catal., 2021, 11(7), 3891-3915.
[http://dx.doi.org/10.1021/acscatal.0c05725]
[25]
Raman, S.K.; Brulé, E.; Tschan, M.J.L.; Thomas, C.M.; Christophe, M. Tandem catalysis: A new approach to polypeptides and cyclic carbonates. Chem. Commun., 2014, 50(89), 13773-13776.
[http://dx.doi.org/10.1039/C4CC05730A] [PMID: 25251079]
[26]
Zhou, Z.; Maxeiner, K.; Ng, D.Y.W.; Weil, T. Polymer chemistry in living cells. Acc. Chem. Res., 2022, 55(20), 2998-3009.
[http://dx.doi.org/10.1021/acs.accounts.2c00420] [PMID: 36178462]
[27]
Li, R.; Kong, W.; An, Z. Controlling radical polymerization with biocatalysts. Macromolecules, 2023, 56(3), 751-761.
[http://dx.doi.org/10.1021/acs.macromol.2c02307]
[28]
Yang, M.; Qi, H.; Liu, F.; Ren, Y.; Pan, X.; Zhang, L.; Liu, X.; Wang, H.; Pang, J.; Zheng, M.; Wang, A.; Zhang, T. One-pot production of cellulosic ethanol via tandem catalysis over a multifunctional Mo/Pt/WOx catalyst. Joule, 2019, 3(8), 1937-1948.
[http://dx.doi.org/10.1016/j.joule.2019.05.020]
[29]
Lohr, T.L.; Li, Z.; Marks, T.J. Thermodynamic strategies for C–O bond formation and cleavage via tandem catalysis. Acc. Chem. Res., 2016, 49(5), 824-834.
[http://dx.doi.org/10.1021/acs.accounts.6b00069] [PMID: 27078085]
[30]
Climent, M.J.; Corma, A.; Iborra, S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev., 2011, 111(2), 1072-1133.
[http://dx.doi.org/10.1021/cr1002084] [PMID: 21105733]
[31]
Song, H.; Wang, P.; Li, S.; Deng, W.; Li, Y.; Zhang, Q.; Wang, Y. Direct conversion of cellulose into ethanol catalysed by a combination of tungstic acid and zirconia-supported Pt nanoparticles. Chem. Commun., 2019, 55(30), 4303-4306.
[http://dx.doi.org/10.1039/C9CC00619B] [PMID: 30829352]
[32]
Li, C.; Xu, G.; Wang, C.; Ma, L.; Qiao, Y.; Zhang, Y.; Fu, Y. One-pot chemocatalytic transformation of cellulose to ethanol over Ru-WO x /HZSM-5. Green Chem., 2019, 21(9), 2234-2239.
[http://dx.doi.org/10.1039/C9GC00719A]
[33]
Yang, C.; Zhang, F.; Lei, N.; Yang, M.; Liu, F.; Miao, Z.; Sun, Y.; Zhao, X.; Wang, A. Understanding the promotional effect of Au on Pt/WO 3 in hydrogenolysis of glycerol to 1,3-propanediol. Chin. J. Catal., 2018, 39(8), 1366-1372.
[http://dx.doi.org/10.1016/S1872-2067(18)63103-1]
[34]
Wang, J.; Lei, N.; Yang, C.; Su, Y.; Zhao, X.; Wang, A. Effect of promoters on the selective hydrogenolysis of glycerol over Pt/W-containing catalysts. Chin. J. Catal., 2016, 37(9), 1513-1519.
[http://dx.doi.org/10.1016/S1872-2067(16)62479-8]
[35]
Guangyong, X.; Xiang, Z.; Tingcheng, L.; Long, L.; Gongyi, L.; Aiqing, Z. Preparation of linear low-density polyethylene from ethylene by tandem catalysis of iron and titanium non-metallocene catalysts. J. Mol. Catal. Chem., 2014, 383, 121-127.
[36]
(a) Vittoria, A.; Urciuoli, G.; Costanzo, S.; Tammaro, D.; Cannavacciuolo, F.D.; Pasquino, R.; Cipullo, R.; Auriemma, F.; Grizzuti, N.; Maffettone, P.L.; Busico, V. Extending the high-throughput experimentation (HTE) approach to catalytic olefin polymerizations: From catalysts to materials. Macromolecules, 2022, 55(12), 5017-5026.
[http://dx.doi.org/10.1021/acs.macromol.2c00813];
(b) Aluthge, D.C.; Sattler, A.; Al-Harthi, M.A.; Labinger, J.A.; Bercaw, J.E.; Labinger, E.; Bercaw, J. Cosupported tandem catalysts for production of linear low-density polyethylene from an ethylene-only feed. ACS Catal., 2016, 6(10), 6581-6584.
[http://dx.doi.org/10.1021/acscatal.6b02370]
[37]
(a) Li, J.; Li, J.; He, R.; Liu, J.; Liu, Y.; Chen, L.; Huang, Y.; Li, Y. Selective synthesis of substituted pyridines and pyrimidines through cascade annulation of isopropene derivatives. Org. Lett., 2022, 24(8), 1620-1625.
[http://dx.doi.org/10.1021/acs.orglett.2c00124] [PMID: 35194989];
(b) Schröder, K.; Matyjaszewski, K.; Noonan, K.J.T.; Mathers, R.T.; Robert, T.; Mathers, K. Towards sustainable polymer chemistry with homogeneous metal-based catalysts. Green Chem., 2014, 16(4), 1673-1686.
[http://dx.doi.org/10.1039/C3GC42159G]
[38]
Čamdžić, L.; Stache, E.E. Controlled radical polymerization of acrylates and isocyanides installs degradable functionality into novel copolymers. J. Am. Chem. Soc., 2023, 145(37), 20311-20318.
[http://dx.doi.org/10.1021/jacs.3c04595] [PMID: 37669233]
[39]
Chen, C. Designing catalysts for olefin polymerization and copolymerization: Beyond electronic and steric tuning. Nat. Rev. Chem., 2018, 2(5), 6-14.
[http://dx.doi.org/10.1038/s41570-018-0003-0]
[40]
Chu, Y.K.; Hu, X.Q.; Zhang, Y.; Liu, D-J.; Zhang, Y-X.; Jian, Z-B. Influence of backbone and axial substituent of catalyst on α-imino-ketone nickel mediated ethylene (Co)polymerization. Chin. J. Polym. Sci., 2022, 40(5), 469-477.
[http://dx.doi.org/10.1007/s10118-022-2691-7]
[41]
Chen, X.L.; Gao, J.; Liao, H.; Gao, H-Y.; Wu, Q. Synthesis, characterization, and catalytic ethylene oligomerization of pyridine-imine palladium complexes. Chin. J. Polym. Sci., 2018, 36(2), 176-184.
[http://dx.doi.org/10.1007/s10118-018-2052-8]
[42]
Xie, G.; Liu, G.; Li, L.; Li, T.; Zhang, A.; Feng, J.; Aiqing, F.; Feng, J. Tandem catalysis of iron and titanium non-metallocene catalysts for the production of branched polyethylene. Catal. Commun., 2014, 45, 7-10.
[http://dx.doi.org/10.1016/j.catcom.2013.10.029]
[43]
Atashrouz, S.; Rahmani, M.; Nasernejad, B.; Balzade, Z. Kinetic prediction of molecular weight distribution in bimodal polyethylene from heterogeneous post-metallocene catalysis. Mater. Chem. Phys., 2020, 255, 123466-123482.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123466]
[44]
Wei, W.; Thakur, V.K.; Li, S.; Chianella, I. Self-switchable polymer reactor with PNIPAM-PAm smart switch capable of tandem/simple catalysis. Polymer, 2021, 235, 124265-124279.
[http://dx.doi.org/10.1016/j.polymer.2021.124265]
[45]
Si, G.; Qi, M.; Tan, C.; Chen, C. Tandem catalysts combining polymer synthesis, postpolymerization modification, and vitrimer formation. Macromolecules, 2021, 54(13), 6153-6160.
[http://dx.doi.org/10.1021/acs.macromol.1c00716]
[46]
Fogel, M.S.; Koide, K. Recent progress on one-pot multisubstrate screening. Org. Process Res. Dev., 2023, 27(7), 1235-1247.
[http://dx.doi.org/10.1021/acs.oprd.3c00128] [PMID: 37529075]
[47]
Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci., 2016, 7(2), 866-880.
[http://dx.doi.org/10.1039/C5SC02913A] [PMID: 28791118]
[48]
Rodenas, T.; Prieto, G. Solid single‐atom catalysts in tandem catalysis: Lookout, opportunities and challenges. ChemCatChem, 2022, 14(23), e202201058.
[http://dx.doi.org/10.1002/cctc.202201058] [PMID: 37063812]
[49]
Mata, J.A.; Hahn, F.E.; Peris, E. Heterometallic complexes, tandem catalysis and catalytic cooperativity. Chem. Sci., 2014, 5(5), 1723-1732.
[http://dx.doi.org/10.1039/C3SC53126K]
[50]
Dehury, N.; Maity, N.; Tripathy, S.K.; Basset, J.M.; Patra, S. Dinuclear tetrapyrazolyl palladium complexes exhibiting facile tandem transfer hydrogenation/suzuki coupling reaction of fluoroarylketone. ACS Catal., 2016, 6(8), 5535-5540.
[http://dx.doi.org/10.1021/acscatal.6b01421]
[51]
Singh, P.; Mishra, S.; Sahoo, A.; Patra, S. A magnetically retrievable mixed-valent Fe3O4@SiO2/Pd0/PdII nanocomposite exhibiting facile tandem Suzuki coupling/transfer hydrogenation reaction. Sci. Rep., 2021, 11(1), 9305-9316.
[http://dx.doi.org/10.1038/s41598-021-88528-6] [PMID: 33927246]
[52]
Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci., 2019, 1(1), 31-47.
[http://dx.doi.org/10.1016/j.nanoms.2019.02.004]
[53]
Moaref, R.; Pourmahdian, S.; Zahedi, F.; Tehranchi, M.M. Synthesis and characterization of nearly monodisperse superparamagnetic (Fe3O4/Poly(methyl methacrylate))-SiO2 nanoparticles with raspberry-like morphology. Polym. Compos., 2022, 30, 1-12.
[54]
Bahrami Reyhan, S.; Alavi, S.M.; Soudbar, D. Investigation of catalytic reaction of ethylene dimerization to butene-1 by use of DCPDS as a modifier based on response surface methodology. Heliyon, 2023, 9(10), e20481.
[http://dx.doi.org/10.1016/j.heliyon.2023.e20481] [PMID: 37822619]
[55]
Kord Forooshani, P.; Lee, B.P. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J. Polym. Sci. A Polym. Chem., 2017, 55(1), 9-33.
[http://dx.doi.org/10.1002/pola.28368] [PMID: 27917020]
[56]
Sun, M.; Xiao, Y.; Liu, K.; Yang, X.; Liu, P.; Jie, S.; Hu, J.; Shi, S.; Wang, Q.; Lim, K.H.; Liu, Z.; Li, B.G.; Wang, W.J. Synthesis and characterization of polyolefin thermoplastic elastomers: A review. Can. J. Chem. Eng., 2023, 101(9), 4886-4906.
[http://dx.doi.org/10.1002/cjce.24825]
[57]
Zhang, H.; Quan, L.; Gao, A.; Tong, Y.; Shi, F.; Xu, L. Thermal analysis and crystal structure of poly(acrylonitrile-co-itaconic acid) copolymers synthesized in water. Polymers, 2020, 12(1), 221-235.
[http://dx.doi.org/10.3390/polym12010221] [PMID: 31963164]
[58]
Xu, W.; Zeng, M-T.; Liu, S.S.; Li, Y.S.; Dong, Z.B. Copper catalyzed synthesis of benzoxazoles and benzothiazoles via tandem manner. Tetrahedron Lett., 2017, 58(45), 4289-4292.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.089]
[59]
Nda-Umar, U.; Ramli, I.; Taufiq-Yap, Y.; Muhamad, E. An overview of recent research in the conversion of glycerol into biofuels, fuel additives and other bio-based chemicals. Catalysts, 2018, 9(1), 15-62.
[http://dx.doi.org/10.3390/catal9010015]
[60]
Samudrala, S.P.; Kandasamy, S.; Bhattacharya, S. One-pot synthesis of bio-fuel additives from glycerol and benzyl alcohol: Mesoporous MCM-41 supported iron (III) chloride as a highly efficient tandem catalyst. Renew. Energy, 2020, 156, 883-892.
[http://dx.doi.org/10.1016/j.renene.2020.04.111]
[61]
Jankowska, A.; Chłopek, A.; Kowalczyk, A.; Rutkowska, M.; Michalik, M.; Liu, S.; Chmielarz, L. Catalytic performance of spherical MCM-41 modified with copper and iron as catalysts of NH3-SCR process. Molecules, 2020, 25(23), 5651.
[http://dx.doi.org/10.3390/molecules25235651] [PMID: 33266178]
[62]
Zhang, W.; Meng, C.; Liu, Y.; Tang, Y.; Li, F. Auto‐tandem catalysis with ruthenium: From o ‐aminobenzamides and allylic alcohols to quinazolinones via redox isomerization/acceptorless dehydrogenation. Adv. Synth. Catal., 2018, 360(19), 3751-3759.
[http://dx.doi.org/10.1002/adsc.201800660]
[63]
Wu, X.; Cruz, F.A.; Lu, A.; Dong, V.M. Tandem catalysis: Transforming alcohols to alkenes by oxidative dehydroxymethylation. J. Am. Chem. Soc., 2018, 140(32), 10126-10130.
[http://dx.doi.org/10.1021/jacs.8b06069] [PMID: 30084247]
[64]
Xie, M.; Liu, X.; Zhu, Y.; Zhao, X.; Xia, Y.; Lin, L.; Feng, X. Asymmetric synthesis of tetrahydroquinolines with quaternary stereocenters through the povarov reaction. Chemistry, 2011, 17(49), 13800-13805.
[http://dx.doi.org/10.1002/chem.201102333] [PMID: 22083970]
[65]
Parker, P.D.; Hou, X.; Dong, V.M. Reducing challenges in organic synthesis with stereoselective hydrogenation and tandem catalysis. J. Am. Chem. Soc., 2021, 143(18), 6724-6745.
[http://dx.doi.org/10.1021/jacs.1c00750] [PMID: 33891819]
[66]
Liu, Y.; Diao, H.; Hong, G.; Edward, J.; Zhang, T.; Yang, G.; Yang, B.M.; Zhao, Y. Iridium-catalyzed enantioconvergent borrowing hydrogen annulation of racemic 1,4-diols with amines. J. Am. Chem. Soc., 2023, 145(9), 5007-5016.
[http://dx.doi.org/10.1021/jacs.2c09958] [PMID: 36802615]
[67]
Chen, T.; Liu, W.; Gu, W.; Niu, S.; Lan, S.; Zhao, Z.; Gong, F.; Liu, J.; Yang, S.; Cotman, A.E.; Song, J.; Fang, X. Dynamic kinetic resolution of β-substituted α-diketones via asymmetric transfer hydrogenation. J. Am. Chem. Soc., 2023, 145(1), 585-599.
[http://dx.doi.org/10.1021/jacs.2c11149] [PMID: 36563320]
[68]
Adams, J.P.; Brown, M.J.B.; Diaz-Rodriguez, A.; Lloyd, R.C.; Roiban, G.D. Biocatalysis: A pharma perspective. Adv. Synth. Catal., 2019, 361(11), 2421-2432.
[http://dx.doi.org/10.1002/adsc.201900424]
[69]
Kinner, A.; Nerke, P.; Siedentop, R.; Steinmetz, T.; Classen, T.; Rosenthal, K.; Nett, M.; Pietruszka, J.; Lütz, S. Recent advances in biocatalysis for drug synthesis. Biomedicines, 2022, 10(5), 964-989.
[http://dx.doi.org/10.3390/biomedicines10050964] [PMID: 35625702]
[70]
Verho, O.; Bäckvall, J.E. Chemoenzymatic dynamic kinetic resolution: A powerful tool for the preparation of enantiomerically pure alcohols and amines. J. Am. Chem. Soc., 2015, 137(12), 3996-4009.
[http://dx.doi.org/10.1021/jacs.5b01031] [PMID: 25730714]
[71]
Nakano, K.; Kitamura, M. Dynamic kinetic resolution (DKR). In: Separation of Enantiomers. M. Todd; , 2014; pp. 161-216.
[72]
Chen, Z.; Aota, Y.; Nguyen, H.M.H.; Dong, V.M. Dynamic kinetic resolution of aldehydes by hydroacylation. Angew. Chem. Int. Ed., 2019, 58(14), 4705-4709.
[http://dx.doi.org/10.1002/anie.201900545] [PMID: 30740841]
[73]
Yunting, L.; Pengbo, L.; Shiqi, G.; Zihan, W.; Pengqian, L.; Javier, G.; Yanjun, J. Construction of chemoenzymatic cascade reactions for bridging chemocatalysis and biocatalysis: Principles, strategies and prospective. Chem. Eng. J., 2021, 420(2), 127659-127723.
[74]
Ríos-Lombardía, N.; Rodríguez-Álvarez, M.J.; Morís, F.; Kourist, R.; Comino, N.; López-Gallego, F.; González-Sabín, J.; García-Álvarez, J. Design of sustainable one-pot chemoenzymatic organic transformations in deep eutectic solvents for the synthesis of 1,2-disubstituted aromatic olefins. Front. Chem., 2020, 8(139), 139.
[http://dx.doi.org/10.3389/fchem.2020.00139] [PMID: 32211377]
[75]
Júnior, A.A.T.; Ladeira, Y.F.X.; França, A.S.; Souza, R.O.M.A.; Moraes, A.H.; Wojcieszak, R.; Itabaiana, I., Jr; Miranda, A.S. Multicatalytic hybrid materials for biocatalytic and chemoenzymatic cascades—strategies for multicatalyst (Enzyme) co-immobilization. Catalysts, 2021, 11(8), 936-971.
[http://dx.doi.org/10.3390/catal11080936]
[76]
Winkler, C.K.; Schrittwieser, J.H.; Kroutil, W.; Wolfgang, K. Power of biocatalysis for organic synthesis. ACS Cent. Sci., 2021, 7(1), 55-71.
[http://dx.doi.org/10.1021/acscentsci.0c01496] [PMID: 33532569]
[77]
Wang, Y.; Ren, H.; Zhao, H. Expanding the boundary of biocatalysis: design and optimization of in vitro tandem catalytic reactions for biochemical production. Crit. Rev. Biochem. Mol. Biol., 2018, 53(2), 115-129.
[http://dx.doi.org/10.1080/10409238.2018.1431201] [PMID: 29411648]
[78]
Kron, K.J.; Rodriguez-Katakura, A.; Elhessen, R.; Mallikarjun Sharada, S. Photoredox chemistry with organic catalysts: Role of computational methods. ACS Omega, 2021, 6(49), 33253-33264.
[http://dx.doi.org/10.1021/acsomega.1c05787] [PMID: 34926877]
[79]
Schwochert, T.D.; Cruz, C.L.; Watters, J.W.; Reynolds, E.W.; Nicewicz, D.A.; Brustad, E.M. Design and evaluation of artificial hybrid photoredox biocatalysts. ChemBioChem, 2020, 21(21), 3146-3150.
[http://dx.doi.org/10.1002/cbic.202000362] [PMID: 32529779]
[80]
Tran, N.H.; Huynh, N.; Chavez, G.; Nguyen, A.; Dwaraknath, S.; Nguyen, T.A.; Nguyen, M.; Cheruzel, L. A series of hybrid P450 BM3 enzymes with different catalytic activity in the light-initiated hydroxylation of lauric acid. J. Inorg. Biochem., 2012, 115, 50-56.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.05.012] [PMID: 22922311]
[81]
Nastri, F.; Chino, M.; Maglio, O.; Bhagi-Damodaran, A.; Lu, Y.; Lombardi, A. Design and engineering of artificial oxygen-activating metalloenzymes. Chem. Soc. Rev., 2016, 45(18), 5020-5054.
[http://dx.doi.org/10.1039/C5CS00923E] [PMID: 27341693]
[82]
Key, H.M.; Dydio, P.; Clark, D.S.; Hartwig, J.F. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature, 2016, 534(7608), 534-537.
[http://dx.doi.org/10.1038/nature17968] [PMID: 27296224]
[83]
Ellis, G.A.; Klein, W.P.; Lasarte-Aragonés, G.; Thakur, M.; Walper, S.A.; Medintz, I.L. Artificial multienzyme scaffolds: Pursuing in vitro substrate channeling with an overview of current progress. ACS Catal., 2019, 9(12), 10812-10869.
[http://dx.doi.org/10.1021/acscatal.9b02413]
[84]
Sirasani, G.; Tong, L.; Balskus, E.P. A biocompatible alkene hydrogenation merges organic synthesis with microbial metabolism. Angew. Chem. Int. Ed., 2014, 53(30), 7785-7788.
[http://dx.doi.org/10.1002/anie.201403148] [PMID: 24916924]
[85]
Shweta, J.; Keerthi, P.; Ronld, J.; Nagaraj, P.; Tejraj, M. Recent advances and viability in biofuel production. Energy Convers. Manage., 2021, 10, 100070-100087.
[86]
Mullins, L.; Sullivan, J.A. Synthesis of a sustainable cellulose-derived biofuel through a 1-pot, 2-catalyst tandem reaction. Top. Catal., 2020, 63(15-18), 1434-1445.
[http://dx.doi.org/10.1007/s11244-020-01252-9]
[87]
Lee, K.; Corrigan, N.; Boyer, C. Polymerization induced microphase separation for the fabrication of nanostructured materials. Angew. Chem. Int. Ed., 2023, 62(44), e202307329.
[http://dx.doi.org/10.1002/anie.202307329] [PMID: 37429822]
[88]
Liu, K.; Corrigan, N.; Postma, A.; Moad, G.; Boyer, C. A comprehensive platform for the design and synthesis of polymer molecular weight distributions. Macromolecules, 2020, 53(20), 8867-8882.
[http://dx.doi.org/10.1021/acs.macromol.0c01954]
[89]
Alper, E.; Yuksel Orhan, O. CO2 utilization: Developments in conversion processes. Petroleum, 2017, 3(1), 109-126.
[http://dx.doi.org/10.1016/j.petlm.2016.11.003]
[90]
Peter, S.C. Reduction of CO2 to chemicals and fuels: A solution to global warming and energy crisis. ACS Energy Lett., 2018, 3(7), 1557-1561.
[http://dx.doi.org/10.1021/acsenergylett.8b00878]
[91]
Burek, B.O.; Dawood, A.W.H.; Hollmann, F.; Liese, A.; Holtmann, D. Process intensification as game changer in enzyme catalysis. Front. catal., 2022, 2, 858706-858715.
[http://dx.doi.org/10.3389/fctls.2022.858706]
[92]
Fernandez Rivas, D.; Cintas, P. On an intensification factor for green chemistry and engineering: The value of an operationally simple decision-making tool in process assessment. Sustain. Chem. Pharm., 2022, 27, 100651-100679.
[http://dx.doi.org/10.1016/j.scp.2022.100651]
[93]
Gao, P.; Li, S.; Bu, X.; Dang, S.; Liu, Z.; Wang, H.; Zhong, L.; Qiu, M.; Yang, C.; Cai, J.; Wei, W.; Sun, Y. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem., 2017, 9(10), 1019-1024.
[http://dx.doi.org/10.1038/nchem.2794] [PMID: 28937667]
[94]
Liu, J.; Goetjen, T.A.; Wang, Q.; Knapp, J.G.; Wasson, M.C.; Yang, Y.; Syed, Z.H.; Delferro, M.; Notestein, J.M.; Farha, O.K.; Hupp, J.T. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem. Soc. Rev., 2022, 51(3), 1045-1097.
[http://dx.doi.org/10.1039/D1CS00968K] [PMID: 35005751]
[95]
Zhang, Y.; Huang, C.; Mi, L. Metal–organic frameworks as acid- and/or base-functionalized catalysts for tandem reactions. Dalton Trans., 2020, 49(42), 14723-14730.
[http://dx.doi.org/10.1039/D0DT03025B] [PMID: 33047777]
[96]
Qin, Q.; Wang, D.; Shao, Z.; Zhang, Y.; Zhang, Q.; Li, X.; Huang, C.; Mi, L. Sequentially regulating the structural transformation of copper metal–organic frameworks (Cu-MOFs) for controlling site-selective reaction. ACS Appl. Mater. Interfaces, 2022, 14(32), 36845-36854.
[http://dx.doi.org/10.1021/acsami.2c09290] [PMID: 35938901]
[97]
Yang, H.; Chen, Y.; Dang, C.; Hong, A.N.; Feng, P.; Bu, X. Optimization of pore-space-partitioned metal–organic frameworks using the bioisosteric concept. J. Am. Chem. Soc., 2022, 144(44), 20221-20226.
[http://dx.doi.org/10.1021/jacs.2c09349] [PMID: 36305830]
[98]
Chughtai, A.H.; Ahmad, N.; Younus, H.A.; Laypkov, A.; Verpoort, F. Metal–organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev., 2015, 44(19), 6804-6849.
[http://dx.doi.org/10.1039/C4CS00395K] [PMID: 25958955]
[99]
Gambo, Y.; Adamu, S.; Lucky, R.A.; Ba-Shammakh, M.S.; Hossain, M.M. Tandem catalysis: A sustainable alternative for direct hydrogenation of CO2 to light olefins. Appl. Catal. A Gen., 2022, 641, 118658-118665.
[http://dx.doi.org/10.1016/j.apcata.2022.118658]
[100]
Zeng, L.; Cao, Y.; Li, Z.; Dai, Y.; Wang, Y.; An, B.; Zhang, J.; Li, H.; Zhou, Y.; Lin, W.; Wang, C. Multiple cuprous centers supported on a titanium-based metal–organic framework catalyze CO 2 hydrogenation to ethylene. ACS Catal., 2021, 11(18), 11696-11705.
[http://dx.doi.org/10.1021/acscatal.1c01939]