Mini-Reviews in Organic Chemistry

Author(s): Cintia C. Santiago*, Natividad Bejarano Rengel, Pablo S. Fernández and Agustin Ponzinibbio

DOI: 10.2174/0118756298267514240104101246

DownloadDownload PDF Flyer Cite As
Electrosynthesis of Sugar Derivatives

Page: [199 - 213] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

The last decades have witnessed significant advances in the synthesis of bioactive carbohydrates. As in all fields of organic synthesis, the search for more environmentally friendly alternative synthetic methods is a current and expanding concern. Consequently, electrochemical organic synthesis has emerged as an efficient and sustainable methodology. Herein, we present recent developments in the synthesis of glycosides and other carbohydrate derivatives using electrochemical methods. Diverse natural and synthetic O-, S-, and C-glycosides were obtained using new approaches for the electrochemical activation of sugar precursors. The reported derivatives exhibited wide structural diversity on both the sugar moiety and the aglycone, revealing the great potential of the electrochemical methods.

Keywords: Carbohydrates, oligosaccharides, glycoconjugates, electrochemical glycosylation, anodic oxidation, electrochemistry, green chemistry.

Graphical Abstract

[1]
Miljkovic, M. Carbohydrates: Synthesis, Mechanisms, and Stereoelectronic Effects, 1st ed; Springer-Verlag: New York, NY, USA, 2009.
[http://dx.doi.org/10.1007/978-0-387-92265-2]
[2]
Lindhorst, T.K. Essentials of Carbohydrate Chemistry and Biochemistry, 3rd ed; Wiley-VCH: Weinheim, Germany, 2007.
[3]
Rüdiger, H.; Gabius, H-J. The biochemical basis and coding capacity of the sugar code. In: The Sugar Code: Fundamentals of Glycosciences; Gabius, H-J., Ed.; Wiley-VCH: Weinheim, Germany, 2009; pp. 3-14.
[4]
Varki, A. Biological roles of glycans. Glycobiology, 2017, 27(1), 3-49.
[http://dx.doi.org/10.1093/glycob/cww086] [PMID: 27558841]
[5]
Galan, M.C.; Jones, R.A.; Tran, A.T. Recent developments of ionic liquids in Oligosaccharide synthesis: the sweet side of ionic liquids. Carbohydr. Res., 2013, 375, 35-46.
[http://dx.doi.org/10.1016/j.carres.2013.04.011] [PMID: 23685038]
[6]
Bertozzi, C.R.; Kiessling, L.L. Chemical glycobiology. Science, 2001, 291(5512), 2357-2364.
[http://dx.doi.org/10.1126/science.1059820] [PMID: 11269316]
[7]
Mishra, N.; Tiwari, V.K.; Schmidt, R.R. Recent trends and challenges on carbohydrate-based molecular scaffolding: General consideration toward impact of carbohydrates in drug discovery and development. In: Carbohydrates in drug discovery and development: Synthesis and application; Tiwari, V.K., Ed.; Elsevier: Cambridge, MA, US, 2020; pp. 1-69.
[http://dx.doi.org/10.1016/B978-0-12-816675-8.00001-4]
[8]
Koester, D.C.; Holkenbrink, A.; Werz, D.B. Recent advances in the synthesis of carbohydrate mimetics. Synthesis, 2010, 19, 3217-3242.
[9]
Bernardi, A.; Sattin, S. Interfering with the sugar code: Ten years later. Eur. J. Org. Chem., 2020, 2020(30), 4652-4663.
[http://dx.doi.org/10.1002/ejoc.202000155]
[10]
Gabius, H.J.; Cudic, M.; Diercks, T.; Kaltner, H.; Kopitz, J.; Mayo, K.H.; Murphy, P.V.; Oscarson, S.; Roy, R.; Schedlbauer, A.; Toegel, S.; Romero, A. What is the sugar code? ChemBioChem, 2022, 23(13), e202100327-e202100351.
[http://dx.doi.org/10.1002/cbic.202100327] [PMID: 34496130]
[11]
Ernst, B.; Hart, G.W.; Sinaý, P. Carbohydrates in Chemistry and Biology; WILEY‐VCH Verlag GmbH, 2000.
[http://dx.doi.org/10.1002/9783527618255]
[12]
Karak, M.; Haldar, A.; Torikai, K. Current tools for chemical glycosylation: Where are we now? Trends Glycosci. Glycotechnol., 2021, 33(195), 2014.7E.
[http://dx.doi.org/10.4052/tigg.2014.7E]
[13]
Andreana, P.R.; Crich, D. Guidelines for O-Glycoside formation from first principles. ACS Cent. Sci., 2021, 7(9), 1454-1462.
[http://dx.doi.org/10.1021/acscentsci.1c00594] [PMID: 34584944]
[14]
Streety, X.S.; Obike, J.C.; Townsend, S.D. A Hitchhiker’s guide to problem selection in carbohydrate synthesis. ACS Cent. Sci., 2023, 9(7), 1285-1296.
[http://dx.doi.org/10.1021/acscentsci.3c00507] [PMID: 37521800]
[15]
Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S.R. Electrifying organic synthesis. Angew. Chem. Int. Ed., 2018, 57(20), 5594-5619.
[http://dx.doi.org/10.1002/anie.201711060] [PMID: 29292849]
[16]
Schotten, C.; Nicholls, T.P.; Bourne, R.A.; Kapur, N.; Nguyen, B.N.; Willans, C.E. Making electrochemistry easily accessible to the synthetic chemist. Green Chem., 2020, 22(11), 3358-3375.
[http://dx.doi.org/10.1039/D0GC01247E]
[17]
Kingston, C.; Palkowitz, M.D.; Takahira, Y.; Vantourout, J.C.; Peters, B.K.; Kawamata, Y.; Baran, P.S. A survival guide for the “Electro-curious”. Acc. Chem. Res., 2020, 53(1), 72-83.
[http://dx.doi.org/10.1021/acs.accounts.9b00539] [PMID: 31823612]
[18]
Jörissen, J.; Speiser, B. Preparative electrolysis on the laboratory scale. In: Organic electrosynthesis; Hammerich, O.; Speiser, B., Eds.; CRC Press: Boca Raton, US, 2016; pp. 265-329.
[19]
Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S.R. Modern electrochemical aspects for the synthesis of value‐added organic products. Angew. Chem. Int. Ed., 2018, 57(21), 6018-6041.
[http://dx.doi.org/10.1002/anie.201712732] [PMID: 29359378]
[20]
Shatskiy, A.; Lundberg, H.; Kärkäs, M.D. Organic electrosynthesis: Applications in complex molecule synthesis. ChemElectroChem, 2019, 6(16), 4067-4092.
[http://dx.doi.org/10.1002/celc.201900435]
[21]
Yan, M.; Kawamata, Y.; Baran, P.S. Synthetic organic electrochemistry: Calling all engineers. Angew. Chem. Int. Ed., 2018, 57(16), 4149-4155.
[http://dx.doi.org/10.1002/anie.201707584] [PMID: 28834012]
[22]
Garg, S.; Sohal, H.S.; Malhi, D.S.; Kaur, M.; Singh, K.; Sharma, A.; Mutreja, V.; Thakur, D.; Kaur, L. Electrochemical method: A green approach for the synthesis of organic compounds. Curr. Org. Chem., 2022, 26(10), 899-919.
[http://dx.doi.org/10.2174/1385272826666220516113152]
[23]
Frontana-Uribe, B.A.; Little, R.D.; Ibanez, J.G.; Palma, A.; Vasquez-Medrano, R. Organic electrosynthesis: A promising green methodology in organic chemistry. Green Chem., 2010, 12(12), 2099-2119.
[http://dx.doi.org/10.1039/c0gc00382d]
[24]
Beil, S.B.; Pollok, D.; Waldvogel, S.R. Reproducibility in electroorganic synthesis—myths and misunderstandings. Angew. Chem. Int. Ed., 2021, 60(27), 14750-14759.
[http://dx.doi.org/10.1002/anie.202014544] [PMID: 33428811]
[25]
Yao, N.; Wang, H.B.; Hu, Y.L. Recent progress on electrochemical application of room-temperature ionic liquids. Mini Rev. Org. Chem., 2017, 14(3), 237-254.
[http://dx.doi.org/10.2174/1570193X14666170420115644]
[26]
Marra, A.; Scherrmann, M-C. Electrochemical glycosylation. In: Carbohydrate Chemistry Chemical and biological approaches; Rauter, A.P.; Lindhorst, T.K.; Queneau, Y., Eds.; The Royal Society of Chemistry: London, UK, 2014; Vol. 40, pp. 160-177.
[http://dx.doi.org/10.1039/9781849739986-00160]
[27]
Manmode, S.; Matsumoto, K.; Nokami, T.; Itoh, T. Electrochemical methods as enabling tools for glycosylation. Asian J. Org. Chem., 2018, 7(9), 1719-1729.
[http://dx.doi.org/10.1002/ajoc.201800302]
[28]
Nokami, T.; Saito, K.; Yoshida, J. Synthetic carbohydrate research based on organic electrochemistry. Carbohydr. Res., 2012, 363, 1-6.
[http://dx.doi.org/10.1016/j.carres.2012.09.023] [PMID: 23089173]
[29]
Nokami, T. Electrochemical glycosylation. Glycoforum, 2022, 25(3), A8.
[30]
Morzycki, J.W.; Łotowski, Z.; Siergiejczyk, L.; Wałejko, P.; Witkowski, S.; Kowalski, J.; Płoszyńska, J.; Sobkowiak, A. A selective electrochemical method of glycosylation of 3β-hydroxy-Δ5-steroids. Carbohydr. Res., 2010, 345(8), 1051-1055.
[http://dx.doi.org/10.1016/j.carres.2010.03.018] [PMID: 20371036]
[31]
Tomkiel, A.M.; Brzezinski, K.; Łotowski, Z.; Siergiejczyk, L.; Wałejko, P.; Witkowski, S.; Kowalski, J.; Płoszyńska, J.; Sobkowiak, A.; Morzycki, J.W. Electrochemical synthesis of glycoconjugates of 3β-hydroxy-Δ5-steroids by using non-activated sugars and steroidal thioethers. Tetrahedron, 2013, 69(42), 8904-8913.
[http://dx.doi.org/10.1016/j.tet.2013.07.106]
[32]
Tomkiel, A.M.; Kowalski, J.; Płoszyńska, J.; Siergiejczyk, L.; Łotowski, Z.; Sobkowiak, A.; Morzycki, J.W. Electrochemical synthesis of glycoconjugates from activated sterol derivatives. Steroids, 2014, 82, 60-67.
[http://dx.doi.org/10.1016/j.steroids.2014.01.007] [PMID: 24486463]
[33]
Tomkiel, A.M.; Biedrzycki, A.; Płoszyńska, J.; Naróg, D.; Sobkowiak, A.; Morzycki, J.W. 3α,5α-Cyclocholestan-6β-yl ethers as donors of the cholesterol moiety for the electrochemical synthesis of cholesterol glycoconjugates. Beilstein J. Org. Chem., 2015, 11, 162-168.
[http://dx.doi.org/10.3762/bjoc.11.16] [PMID: 25815065]
[34]
Tomkiel, A.M.; Siergiejczyk, L.; Naróg, D.; Płoszyńska, J.; Sobkowiak, A.; Morzycki, J.W. Electrochemical cholesterylation of sugars with cholesteryl diphenylphosphate. Steroids, 2017, 117, 44-51.
[http://dx.doi.org/10.1016/j.steroids.2016.05.011] [PMID: 27263439]
[35]
Manmode, S.; Kato, M.; Ichiyanagi, T.; Nokami, T.; Itoh, T. Automated electrochemical assembly of the β‐(1,3)‐β‐(1,6)‐glucan hexasaccharide using thioglucoside building blocks. Asian J. Org. Chem., 2018, 7(9), 1802-1805.
[http://dx.doi.org/10.1002/ajoc.201800345]
[36]
Manmode, S.; Tanabe, S.; Yamamoto, T.; Sasaki, N.; Nokami, T.; Itoh, T. Electrochemical glycosylation as an enabling tool for the stereoselective synthesis of cyclic oligosaccharides. ChemistryOpen, 2019, 8(7), 869-872.
[http://dx.doi.org/10.1002/open.201900185] [PMID: 31309034]
[37]
Isoda, Y.; Kitamura, K.; Takahashi, S.; Nokami, T.; Itoh, T. Electrochemical glycosylation as an enabling tool for the stereoselective synthesis of cyclic Oligosaccharides. ChemElectroChem, 2019, 6, 4149-4152.
[http://dx.doi.org/10.1002/celc.201900215]
[38]
Yano, K.; Itoh, T.; Nokami, T. Total synthesis of Myc-IV(C16:0, S) via automated electrochemical assembly. Carbohydr. Res., 2020, 492, 108018-108023.
[http://dx.doi.org/10.1016/j.carres.2020.108018] [PMID: 32339812]
[39]
Liu, M.; Liu, K.M.; Xiong, D.C.; Zhang, H.; Li, T.; Li, B.; Qin, X.; Bai, J.; Ye, X.S. Stereoselective electro‐2‐deoxyglycosylation from glycals. Angew. Chem. Int. Ed., 2020, 59(35), 15204-15208.
[http://dx.doi.org/10.1002/anie.202006115] [PMID: 32394599]
[40]
Shibuya, A.; Kato, M.; Saito, A.; Manmode, S.; Nishikori, N.; Itoh, T.; Nagaki, A.; Nokami, T. Stereoselective electro-2-deoxyglycosylation from glycals. Eur. J. Org. Chem., 2022, e202200135.
[http://dx.doi.org/10.1002/ejoc.202200135]
[41]
Bennett, C.S.; Galan, M.C. Methods for 2-deoxyglycoside synthesis. Chem. Rev., 2018, 118(17), 7931-7985.
[http://dx.doi.org/10.1021/acs.chemrev.7b00731] [PMID: 29953219]
[42]
De Lederkremer, R.M.; Marino, C. Deoxy sugars: Occurrence and synthesis. In: Advances in Carbohydrate Chemistry and Biochemistry; Horton, D., Ed.; Academic Press: New York, US, 2007; Vol. 61, pp. 143-215.
[43]
Meng, S.; Li, X.; Zhu, J. Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. Tetrahedron, 2021, 88, 132140-132182.
[http://dx.doi.org/10.1016/j.tet.2021.132140]
[44]
Levy, D.E. Strategies towards C-Glycosides. In: The Organic Chemistry of Sugars; Levy, D.E.; Fugedi, P., Eds.; CRC Press: Boca Raton, FL, US, 2005.
[http://dx.doi.org/10.1201/9781420027952.ch7]
[45]
Brito-Arias, M. Synthesis and Characterization of Glycosides; Springer: New York, NY, USA, 2007.
[46]
Hussain, N.; Hussain, A. Advances in Pd-catalyzed C–C bond formation in carbohydrates and their applications in the synthesis of natural products and medicinally relevant molecules. RSC Adv., 2021, 11(54), 34369-34391.
[http://dx.doi.org/10.1039/D1RA06351K] [PMID: 35497292]
[47]
Yang, Y.; Yu, B. Recent advances in the chemical synthesis of C -glycosides. Chem. Rev., 2017, 117(19), 12281-12356.
[http://dx.doi.org/10.1021/acs.chemrev.7b00234] [PMID: 28915018]
[48]
Xu, G.; Moeller, K.D. Anodic coupling reactions and the synthesis of C-glycosides. Org. Lett., 2010, 12(11), 2590-2593.
[http://dx.doi.org/10.1021/ol100800u] [PMID: 20462275]
[49]
Smith, J.A.; Moeller, K.D. Oxidative cyclizations, the synthesis of aryl-substituted C-glycosides, and the role of the second electron transfer step. Org. Lett., 2013, 15(22), 5818-5821.
[http://dx.doi.org/10.1021/ol402826z] [PMID: 24199843]
[50]
Sarshar, M.; Behzadi, P.; Ambrosi, C.; Zagaglia, C.; Palamara, A.T.; Scribano, D. FimH and anti-adhesive therapeutics: A disarming strategy against uropathogens. Antibiotics, 2020, 9(7), 397-413.
[http://dx.doi.org/10.3390/antibiotics9070397] [PMID: 32664222]
[51]
Smith, J.A.; Xu, G.; Feng, R.; Janetka, J.W.; Moeller, K.D. C‐glycosides, array‐based addressable libraries, and the versatility of constant current electrochemistry. Electroanalysis, 2016, 28(11), 2808-2817.
[http://dx.doi.org/10.1002/elan.201600200]
[52]
Lian, G.; Zhang, X.; Yu, B. Thioglycosides in carbohydrate research. Carbohydr. Res., 2015, 403, 13-22.
[http://dx.doi.org/10.1016/j.carres.2014.06.009] [PMID: 25015586]
[53]
Aguilera, B.; Jiménez-Barbero, J.; Fernández-Mayoralas, A. Conformational differences between Fuc(α1–3)GlcNAc and its thioglycoside analogue. Carbohydr. Res., 1998, 308(1-2), 19-27.
[http://dx.doi.org/10.1016/S0008-6215(98)00066-4] [PMID: 9675354]
[54]
Buckingham, J.; Brazier, J.A.; Fisher, J.; Cosstick, R. Incorporation of a S-glycosidic linkage into a glyconucleoside changes the conformational preference of both furanose sugars. Carbohydr. Res., 2007, 342(1), 16-22.
[http://dx.doi.org/10.1016/j.carres.2006.11.007] [PMID: 17145047]
[55]
Driguez, H. Thiooligosaccharides in glycobiology. Top. Curr. Chem., 1997, 187, 85-116.
[http://dx.doi.org/10.1007/BFb0119254]
[56]
Qiao, M.; Zhang, L.; Jiao, R.; Zhang, S.; Li, B.; Zhang, X. Chemical and enzymatic synthesis of S-linked sugars and glycoconjugates. Tetrahedron, 2021, 81, 131920.
[http://dx.doi.org/10.1016/j.tet.2020.131920]
[57]
Zhu, M.; Alami, M.; Messaoudi, S. Electrochemical nickel-catalyzed Migita cross-coupling of 1-thiosugars with aryl, alkenyl and alkynyl bromides. Chem. Commun., 2020, 56(32), 4464-4467.
[http://dx.doi.org/10.1039/D0CC01126F] [PMID: 32196023]
[58]
Okamoto, K.; Shoji, T.; Tsutsui, M.; Shida, N.; Chiba, K. Electrochemical nickel-catalyzed Migita cross-coupling of 1-thiosugars with aryl, alkenyl and alkynyl bromides. Chemistry, 2018, 24, 17902-17905.
[http://dx.doi.org/10.1002/chem.201804285] [PMID: 30216580]
[59]
Okamoto, K.; Tsutsui, M.; Morizumi, H.; Kitano, Y.; Chiba, K. Electrochemical synthesis of imino‐ C ‐nucleosides by “reactivity switching” methodology for in situ generated glycoside donors. Eur. J. Org. Chem., 2021, 2021(17), 2479-2484.
[http://dx.doi.org/10.1002/ejoc.202100106]
[60]
Shoji, T.; Kim, S.; Chiba, K. Synthesis of azanucleosides by anodic oxidation in a lithium perchlorate–nitroalkane medium and diversification at the 4′‐nitrogen position. Angew. Chem. Int. Ed., 2017, 56(14), 4011-4014.
[http://dx.doi.org/10.1002/anie.201700547] [PMID: 28266101]
[61]
Liu, M.; Luo, Z.X.; Li, T.; Xiong, D.C.; Ye, X.S. Electrochemical trifluoromethylation of glycals. J. Org. Chem., 2021, 86(22), 16187-16194.
[http://dx.doi.org/10.1021/acs.joc.1c01318] [PMID: 34435785]
[62]
Luo, Z.X.; Liu, M.; Li, T.; Xiong, D.C.; Ye, X.S. Electrochemical bromination of glycals. Front. Chem., 2021, 9, 796690.
[http://dx.doi.org/10.3389/fchem.2021.796690] [PMID: 35004613]
[63]
Vedovato, V.; Vanbroekhoven, K.; Pant, D.; Helsen, J. Electrosynthesis of biobased chemicals using carbohydrates as a feedstock. Molecules, 2020, 25(16), 3712-3749.
[http://dx.doi.org/10.3390/molecules25163712] [PMID: 32823995]
[64]
Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J., Jr; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; Mielenz, J.R.; Murphy, R.; Templer, R.; Tschaplinski, T. The path forward for biofuels and biomaterials. Science, 2006, 311(5760), 484-489.
[http://dx.doi.org/10.1126/science.1114736] [PMID: 16439654]
[65]
Zhang, Q.; Wan, Z.; Yu, I.K.M.; Tsang, D.C.W. Sustainable production of high-value gluconic acid and glucaric acid through oxidation of biomass-derived glucose: A critical review. J. Clean. Prod., 2021, 312, 127745.
[http://dx.doi.org/10.1016/j.jclepro.2021.127745]
[66]
Mehtiö, T.; Toivari, M.; Wiebe, M.G.; Harlin, A.; Penttilä, M.; Koivula, A. Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals. Crit. Rev. Biotechnol., 2016, 36(5), 904-916.
[http://dx.doi.org/10.3109/07388551.2015.1060189] [PMID: 26177333]
[67]
Mangiameli, M.F.; González, J.C.; Bellú, S.; Bertoni, F.; Sala, L.F. Redox and complexation chemistry of the CrVI/CrV-d-glucaric acid system. Dalton Trans., 2014, 43(24), 9242-9254.
[http://dx.doi.org/10.1039/c4dt00717d] [PMID: 24816781]
[68]
Liu, W.J.; Xu, Z.; Zhao, D.; Pan, X.Q.; Li, H.C.; Hu, X.; Fan, Z.Y.; Wang, W.K.; Zhao, G.H.; Jin, S.; Huber, G.W.; Yu, H.Q. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun., 2020, 11(1), 265.
[http://dx.doi.org/10.1038/s41467-019-14157-3] [PMID: 31937783]
[69]
Barragan, J.T.C.; Kogikoski, S., Jr; da Silva, E.T.S.G.; Kubota, L.T. Insight into the electro-oxidation mechanism of glucose and other carbohydrates by CuO-based electrodes. Anal. Chem., 2018, 90(5), 3357-3365.
[http://dx.doi.org/10.1021/acs.analchem.7b04963] [PMID: 29424228]
[70]
Handa, Y.; Watanabe, K.; Chihara, K.; Katsuno, E.; Horiba, T.; Inoue, M.; Komaba, S. The mechanism of electro-catalytic oxidation of glucose on manganese dioxide electrode used for amperometric glucose detection. J. Electrochem. Soc., 2018, 165(11), H742-H749.
[http://dx.doi.org/10.1149/2.0781811jes]
[71]
Kapetanović, E.; Beil, S.B. Site‐Selective electrochemical oxidation of carbohydrates. ChemElectroChem, 2023, 10(22), e202300411.
[http://dx.doi.org/10.1002/celc.202300411]
[72]
Holade, Y.; Guesmi, H.; Filhol, J.S.; Wang, Q.; Pham, T.; Rabah, J.; Maisonhaute, E.; Bonniol, V.; Servat, K.; Tingry, S.; Cornu, D.; Kokoh, K.B.; Napporn, T.W.; Minteer, S.D. Deciphering the electrocatalytic reactivity of glucose anomers at bare gold electrocatalysts for biomass-fueled electrosynthesis. ACS Catal., 2022, 12(20), 12563-12571.
[http://dx.doi.org/10.1021/acscatal.2c03399]
[73]
Opallo, M.; Dolinska, J. Glucose electrooxidation. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Wandelt, K., Ed.; Elsevier: Amsterdam, 2018; pp. 633-642.
[74]
Zhou, H.; Ren, Y.; Yao, B.; Li, Z.; Xu, M.; Ma, L.; Kong, X.; Zheng, L.; Shao, M.; Duan, H. Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations. Nat. Commun., 2023, 14(1), 5621.
[http://dx.doi.org/10.1038/s41467-023-41497-y] [PMID: 37699949]
[75]
Listratova, A.V.; Sbei, N.; Voskressensky, L.G. Catalytic electrosynthesis of N, O ‐heterocycles – recent advances. Eur. J. Org. Chem., 2020, 2020(14), 2012-2027.
[http://dx.doi.org/10.1002/ejoc.201901635]