Application Research Progress of Nanomaterial Graphene and its Derivative Complexes in Tumor Diagnosis and Therapy
  • * (Excluding Mailing and Handling)

Abstract

Functional nanomaterial graphene and its derivatives have attracted considerable attention in many fields because of their unique physical and chemical properties. Most notably, graphene has become a research hotspot in the biomedical field, especially in relation to malignant tumors. In this study, we briefly review relevant research from recent years on graphene and its derivatives in tumor diagnosis and antitumor therapy. The main contents of the study include the graphene-derivative diagnosis of tumors in the early stage, graphene quantum dots, photodynamics, MRI contrast agent, acoustic dynamics, and the effects of ultrasonic cavitation and graphene on tumor therapy. Moreover, the biocompatibility of graphene is briefly described. This review provides a broad overview of the applications of graphene and its derivatives in tumors. Conclusion, graphene and its derivatives play an important role in tumor diagnosis and treatment.

[1]
Chae, S.; Le, T.H.; Park, C.S.; Choi, Y.; Kim, S.; Lee, U.; Heo, E.; Lee, H.; Kim, Y.A.; Kwon, O.S.; Yoon, H. Anomalous restoration of sp 2 hybridization in graphene functionalization. Nanoscale, 2020, 12(25), 13351-13359.
[http://dx.doi.org/10.1039/D0NR03422C] [PMID: 32572409]
[2]
Sidorov, A.N.; Yazdanpanah, M.M.; Jalilian, R.; Ouseph, P.J.; Cohn, R.W.; Sumanasekera, G.U. Electrostatic deposition of graphene. Nanotechnology, 2007, 18(13), 135301.
[http://dx.doi.org/10.1088/0957-4484/18/13/135301] [PMID: 21730375]
[3]
Seema, H.; Shirinfar, B.; Shi, G.; Youn, I.S.; Ahmed, N. Facile synthesis of a selective biomolecule chemosensor and fabrication of its highly fluorescent graphene complex. J. Phys. Chem. B, 2017, 121(19), 5007-5016.
[http://dx.doi.org/10.1021/acs.jpcb.7b02888] [PMID: 28463493]
[4]
Goldoni, R.; Farronato, M.; Connelly, S.T.; Tartaglia, G.M.; Yeo, W.H. Recent advances in graphene-based nanobiosensors for salivary biomarker detection. Biosens. Bioelectron., 2021, 171, 112723.
[http://dx.doi.org/10.1016/j.bios.2020.112723] [PMID: 33096432]
[5]
Meng, Q.; Yu, Y.; Tian, J.; Yang, Z.; Guo, S.; Cai, R.; Han, S.; Liu, T.; Ma, J. Multifunctional, durable and highly conductive graphene/sponge nanocomposites. Nanotechnology, 2020, 31(46), 465502.
[http://dx.doi.org/10.1088/1361-6528/ab9f73] [PMID: 32575085]
[6]
Zhang, Z.Z.; Song, X.X.; Luo, G.; Su, Z.J.; Wang, K.L.; Cao, G.; Li, H.O.; Xiao, M.; Guo, G.C.; Tian, L.; Deng, G.W.; Guo, G.P. Coherent phonon dynamics in spatially separated graphene mechanical resonators. Proc. Natl. Acad. Sci., 2020, 117(11), 5582-5587.
[http://dx.doi.org/10.1073/pnas.1916978117] [PMID: 32123110]
[7]
Mahajan, C.R.; Joshi, L.B.; Varma, U.; Naik, J.B.; Chaudhari, V.R.; Mishra, S. Sustainable drug delivery of famotidine using chitosan-functionalized graphene oxide as nanocarrier. Glob. Chall., 2019, 3(10), 1900002.
[http://dx.doi.org/10.1002/gch2.201900002] [PMID: 31592120]
[8]
Prabowo, B.A.; Purwidyantri, A.; Liu, B.; Lai, H.C.; Liu, K.C. Gold nanoparticle-assisted plasmonic enhancement for DNA detection on a graphene-based portable surface plasmon resonance sensor. Nanotechnology, 2021, 32(9), 095503.
[http://dx.doi.org/10.1088/1361-6528/abcd62] [PMID: 33232941]
[9]
Nejabat, M.; Charbgoo, F.; Ramezani, M. Graphene as multifunctional delivery platform in cancer therapy. J. Biomed. Mater. Res. A, 2017, 105(8), 2355-2367.
[http://dx.doi.org/10.1002/jbm.a.36080] [PMID: 28371194]
[10]
Gholivand, K.; Faraghi, M.; Pooyan, M.; Babaee, L.S.; Malekshah, R.E.; Pirastehfar, F.; Vahabirad, M. Anti-cancer activity of new phosphoramide-functionalized graphene oxides: An experimental and theoretical evaluation. Curr. Med. Chem., 2023, 30(30), 3486-3503.
[http://dx.doi.org/10.2174/0929867330666221027152716] [PMID: 36305155]
[11]
Keramat, A.; Kadkhoda, J.; Farahzadi, R.; Fathi, E.; Davaran, S. The potential of graphene oxide and reduced graphene oxide in diagnosis and treatment of cancer. Curr. Med. Chem., 2022, 29(26), 4529-4546.
[http://dx.doi.org/10.2174/0929867329666220208092157] [PMID: 35135444]
[12]
Pedrosa, M.; Da Silva, E.S.; Pastrana-Martínez, L.M.; Drazic, G.; Falaras, P.; Faria, J.L.; Figueiredo, J.L.; Silva, A.M.T. Hummers’ and Brodie’s graphene oxides as photocatalysts for phenol degradation. J. Colloid Interface Sci., 2020, 567, 243-255.
[http://dx.doi.org/10.1016/j.jcis.2020.01.093] [PMID: 32062085]
[13]
Patel, M.A.; Yang, H.; Chiu, P.L.; Mastrogiovanni, D.D.T.; Flach, C.R.; Savaram, K.; Gomez, L.; Hemnarine, A.; Mendelsohn, R.; Garfunkel, E.; Jiang, H.; He, H. Direct production of graphene nanosheets for near infrared photoacoustic imaging. ACS Nano, 2013, 7(9), 8147-8157.
[http://dx.doi.org/10.1021/nn403429v] [PMID: 24001023]
[14]
Peng, L.; Xu, Z.; Liu, Z.; Wei, Y.; Sun, H.; Li, Z.; Zhao, X.; Gao, C. An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun., 2015, 6(1), 5716.
[http://dx.doi.org/10.1038/ncomms6716] [PMID: 25607686]
[15]
Kim, F.; Luo, J.; Cruz-Silva, R.; Cote, L.J.; Sohn, K.; Huang, J. Self-propagating domino-like reactions in oxidized graphite. Adv. Funct. Mater., 2010, 20(17), 2867-2873.
[http://dx.doi.org/10.1002/adfm.201000736]
[16]
Zheng, F.; Xu, W.L.; Jin, H.D.; Zhu, M.Q.; Yuan, W.H.; Hao, X.T.; Ghiggino, K.P. Purified dispersions of graphene in a nonpolar solvent via solvothermal reduction of graphene oxide. Chem. Commun., 2015, 51(18), 3824-3827.
[http://dx.doi.org/10.1039/C5CC00056D] [PMID: 25649830]
[17]
Balaji, A.; Zhang, J. Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and graphene oxide. Cancer Nanotechnol., 2017, 8(1), 10.
[http://dx.doi.org/10.1186/s12645-017-0035-z] [PMID: 29250208]
[18]
Abdelbasset, W.K.; Jasim, S.A.; Bokov, D.O.; Oleneva, M.S.; Islamov, A.; Hammid, A.T.; Mustafa, Y.F.; Yasin, G.; Alguno, A.C.; Kianfar, E. Comparison and evaluation of the performance of graphene-based biosensors. Carbon Letters, 2022, 32(4), 927-951.
[http://dx.doi.org/10.1007/s42823-022-00338-6]
[19]
Işın, D.; Eksin, E.; Erdem, A. Graphene-oxide and ionic liquid modified electrodes for electrochemical sensing of breast cancer 1 gene. Biosensors, 2022, 12(2), 95.
[http://dx.doi.org/10.3390/bios12020095] [PMID: 35200355]
[20]
Luong, J.H.T.; Vashist, S.K. Immunosensing procedures for carcinoembryonic antigen using graphene and nanocomposites. Biosens. Bioelectron., 2017, 89(Pt 1), 293-304.
[http://dx.doi.org/10.1016/j.bios.2015.11.053] [PMID: 26620098]
[21]
Chen, S.L.; Chen, C.Y.; Hsieh, J.C.H.; Yu, Z.Y.; Cheng, S.J.; Hsieh, K.Y.; Yang, J.W.; Kumar, P.V.; Lin, S.F.; Chen, G.Y. Graphene oxide-based biosensors for liquid biopsies in cancer diagnosis. Nanomaterials, 2019, 9(12), 1725.
[http://dx.doi.org/10.3390/nano9121725] [PMID: 31816919]
[22]
Qian, W.; Miao, Z.; Zhang, X.J.; Yang, X.T.; Tang, Y.Y.; Tang, Y.Y.; Hu, L.Y.; Li, S.; Zhu, D.; Cheng, H. Functionalized reduced graphene oxide with aptamer macroarray for cancer cell capture and fluorescence detection. Mikrochim. Acta, 2020, 187(7), 407.
[http://dx.doi.org/10.1007/s00604-020-04402-8] [PMID: 32594259]
[23]
Papi, M.; Palmieri, V.; Digiacomo, L.; Giulimondi, F.; Palchetti, S.; Ciasca, G.; Perini, G.; Caputo, D.; Cartillone, M.C.; Cascone, C.; Coppola, R.; Capriotti, A.L.; Laganà, A.; Pozzi, D.; Caracciolo, G. Converting the personalized biomolecular corona of graphene oxide nanoflakes into a high-throughput diagnostic test for early cancer detection. Nanoscale, 2019, 11(32), 15339-15346.
[http://dx.doi.org/10.1039/C9NR01413F] [PMID: 31386742]
[24]
Wu, C.; Li, P.; Fan, N.; Han, J.; Zhang, W.; Zhang, W.; Tang, B. A dual-targeting functionalized graphene film for rapid and highly sensitive fluorescence imaging detection of hepatocellular carcinoma circulating tumor cells. ACS Appl. Mater. Interfaces, 2019, 11(48), 44999-45006.
[http://dx.doi.org/10.1021/acsami.9b18410] [PMID: 31714050]
[25]
Geetha Bai, R.; Muthoosamy, K.; Tuvikene, R.; Nay Ming, H.; Manickam, S. Highly sensitive electrochemical biosensor using folic acid-modified reduced graphene oxide for the detection of cancer biomarker. Nanomaterials, 2021, 11(5), 1272.
[http://dx.doi.org/10.3390/nano11051272] [PMID: 34066073]
[26]
Mahmoodi, P.; Rezayi, M.; Rasouli, E.; Avan, A.; Gholami, M.; Ghayour Mobarhan, M.; Karimi, E.; Alias, Y. Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples. J. Nanobiotechnol., 2020, 18(1), 11.
[http://dx.doi.org/10.1186/s12951-020-0577-9] [PMID: 31931815]
[27]
Shi, S.; Yang, K.; Hong, H.; Valdovinos, H.F.; Nayak, T.R.; Zhang, Y.; Theuer, C.P.; Barnhart, T.E.; Liu, Z.; Cai, W. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials, 2013, 34(12), 3002-3009.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.047] [PMID: 23374706]
[28]
Xu, H.; Fan, M.; Elhissi, A.M.A.; Zhang, Z.; Wan, K.W.; Ahmed, W.; Phoenix, D.A.; Sun, X. PEGylated graphene oxide for tumor-targeted delivery of paclitaxel. Nanomedicine, 2015, 10(8), 1247-1262.
[http://dx.doi.org/10.2217/nnm.14.233] [PMID: 25955123]
[29]
Lan, M.Y.; Hsu, Y.B.; Lan, M.C.; Chen, J.P.; Lu, Y.J. Polyethylene glycol-coated graphene oxide loaded with erlotinib as an effective therapeutic agent for treating nasopharyngeal cancer cells. Int. J. Nanomedicine, 2020, 15, 7569-7582.
[http://dx.doi.org/10.2147/IJN.S265437] [PMID: 33116488]
[30]
Shuai, C.; Wang, B.; Bin, S.; Peng, S.; Gao, C. TiO 2 -induced in situ reaction in graphene oxide-reinforced az61 biocomposites to enhance the interfacial bonding. ACS Appl. Mater. Interfaces, 2020, 12(20), 23464-23473.
[http://dx.doi.org/10.1021/acsami.0c04020] [PMID: 32345014]
[31]
Alibolandi, M.; Mohammadi, M.; Taghdisi, S.M.; Ramezani, M.; Abnous, K. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydr. Polym., 2017, 155, 218-229.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.046] [PMID: 27702507]
[32]
Gu, Y.; Guo, Y.; Wang, C.; Xu, J.; Wu, J.; Kirk, T.B.; Ma, D.; Xue, W. A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery. Mater. Sci. Eng. C, 2017, 70(Pt 1), 572-585.
[http://dx.doi.org/10.1016/j.msec.2016.09.035] [PMID: 27770930]
[33]
Slekiene, N.; Snitka, V. Impact of graphene oxide functionalized with doxorubicin on viability of mouse hepatoma MH-22A cells. Toxicol. In Vitro, 2020, 65, 104821.
[http://dx.doi.org/10.1016/j.tiv.2020.104821] [PMID: 32151703]
[34]
Zhang, Y.M.; Cao, Y.; Yang, Y.; Chen, J.T.; Liu, Y. A small-sized graphene oxide supramolecular assembly for targeted delivery of camptothecin. Chem. Commun., 2014, 50(86), 13066-13069.
[http://dx.doi.org/10.1039/C4CC04533E] [PMID: 25222700]
[35]
Kansara, V.; Patil, R.; Tripathi, R.; Jha, P.K.; Bahadur, P.; Tiwari, S. Functionalized graphene nanosheets with improved dispersion stability and superior paclitaxel loading capacity. Colloids Surf. B Biointerfaces, 2019, 173, 421-428.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.016] [PMID: 30321800]
[36]
Yang, Y.F.; Meng, F.Y.; Li, X.H.; Wu, N.N.; Deng, Y.H.; Wei, L.Y.; Zeng, X.P. Magnetic graphene oxide-Fe3O4-PANI nanoparticle adsorbed platinum drugs as drug delivery systems for cancer therapy. J. Nanosci. Nanotechnol., 2019, 19(12), 7517-7525.
[http://dx.doi.org/10.1166/jnn.2019.16768] [PMID: 31196255]
[37]
Lin, K.C.; Lin, M.W.; Hsu, M.N.; Yu-Chen, G.; Chao, Y.C.; Tuan, H.Y.; Chiang, C.S.; Hu, Y.C. Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis. Theranostics, 2018, 8(9), 2477-2487.
[http://dx.doi.org/10.7150/thno.24173] [PMID: 29721093]
[38]
Lu, Y.J.; Lan, Y.H.; Chuang, C.C.; Lu, W.T.; Chan, L.Y.; Hsu, P.W.; Chen, J.P. Injectable thermo-sensitive chitosan hydrogel containing CPT-11-loaded EGFR-targeted graphene oxide and SLP2 shRNA for localized drug/gene delivery in glioblastoma therapy. Int. J. Mol. Sci., 2020, 21(19), 7111.
[http://dx.doi.org/10.3390/ijms21197111] [PMID: 32993166]
[39]
Liu, X.; Gao, M.M.; Cheng, Z.; Cai, Z-K.; Yu, L.; Niu, G-M.; Li, J-Y.; Bai, Y.; Zhao, S-Z.; Song, Y-C.; Wang, X-G.; Dong, Y.; Yu, X.; Tao, Z.; Yuan, Z-Y. Stereotactic body radiotherapy compared with video-assisted thoracic surgery after propensity-score matching in elderly patients with pathologically-proven early-stage non-small cell lung cancer. Precis. Radiat. Oncol., 2022, 6(4), 279-288.
[http://dx.doi.org/10.1002/pro6.1175]
[40]
Toomeh, D.; Gadoue, S.M.; Yasmin-Karim, S.; Singh, M.; Shanker, R.; Pal Singh, S.; Kumar, R.; Sajo, E.; Ngwa, W. Minimizing the potential of cancer recurrence and metastasis by the use of graphene oxide nano-flakes released from smart fiducials during image-guided radiation therapy. Phys. Med., 2018, 55, 8-14.
[http://dx.doi.org/10.1016/j.ejmp.2018.10.001] [PMID: 30471823]
[41]
Kadkhoda, J.; Tarighatnia, A.; Barar, J.; Aghanejad, A.; Davaran, S. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagn. Photodyn. Ther., 2022, 37, 102697.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102697] [PMID: 34936918]
[42]
Ma, M.; Cheng, L.; Zhao, A.; Zhang, H.; Zhang, A. Pluronic-based graphene oxide-methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells. Photodiagn. Photodyn. Ther., 2020, 29, 101640.
[http://dx.doi.org/10.1016/j.pdpdt.2019.101640] [PMID: 31899381]
[43]
Das, P.; Mudigunda, S.V.; Darabdhara, G.; Boruah, P.K.; Ghar, S.; Rengan, A.K.; Das, M.R. Biocompatible functionalized AuPd bimetallic nanoparticles decorated on reduced graphene oxide sheets for photothermal therapy of targeted cancer cells. J. Photochem. Photobiol. B, 2020, 212, 112028.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.112028] [PMID: 33010550]
[44]
Gulzar, A.; Xu, J.; Yang, D.; Xu, L.; He, F.; Gai, S.; Yang, P. Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Trans., 2018, 47(11), 3931-3939.
[http://dx.doi.org/10.1039/C7DT04141A] [PMID: 29459928]
[45]
Liu, P.; Xie, X.; Liu, M.; Hu, S.; Ding, J.; Zhou, W. A smart MnO2-doped graphene oxide nanosheet for enhanced chemo-photodynamic combinatorial therapy via simultaneous oxygenation and glutathione depletion. Acta Pharm. Sin. B, 2021, 11(3), 823-834.
[http://dx.doi.org/10.1016/j.apsb.2020.07.021] [PMID: 33777684]
[46]
Guo, W.; Chen, Z.; Feng, X.; Shen, G.; Huang, H.; Liang, Y.; Zhao, B.; Li, G.; Hu, Y. Graphene oxide (GO)-based nanosheets with combined chemo/photothermal/photodynamic therapy to overcome gastric cancer (GC) paclitaxel resistance by reducing mitochondria-derived adenosine-triphosphate (ATP). J. Nanobiotechnol., 2021, 19(1), 146.
[http://dx.doi.org/10.1186/s12951-021-00874-9] [PMID: 34011375]
[47]
Zeng, W.N.; Yu, Q.P.; Wang, D.; Liu, J.L.; Yang, Q.J.; Zhou, Z.K.; Zeng, Y.P. Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma. J. Nanobiotechnol., 2021, 19(1), 79.
[http://dx.doi.org/10.1186/s12951-021-00831-6] [PMID: 33740998]
[48]
Zhao, C.; Song, X.; Liu, Y.; Fu, Y.; Ye, L.; Wang, N.; Wang, F.; Li, L.; Mohammadniaei, M.; Zhang, M.; Zhang, Q.; Liu, J. Synthesis of graphene quantum dots and their applications in drug delivery. J. Nanobiotechnol., 2020, 18(1), 142.
[http://dx.doi.org/10.1186/s12951-020-00698-z] [PMID: 33008457]
[49]
Vatanparast, M.; Shariatinia, Z. Revealing the role of different nitrogen functionalities in the drug delivery performance of graphene quantum dots: A combined density functional theory and molecular dynamics approach. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(40), 6156-6171.
[http://dx.doi.org/10.1039/C9TB00971J] [PMID: 31559403]
[50]
Singh, G.; Kaur, H.; Sharma, A.; Singh, J.; Alajangi, H.K.; Kumar, S.; Singla, N.; Kaur, I.P.; Barnwal, R.P. Carbon based nanodots in early diagnosis of cancer. Front Chem., 2021, 9, 669169.
[http://dx.doi.org/10.3389/fchem.2021.669169] [PMID: 34109155]
[51]
Cunci, L.; González-Colón, V.; Lee Vargas-Pérez, B.; Ortiz-Santiago, J.; Pagán, M.; Carrion, P.; Cruz, J.; Molina-Ontoria, A.; Martinez, N.; Silva, W.; Echegoyen, L.; Cabrera, C.R. Multicolor fluorescent graphene oxide quantum dots for sensing cancer cell biomarkers. ACS Appl. Nano Mater., 2021, 4(1), 211-219.
[http://dx.doi.org/10.1021/acsanm.0c02526] [PMID: 34142014]
[52]
Xu, A.; He, P.; Ye, C.; Liu, Z.; Gu, B.; Gao, B.; Li, Y.; Dong, H.; Chen, D.; Wang, G.; Yang, S.; Ding, G. Polarizing graphene quantum dots toward long-acting intracellular reactive oxygen species evaluation and tumor detection. ACS Appl. Mater. Interfaces, 2020, 12(9), 10781-10790.
[http://dx.doi.org/10.1021/acsami.9b20434] [PMID: 32048821]
[53]
Ganganboina, A.B.; Dega, N.K.; Tran, H.L.; Darmonto, W.; Doong, R.A. Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens. Bioelectron., 2021, 181, 113151.
[http://dx.doi.org/10.1016/j.bios.2021.113151] [PMID: 33740543]
[54]
Pothipor, C.; Jakmunee, J.; Bamrungsap, S.; Ounnunkad, K. An electrochemical biosensor for simultaneous detection of breast cancer clinically related microRNAs based on a gold nanoparticles/graphene quantum dots/graphene oxide film. Analyst, 2021, 146(12), 4000-4009.
[http://dx.doi.org/10.1039/D1AN00436K] [PMID: 34013303]
[55]
Zhang, H.; Ba, S.; Yang, Z.; Wang, T.; Lee, J.Y.; Li, T.; Shao, F. Graphene quantum dot-based nanocomposites for diagnosing cancer biomarker ape1 in living cells. ACS Appl. Mater. Interfaces, 2020, 12(12), 13634-13643.
[http://dx.doi.org/10.1021/acsami.9b21385] [PMID: 32129072]
[56]
Marko, A.J.; Borah, B.M.; Siters, K.E.; Missert, J.R.; Gupta, A.; Pera, P.; Isaac-Lam, M.F.; Pandey, R.K. Targeted nanoparticles for fluorescence imaging of folate receptor positive tumors. Biomolecules, 2020, 10(12), 1651.
[http://dx.doi.org/10.3390/biom10121651] [PMID: 33317162]
[57]
Assaraf, Y.G.; Leamon, C.P.; Reddy, J.A. The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist. Updat., 2014, 17(4-6), 89-95.
[http://dx.doi.org/10.1016/j.drup.2014.10.002] [PMID: 25457975]
[58]
Feng, S.; Pan, J.; Li, C.; Zheng, Y. Folic acid-conjugated nitrogen-doped graphene quantum dots as a fluorescent diagnostic material for MCF-7 cells. Nanotechnology, 2020, 31(13), 135701.
[http://dx.doi.org/10.1088/1361-6528/ab5f7f] [PMID: 31810072]
[59]
Liu, H.; Li, C.; Qian, Y.; Hu, L.; Fang, J.; Tong, W.; Nie, R.; Chen, Q.; Wang, H. Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials, 2020, 232, 119700.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119700] [PMID: 31881379]
[60]
Dharmaratne, N.U.; Kaplan, A.R.; Glazer, P.M. Targeting the hypoxic and acidic tumor microenvironment with ph-sensitive peptides. Cells, 2021, 10(3), 541.
[http://dx.doi.org/10.3390/cells10030541] [PMID: 33806273]
[61]
Fang, J.; Liu, Y.; Chen, Y.; Ouyang, D.; Yang, G.; Yu, T. Graphene quantum dots-gated hollow mesoporous carbon nanoplatform for targeting drug delivery and synergistic chemo-photothermal therapy. Int. J. Nanomedicine, 2018, 13, 5991-6007.
[http://dx.doi.org/10.2147/IJN.S175934] [PMID: 30323587]
[62]
Khodadadei, F.; Safarian, S.; Ghanbari, N. Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an efficient anticancer drug delivery system. Mater. Sci. Eng. C, 2017, 79, 280-285.
[http://dx.doi.org/10.1016/j.msec.2017.05.049] [PMID: 28629019]
[63]
Wei, Z.; Yin, X.; Cai, Y.; Xu, W.; Song, C.; Wang, Y.; Zhang, J.; Kang, A.; Wang, Z.; Han, W. Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma. Int. J. Nanomedicine, 2018, 13, 1505-1524.
[http://dx.doi.org/10.2147/IJN.S156984] [PMID: 29559779]
[64]
Nasrollahi, F.; Koh, Y.R.; Chen, P.; Varshosaz, J.; Khodadadi, A.A.; Lim, S. Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging. Mater. Sci. Eng. C, 2019, 94, 247-257.
[http://dx.doi.org/10.1016/j.msec.2018.09.020] [PMID: 30423706]
[65]
Iannazzo, D.; Pistone, A.; Salamò, M.; Galvagno, S.; Romeo, R.; Giofré, S.V.; Branca, C.; Visalli, G.; Di Pietro, A. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm., 2017, 518(1-2), 185-192.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.060] [PMID: 28057464]
[66]
Nigam Joshi, P.; Agawane, S.; Athalye, M.C.; Jadhav, V.; Sarkar, D.; Prakash, R. Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy. Mater. Sci. Eng. C, 2017, 78, 1203-1211.
[http://dx.doi.org/10.1016/j.msec.2017.03.176] [PMID: 28575959]
[67]
Au, T.H.; Nguyen, B.N.; Nguyen, P.H.; Pethe, S.; Vo-Thanh, G.; Vu Thi, T.H. Vinblastine loaded on graphene quantum dots and its anticancer applications. J. Microencapsul., 2022, 39(3), 239-251.
[http://dx.doi.org/10.1080/02652048.2022.2060361] [PMID: 35352611]
[68]
Ramedani, A.; Sabzevari, O.; Simchi, A. Hybrid ultrasound-activated nanoparticles based on graphene quantum dots for cancer treatment. Int. J. Pharm., 2022, 629, 122373.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122373] [PMID: 36356790]
[69]
Yu, C.X. Radiotherapy of early-stage breast cancer. Precis. Radiat. Oncol., 2023, 7(1), 67-79.
[http://dx.doi.org/10.1002/pro6.1183]
[70]
Esgandari, K.; Mohammadian, M.; Zohdiaghdam, R.; Rastin, S.J.; Alidadi, S.; Behrouzkia, Z. Combined treatment with silver graphene quantum dot, radiation, and 17-AAG induces anticancer effects in breast cancer cells. J. Cell. Physiol., 2021, 236(4), 2817-2828.
[http://dx.doi.org/10.1002/jcp.30046] [PMID: 32901933]
[71]
Reagen, S.; Wu, Y.; Sun, D.; Munoz, C.; Oncel, N.; Combs, C.; Zhao, J.X. Development of biodegradable GQDs-hMSNs for fluorescence imaging and dual cancer treatment via photodynamic therapy and drug delivery. Int. J. Mol. Sci., 2022, 23(23), 14931.
[http://dx.doi.org/10.3390/ijms232314931] [PMID: 36499261]
[72]
Ostańska, E.; Aebisher, D.; Bartusik-Aebisher, D. The potential of photodynamic therapy in current breast cancer treatment methodologies. Biomed. Pharmacother., 2021, 137, 111302.
[http://dx.doi.org/10.1016/j.biopha.2021.111302] [PMID: 33517188]
[73]
Cao, H.; Fang, B.; Liu, J.; Shen, Y.; Shen, J.; Xiang, P.; Zhou, Q.; De Souza, S.C.; Li, D.; Tian, Y.; Luo, L.; Zhang, Z.; Tian, X. Photodynamic therapy directed by three-photon active rigid plane organic photosensitizer. Adv. Healthc. Mater., 2021, 10(7), 2001489.
[http://dx.doi.org/10.1002/adhm.202001489] [PMID: 33336561]
[74]
Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed. Pharmacother., 2018, 106, 1098-1107.
[http://dx.doi.org/10.1016/j.biopha.2018.07.049] [PMID: 30119176]
[75]
Chen, L.; Liu, D.; Wu, M.; Chau, H.F.; Wang, K.; Fung, Y.H.; Wong, K.L.; Wang, Z.; Wu, F. Photodynamic and photothermal synergistic behavior of triphenylamine-porphyrin nanoparticles for DNA interaction, cellular cytotoxicity and localization. Nanotechnology, 2020, 31(31), 315101.
[http://dx.doi.org/10.1088/1361-6528/ab86ea] [PMID: 32252029]
[76]
Zou, Z.; Chang, H.; Li, H.; Wang, S. Induction of reactive oxygen species: An emerging approach for cancer therapy. Apoptosis, 2017, 22(11), 1321-1335.
[http://dx.doi.org/10.1007/s10495-017-1424-9] [PMID: 28936716]
[77]
Hamblin, M.R.; Abrahamse, H. Factors affecting photodynamic therapy and anti-tumor immune response. Anticancer. Agents Med. Chem., 2020, 21(2), 123-136.
[http://dx.doi.org/10.2174/1871520620666200318101037] [PMID: 32188394]
[78]
He, S.; Li, J.; Chen, M.; Deng, L.; Yang, Y.; Zeng, Z.; Xiong, W.; Wu, X. Graphene oxide-template gold nanosheets as highly efficient near-infrared hyperthermia agents for cancer therapy. Int. J. Nanomedicine, 2020, 15, 8451-8463.
[http://dx.doi.org/10.2147/IJN.S265134] [PMID: 33149586]
[79]
Neelgund, G.M.; Oki, A.R. Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. J. Colloid Interface Sci., 2016, 484, 135-145.
[http://dx.doi.org/10.1016/j.jcis.2016.07.078] [PMID: 27599382]
[80]
Shi, J.; Zhao, Z.; Liu, Z.; Wu, R.; Wang, Y. Ultralow-intensity NIR light triggered on-demand drug release by employing highly emissive UCNP and photocleavable linker with low bond dissociation energy. Int. J. Nanomedicine, 2019, 14, 4017-4028.
[http://dx.doi.org/10.2147/IJN.S201982] [PMID: 31239667]
[81]
Han, R.; Tang, K.; Hou, Y.; Yu, J.; Wang, C.; Wang, Y. Ultralow-intensity near infrared light synchronously activated collaborative chemo/photothermal/photodynamic therapy. Biomater. Sci., 2020, 8(2), 607-618.
[http://dx.doi.org/10.1039/C9BM01607D] [PMID: 31793930]
[82]
Lu, H.; Li, W.; Qiu, P.; Zhang, X.; Qin, J.; Cai, Y.; Lu, X. MnO 2 doped graphene nanosheets for carotid body tumor combination therapy. Nanoscale Adv., 2022, 4(20), 4304-4313.
[http://dx.doi.org/10.1039/D2NA00086E] [PMID: 36321141]
[83]
Yu, T.; Hu, Y.; Feng, G.; Hu, K. Noninvasive tumor therapy: A graphene-based flexible device as a specific far-infrared emitter for noninvasive tumor therapy. Adv. Ther., 2020, 3(3), 2070005.
[http://dx.doi.org/10.1002/adtp.202070005]
[84]
Shi, J.; Wang, B.; Chen, Z.; Liu, W.; Pan, J.; Hou, L.; Zhang, Z. A multi-functional tumor theranostic nanoplatform for mri guided photothermal-chemotherapy. Pharm. Res., 2016, 33(6), 1472-1485.
[http://dx.doi.org/10.1007/s11095-016-1891-7] [PMID: 26984128]
[85]
Khan, H.A.; Lee, Y.K.; Shaik, M.R.; Alrashood, S.T.; Ekhzaimy, A.A. Nanocomposites of nitrogen-doped graphene oxide and manganese oxide for photodynamic therapy and magnetic resonance imaging. Int. J. Mol. Sci., 2022, 23(23), 15087.
[http://dx.doi.org/10.3390/ijms232315087] [PMID: 36499412]
[86]
Zhou, C.; Wu, H.; Wang, M.; Huang, C.; Yang, D.; Jia, N. Functionalized graphene oxide/Fe3O4 hybrids for cellular magnetic resonance imaging and fluorescence labeling. Mater. Sci. Eng. C, 2017, 78, 817-825.
[http://dx.doi.org/10.1016/j.msec.2017.04.139] [PMID: 28576054]
[87]
Gonzalez-Rodriguez, R.; Campbell, E.; Naumov, A. Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PLoS One, 2019, 14(6), e0217072.
[http://dx.doi.org/10.1371/journal.pone.0217072] [PMID: 31170197]
[88]
Yang, Y.; Chen, S.; Li, H.; Yuan, Y.; Zhang, Z.; Xie, J.; Hwang, D.W.; Zhang, A.; Liu, M.; Zhou, X. Engineered paramagnetic graphene quantum dots with enhanced relaxivity for tumor imaging. Nano Lett., 2019, 19(1), 441-448.
[http://dx.doi.org/10.1021/acs.nanolett.8b04252] [PMID: 30560672]
[89]
Luo, Y.; Tang, Y.; Liu, T.; Chen, Q.; Zhou, X.; Wang, N.; Ma, M.; Cheng, Y.; Chen, H. Engineering graphene oxide with ultrasmall SPIONs and smart drug release for cancer theranostics. Chem. Commun., 2019, 55(13), 1963-1966.
[http://dx.doi.org/10.1039/C8CC09185D] [PMID: 30681672]
[90]
Zhang, G.; Du, R.; Qian, J.; Zheng, X.; Tian, X.; Cai, D.; He, J.; Wu, Y.; Huang, W.; Wang, Y.; Zhang, X.; Zhong, K.; Zou, D.; Wu, Z. A tailored nanosheet decorated with a metallized dendrimer for angiography and magnetic resonance imaging-guided combined chemotherapy. Nanoscale, 2018, 10(1), 488-498.
[http://dx.doi.org/10.1039/C7NR07957E] [PMID: 29231948]
[91]
Cao, J.; An, H.; Huang, X.; Fu, G.; Zhuang, R.; Zhu, L.; Xie, J.; Zhang, F. Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI. Nanoscale, 2016, 8(19), 10152-10159.
[http://dx.doi.org/10.1039/C6NR02012G] [PMID: 27121639]
[92]
Wang, C.; Ravi, S.; Garapati, U.S.; Das, M.; Howell, M.; Mallela, J.; Alwarappan, S.; Mohapatra, S.S.; Mohapatra, S. Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(35), 4396-4405.
[http://dx.doi.org/10.1039/c3tb20452a] [PMID: 24883188]
[93]
Son, S.; Kim, J.H.; Wang, X.; Zhang, C.; Yoon, S.A.; Shin, J.; Sharma, A.; Lee, M.H.; Cheng, L.; Wu, J.; Kim, J.S. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev., 2020, 49(11), 3244-3261.
[http://dx.doi.org/10.1039/C9CS00648F] [PMID: 32337527]
[94]
Costley, D.; Mc Ewan, C.; Fowley, C.; McHale, A.P.; Atchison, J.; Nomikou, N.; Callan, J.F. Treating cancer with sonodynamic therapy: A review. Int. J. Hyperthermia, 2015, 31(2), 107-117.
[http://dx.doi.org/10.3109/02656736.2014.992484] [PMID: 25582025]
[95]
Ninomiya, K.; Noda, K.; Ogino, C.; Kuroda, S.; Shimizu, N. Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles: Its application to targeted sonodynamic therapy. Ultrason. Sonochem., 2014, 21(1), 289-294.
[http://dx.doi.org/10.1016/j.ultsonch.2013.05.005] [PMID: 23746399]
[96]
Yumita, N.; Iwase, Y.; Umemura, S.I.; Chen, F.S.; Momose, Y. Sonodynamically-induced anticancer effects of polyethylene glycol-modified carbon nano tubes. Anticancer Res., 2020, 40(5), 2549-2557.
[http://dx.doi.org/10.21873/anticanres.14225] [PMID: 32366399]
[97]
Milowska, K. Ultrasound--mechanisms of action and application in sonodynamic therapy. Postepy Hig. Med. Dosw., 2007, 61, 338-349.
[98]
Lafond, M.; Yoshizawa, S.; Umemura, S. Sonodynamic therapy: Advances and challenges in clinical translation. J. Ultrasound Med., 2019, 38(3), 567-580.
[http://dx.doi.org/10.1002/jum.14733] [PMID: 30338863]
[99]
Sun, H.; Ge, W.; Gao, X.; Wang, S.; Jiang, S.; Hu, Y.; Yu, M.; Hu, S. Apoptosis-promoting effects of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on endometrial cancer. PLoS One, 2015, 10(9), e0137980.
[http://dx.doi.org/10.1371/journal.pone.0137980] [PMID: 26367393]
[100]
Liang, S.; Deng, X.; Ma, P.; Cheng, Z.; Lin, J. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv. Mater., 2020, 32(47), 2003214.
[http://dx.doi.org/10.1002/adma.202003214] [PMID: 33064322]
[101]
Roberts, J.E. Techniques to improve photodynamic therapy. Photochem. Photobiol., 2020, 96(3), 524-528.
[http://dx.doi.org/10.1111/php.13223] [PMID: 32027382]
[102]
Cheng, D.; Wang, X.; Zhou, X.; Li, J. Nanosonosensitizers with ultrasound-induced reactive oxygen species generation for cancer sonodynamic immunotherapy. Front. Bioeng. Biotechnol., 2021, 9, 761218.
[http://dx.doi.org/10.3389/fbioe.2021.761218] [PMID: 34660560]
[103]
Huang, J.; Xiao, Z.; An, Y.; Han, S.; Wu, W.; Wang, Y.; Guo, Y.; Shuai, X. Nanodrug with dual-sensitivity to tumor microenvironment for immuno-sonodynamic anti-cancer therapy. Biomaterials, 2021, 269, 120636.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120636] [PMID: 33453632]
[104]
Zhang, Q.; Bao, C.; Cai, X.; Jin, L.; Sun, L.; Lang, Y.; Li, L. Sonodynamic therapy-assisted immunotherapy: A novel modality for cancer treatment. Cancer Sci., 2018, 109(5), 1330-1345.
[http://dx.doi.org/10.1111/cas.13578] [PMID: 29575297]
[105]
Gu, Z.; Zhu, S.; Yan, L.; Zhao, F.; Zhao, Y. Graphene-based smart platforms for combined cancer therapy. Adv. Mater., 2019, 31(9), 1800662.
[http://dx.doi.org/10.1002/adma.201800662] [PMID: 30039878]
[106]
Fusco, L.; Gazzi, A.; Peng, G.; Shin, Y.; Vranic, S.; Bedognetti, D.; Vitale, F.; Yilmazer, A.; Feng, X.; Fadeel, B.; Casiraghi, C.; Delogu, L.G. Graphene and other 2D materials: A multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics, 2020, 10(12), 5435-5488.
[http://dx.doi.org/10.7150/thno.40068] [PMID: 32373222]
[107]
Dai, C.; Zhang, S.; Liu, Z.; Wu, R.; Chen, Y. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano, 2017, 11(9), 9467-9480.
[http://dx.doi.org/10.1021/acsnano.7b05215] [PMID: 28829584]
[108]
Chen, Y.W.; Liu, T.Y.; Chang, P.H.; Hsu, P.H.; Liu, H.L.; Lin, H.C.; Chen, S.Y. A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale, 2016, 8(25), 12648-12657.
[http://dx.doi.org/10.1039/C5NR07782F] [PMID: 26838477]
[109]
Lee, H.R.; Kim, D.W.; Jones, V.O.; Choi, Y.; Ferry, V.E.; Geller, M.A.; Azarin, S.M. Sonosensitizer-functionalized graphene nanoribbons for adhesion blocking and sonodynamic ablation of ovarian cancer spheroids. Adv. Healthc. Mater., 2021, 10(13), 2001368.
[http://dx.doi.org/10.1002/adhm.202001368] [PMID: 34050609]
[110]
Qin, D.; Zou, Q.; Lei, S.; Wang, W.; Li, Z. Nonlinear dynamics and acoustic emissions of interacting cavitation bubbles in viscoelastic tissues. Ultrason. Sonochem., 2021, 78, 105712.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105712] [PMID: 34391164]
[111]
Shen, Z.Y.; Jiang, Y.M.; Zhou, Y.F. High-speed photographic observation of the sonication of a rabbit carotid artery filled with microbubbles by 20-kHz low frequency ultrasound. Ultrason Sonoch., 2018, 40((Pt A)), 980-987.
[http://dx.doi.org/10.1016/j.ultsonch.2017.09.015] [PMID: 28946510]
[112]
Kooiman, K.; Roovers, S.; Langeveld, S.A.G.; Kleven, R.T.; Dewitte, H.; O’Reilly, M.A.; Escoffre, J.M.; Bouakaz, A.; Verweij, M.D.; Hynynen, K.; Lentacker, I.; Stride, E.; Holland, C.K. Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med. Biol., 2020, 46(6), 1296-1325.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2020.01.002] [PMID: 32165014]
[113]
Shen, Z.; Shao, J.; Zhang, J.; Qu, W. Ultrasound cavitation enhanced chemotherapy: In vivo research and clinical application. Exp. Biol. Med., 2020, 245(14), 1200-1212.
[http://dx.doi.org/10.1177/1535370220936150] [PMID: 32567346]
[114]
Sontakke, A.D.; Purkait, M.K. Fabrication of ultrasound-mediated tunable graphene oxide nanoscrolls. Ultrason. Sonochem., 2020, 63, 104976.
[http://dx.doi.org/10.1016/j.ultsonch.2020.104976] [PMID: 31986329]
[115]
Silva, L.I.; Mirabella, D.A.; Pablo Tomba, J.; Riccardi, C.C. Optimizing graphene production in ultrasonic devices. Ultrasonics, 2020, 100, 105989.
[http://dx.doi.org/10.1016/j.ultras.2019.105989] [PMID: 31479970]
[116]
Zhao, W.; Li, M.; Qi, Y.; Tao, Y.; Shi, Z.; Liu, Y.; Cheng, J. Ultrasound sonochemical synthesis of amorphous Sb2S3-graphene composites for sodium-ion batteries. J. Colloid Interface Sci., 2021, 586, 404-411.
[http://dx.doi.org/10.1016/j.jcis.2020.10.104] [PMID: 33183754]
[117]
Štengl, V. Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chemistry, 2012, 18(44), 14047-14054.
[http://dx.doi.org/10.1002/chem.201201411] [PMID: 23015465]
[118]
Geetha Bai, R.; Muthoosamy, K.; Shipton, F.N.; Manickam, S. Acoustic cavitation induced generation of stabilizer-free, extremely stable reduced graphene oxide nanodispersion for efficient delivery of paclitaxel in cancer cells. Ultrason. Sonochem., 2017, 36, 129-138.
[http://dx.doi.org/10.1016/j.ultsonch.2016.11.021] [PMID: 28069192]
[119]
Gao, H.; Xue, C.; Hu, G.; Zhu, K. Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium. Ultrason. Sonochem., 2017, 37, 120-127.
[http://dx.doi.org/10.1016/j.ultsonch.2017.01.001] [PMID: 28427614]
[120]
Zhou, Y.; Yang, K.; Cui, J.; Ye, J.Y.; Deng, C.X. Controlled permeation of cell membrane by single bubble acoustic cavitation. J. Control. Release, 2012, 157(1), 103-111.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.068] [PMID: 21945682]
[121]
Lentacker, I.; De Cock, I.; Deckers, R.; De Smedt, S.C.; Moonen, C.T.W. Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms. Adv. Drug Deliv. Rev., 2014, 72, 49-64.
[http://dx.doi.org/10.1016/j.addr.2013.11.008] [PMID: 24270006]
[122]
Yang, Y.; Li, Q.; Guo, X.; Tu, J.; Zhang, D. Mechanisms underlying sonoporation: Interaction between microbubbles and cells. Ultrason. Sonochem., 2020, 67, 105096.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105096] [PMID: 32278246]
[123]
Daigeler, A.; Chromik, A.M.; Haendschke, K.; Emmelmann, S.; Siepmann, M.; Hensel, K.; Schmitz, G.; Klein-Hitpass, L.; Steinau, H.U.; Lehnhardt, M.; Hauser, J. Synergistic effects of sonoporation and taurolidin/TRAIL on apoptosis in human fibrosarcoma. Ultrasound Med. Biol., 2010, 36(11), 1893-1906.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2010.08.009] [PMID: 20870344]
[124]
Shen, Z.Y.; Xia, G.L.; Wu, M.F.; Ji, L.Y.; Li, Y.J. The effects of percutaneous ethanol injection followed by 20-kHz ultrasound and microbubbles on rabbit hepatic tumors. J. Cancer Res. Clin. Oncol., 2016, 142(2), 373-378.
[http://dx.doi.org/10.1007/s00432-015-2034-y] [PMID: 26306908]
[125]
Zhou, Q.; Shao, S.; Wang, J.; Xu, C.; Xiang, J.; Piao, Y.; Zhou, Z.; Yu, Q.; Tang, J.; Liu, X.; Gan, Z.; Mo, R.; Gu, Z.; Shen, Y. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol., 2019, 14(8), 799-809.
[http://dx.doi.org/10.1038/s41565-019-0485-z] [PMID: 31263194]
[126]
Rizwanullah, M.; Alam, M.; Harshita; Mir, S.R.; Rizvi, M.M.A.; Amin, S. Polymer-lipid hybrid nanoparticles: A next-generation nanocarrier for targeted treatment of solid tumors. Curr. Pharm. Des., 2020, 26(11), 1206-1215.
[http://dx.doi.org/10.2174/1381612826666200116150426] [PMID: 31951163]
[127]
Yu, Z.; Guo, J.; Hu, M.; Gao, Y.; Huang, L. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano, 2020, 14(4), 4816-4828.
[http://dx.doi.org/10.1021/acsnano.0c00708] [PMID: 32188241]
[128]
Cao, C.; Wang, Q.; Liu, Y. Lung cancer combination therapy: Doxorubicin and β-elemene co-loaded, pH-sensitive nanostructured lipid carriers. Drug Des. Devel. Ther., 2019, 13, 1087-1098.
[http://dx.doi.org/10.2147/DDDT.S198003] [PMID: 31118562]
[129]
Luo, S.; Zhu, Y.; Li, Y.; Chen, L.; Lv, S.; Zhang, Y.; Ge, L.; Zhou, W. Targeted chemotherapy for breast cancer using an intelligent doxorubicin-loaded hexapeptide hydrogel. J. Biomed. Nanotechnol., 2020, 16(6), 842-852.
[http://dx.doi.org/10.1166/jbn.2020.2935] [PMID: 33187580]
[130]
Benjanuwattra, J.; Siri-Angkul, N.; Chattipakorn, S.C.; Chattipakorn, N. Doxorubicin and its proarrhythmic effects: A comprehensive review of the evidence from experimental and clinical studies. Pharmacol. Res., 2020, 151, 104542.
[http://dx.doi.org/10.1016/j.phrs.2019.104542] [PMID: 31730804]
[131]
Zhang, L.; Qu, X.; Teng, Y.; Shi, J.; Yu, P.; Sun, T.; Wang, J.; Zhu, Z.; Zhang, X.; Zhao, M.; Liu, J.; Jin, B.; Luo, Y.; Teng, Z.; Dong, Y.; Wen, F.; An, Y.; Yuan, C.; Chen, T.; Zhou, L.; Chen, Y.; Zhang, J.; Wang, Z.; Qu, J.; Jin, F.; Zhang, J.; Jin, X.; Xie, X.; Wang, J.; Man, L.; Fu, L.; Liu, Y. Efficacy of thalidomide in preventing delayed nausea and vomiting induced by highly emetogenic chemotherapy: A randomized, multicenter, double-blind, placebo-controlled phase III trial (CLOG1302 study). J. Clin. Oncol., 2017, 35(31), 3558-3565.
[http://dx.doi.org/10.1200/JCO.2017.72.2538] [PMID: 28854065]
[132]
Vargel, I.; Erdem, A.; Ertoy, D.; Pinar, A.; Erk, Y.; Altundag, M.K.; Gullu, I. Effects of growth factors on doxorubicin-induced skin necrosis: Documentation of histomorphological alterations and early treatment by GM-CSF and G-CSF. Ann. Plast. Surg., 2002, 49(6), 646-653.
[http://dx.doi.org/10.1097/00000637-200212000-00015] [PMID: 12461449]
[133]
Liu, Y.; Qiao, L.; Zhang, S.; Wan, G.; Chen, B.; Zhou, P.; Zhang, N.; Wang, Y. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater., 2018, 66, 310-324.
[http://dx.doi.org/10.1016/j.actbio.2017.11.010] [PMID: 29129789]
[134]
Dong, K.; Zhao, Z.Z.; Kang, J.; Lin, L.R.; Chen, W.T.; Liu, J.X.; Wu, X.L.; Lu, T.L. Cinnamaldehyde and doxorubicin co-loaded graphene oxide wrapped mesoporous silica nanoparticles for enhanced MCF-7 cell apoptosis. Int. J. Nanomedicine, 2020, 15, 10285-10304.
[http://dx.doi.org/10.2147/IJN.S283981] [PMID: 33376322]
[135]
Zhang, J.; Chen, L.; Shen, B.; Chen, L.; Mo, J.; Feng, J. Dual-sensitive graphene oxide loaded with proapoptotic peptides and anticancer drugs for cancer synergetic therapy. Langmuir, 2019, 35(18), 6120-6128.
[http://dx.doi.org/10.1021/acs.langmuir.9b00611] [PMID: 30983368]
[136]
Singh, M.; Gupta, P.; Baronia, R. In vitro cytotoxicity of GO-DOx on FaDu squamous carcinoma cell lines. Int. J. Nanomedicine., 2018, 13, 107-111.
[137]
Fong, Y.; Chen, C.H.; Chen, J.P. Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy. Nanomaterials, 2017, 7(11), 388.
[http://dx.doi.org/10.3390/nano7110388] [PMID: 29135959]
[138]
Ziemys, A.; Yokoi, K.; Kojic, M. Capillary collagen as the physical transport barrier in drug delivery to tumor microenvironment. Tissue Barriers, 2015, 3(3), e1037418.
[http://dx.doi.org/10.1080/21688370.2015.1037418] [PMID: 26451342]
[139]
Shen, Z.Y.; Shen, B.Q.; Shen, A.J.; Zhu, X.H. Cavitation-enhanced delivery of the nanomaterial graphene oxide-doxorubicin to hepatic tumors in nude mice using 20 khz low-frequency ultrasound and microbubbles. J. Nanomater., 2020, 2020(24), 1-13.
[http://dx.doi.org/10.1155/2020/3136078]
[140]
Liao, C.; Li, Y.; Tjong, S. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci., 2018, 19(11), 3564.
[http://dx.doi.org/10.3390/ijms19113564] [PMID: 30424535]
[141]
Zhang, B.; Wei, P.; Zhou, Z. Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Adv. Drug Deliv. Rev., 2016, 105((Pt B)), 145-162.
[142]
Russier, J.; Treossi, E.; Scarsi, A.; Perrozzi, F.; Dumortier, H.; Ottaviano, L.; Meneghetti, M.; Palermo, V.; Bianco, A. Evidencing the mask effect of graphene oxide: A comparative study on primary human and murine phagocytic cells. Nanoscale, 2013, 5(22), 11234-11247.
[http://dx.doi.org/10.1039/c3nr03543c] [PMID: 24084792]
[143]
Mendes, R.G.; Koch, B.; Bachmatiuk, A.; Ma, X.; Sanchez, S.; Damm, C.; Schmidt, O.G.; Gemming, T.; Eckert, J.; Rümmeli, M.H. A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(12), 2522-2529.
[http://dx.doi.org/10.1039/C5TB00180C] [PMID: 32262127]
[144]
Wojtoniszak, M.; Chen, X.; Kalenczuk, R.J.; Wajda, A.; Łapczuk, J.; Kurzewski, M.; Drozdzik, M.; Chu, P.K.; Borowiak-Palen, E. Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf. B Biointerfaces, 2012, 89, 79-85.
[http://dx.doi.org/10.1016/j.colsurfb.2011.08.026] [PMID: 21962852]
[145]
Matesanz, M.C.; Vila, M.; Feito, M.J.; Linares, J.; Gonçalves, G.; Vallet-Regi, M.; Marques, P.A.A.P.; Portolés, M.T. The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations. Biomaterials, 2013, 34(5), 1562-1569.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.001] [PMID: 23177613]
[146]
Akhavan, O.; Ghaderi, E.; Akhavan, A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials, 2012, 33(32), 8017-8025.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.040] [PMID: 22863381]
[147]
Wu, Y.; Wang, F.; Wang, S.; Ma, J.; Xu, M.; Gao, M.; Liu, R.; Chen, W.; Liu, S. Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages. Nanoscale, 2018, 10(30), 14637-14650.
[http://dx.doi.org/10.1039/C8NR02798F] [PMID: 30028471]
[148]
Dasgupta, A.; Sarkar, J.; Ghosh, M.; Bhattacharya, A.; Mukherjee, A.; Chattopadhyay, D.; Acharya, K. Green conversion of graphene oxide to graphene nanosheets and its biosafety study. PLoS One, 2017, 12(2), e0171607.
[http://dx.doi.org/10.1371/journal.pone.0171607] [PMID: 28158272]
[149]
Palmieri, V.; Perini, G.; De Spirito, M.; Papi, M. Graphene oxide touches blood: In vivo interactions of bio-coronated 2D materials. Nanoscale Horiz., 2019, 4(2), 273-290.
[http://dx.doi.org/10.1039/C8NH00318A] [PMID: 32254085]
[150]
Ren, H.; Wang, C.; Zhang, J.; Zhou, X.; Xu, D.; Zheng, J.; Guo, S.; Zhang, J. DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano, 2010, 4(12), 7169-7174.
[http://dx.doi.org/10.1021/nn101696r] [PMID: 21082807]
[151]
Lu, C.J.; Jiang, X.F.; Junaid, M.; Ma, Y.B.; Jia, P.P.; Wang, H.B.; Pei, D.S. Graphene oxide nanosheets induce DNA damage and activate the base excision repair (BER) signaling pathway both in vitro and in vivo. Chemosphere, 2017, 184, 795-805.
[http://dx.doi.org/10.1016/j.chemosphere.2017.06.049] [PMID: 28645083]
[152]
Ali-boucetta, H.; Bitounis, D.; Raveendran-Nair, R.; Servant, A.; Van den Bossche, J.; Kostarelos, K. Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity. Adv. Healthc. Mater., 2013, 2(3), 433-441.
[http://dx.doi.org/10.1002/adhm.201200248] [PMID: 23184580]
[153]
Singh, S.K.; Singh, M.K.; Kulkarni, P.P.; Sonkar, V.K.; Grácio, J.J.A.; Dash, D. Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano, 2012, 6(3), 2731-2740.
[http://dx.doi.org/10.1021/nn300172t] [PMID: 22376049]
[154]
Liu, Y.; Luo, Y.; Wu, J.; Wang, Y.; Yang, X.; Yang, R.; Wang, B.; Yang, J.; Zhang, N. Graphene oxide can induce in vitro and in vivo mutagenesis. Sci. Rep., 2013, 3(1), 3469.
[http://dx.doi.org/10.1038/srep03469] [PMID: 24326739]
[155]
Ma, J.; Liu, R.; Wang, X.; Liu, Q.; Chen, Y.; Valle, R.P.; Zuo, Y.Y.; Xia, T.; Liu, S. Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals. ACS Nano, 2015, 9(10), 10498-10515.
[http://dx.doi.org/10.1021/acsnano.5b04751] [PMID: 26389709]
[156]
Mendonça, M.C.P.; Soares, E.S.; de Jesus, M.B.; Ceragioli, H.J.; Batista, Â.G.; Nyúl-Tóth, Á.; Molnár, J.; Wilhelm, I.; Maróstica, M.R., Jr; Krizbai, I.; da Cruz-Höfling, M.A. PEGylation of reduced graphene oxide induces toxicity in cells of the blood–brain barrier: An in vitro and in vivo Study. Mol. Pharm., 2016, 13(11), 3913-3924.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00696] [PMID: 27712077]
[157]
Amrollahi-Sharifabadi, M.; Koohi, M.K.; Zayerzadeh, E.; Hablolvarid, M.H.; Hassan, J.; Seifalian, A.M. in vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application. Int. J. Nanomedicine, 2018, 13, 4757-4769.
[http://dx.doi.org/10.2147/IJN.S168731] [PMID: 30174424]
[158]
Wang, K.; Ruan, J.; Song, H.; Zhang, J.; Wo, Y.; Guo, S.; Cui, D. Biocompatibility of graphene oxide. Nanoscale Res. Lett., 2010, 6(1), 8.
[http://dx.doi.org/10.1007/s11671-010-9751-6] [PMID: 27502632]
[159]
Jiang, Li. Blood exposure to graphene oxide may cause anaphylactic death in non-human primates. Nano Taday, 2020, 35(12), 100922.
[160]
Rhazouani, A.; Gamrani, H.; El Achaby, M.; Aziz, K.; Gebrati, L.; Uddin, M.S.; Aziz, F. Synthesis and toxicity of graphene oxide nanoparticles: A literature review of in vitro and in vivo studies. BioMed Res. Int., 2021, 2021, 1-19.
[http://dx.doi.org/10.1155/2021/5518999] [PMID: 34222470]
[161]
Shahriari, S.; Sastry, M.; Panjikar, S.; Singh Raman, R.K. Graphene and graphene oxide as a support for biomolecules in the development of biosensors. Nanotechnol. Sci. Appl., 2021, 14, 197-220.
[http://dx.doi.org/10.2147/NSA.S334487] [PMID: 34815666]
[162]
Fontana, C.R.; Lerman, M.A.; Patel, N.; Grecco, C.; de Souza Costa, C.A.; Amiji, M.M.; Bagnato, V.S.; Soukos, N.S. Safety assessment of oral photodynamic therapy in rats. Lasers Med. Sci., 2013, 28(2), 479-486.
[http://dx.doi.org/10.1007/s10103-012-1091-6] [PMID: 22467011]
[163]
Lucky, S.S.; Muhammad Idris, N.; Li, Z.; Huang, K.; Soo, K.C.; Zhang, Y. Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy. ACS Nano, 2015, 9(1), 191-205.
[http://dx.doi.org/10.1021/nn503450t] [PMID: 25564723]
[164]
Younis, M.R.; Wang, C.; An, R.; Wang, S.; Younis, M.A.; Li, Z.Q.; Wang, Y.; Ihsan, A.; Ye, D.; Xia, X.H. Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACS Nano, 2019, 13(2), 8b09552.
[http://dx.doi.org/10.1021/acsnano.8b09552] [PMID: 30730695]
[165]
Beltrán Hernández, I.; Yu, Y.; Ossendorp, F.; Korbelik, M.; Oliveira, S. Preclinical and clinical evidence of immune responses triggered in oncologic photodynamic therapy: Clinical recommendations. J. Clin. Med., 2020, 9(2), 333.
[http://dx.doi.org/10.3390/jcm9020333] [PMID: 31991650]
[166]
Choi, V.; Rajora, M.A.; Zheng, G. Activating drugs with sound: Mechanisms behind sonodynamic therapy and the role of nanomedicine. Bioconjug. Chem., 2020, 31(4), 967-989.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00029] [PMID: 32129984]
[167]
Sviridov, A.P.; Osminkina, L.A.; Kharin, A.Y.; Gongalsky, M.B.; Kargina, J.V.; Kudryavtsev, A.A.; Bezsudnova, Y.I.; Perova, T.S.; Geloen, A.; Lysenko, V.; Timoshenko, V.Y. Cytotoxicity control of silicon nanoparticles by biopolymer coating and ultrasound irradiation for cancer theranostic applications. Nanotechnology, 2017, 28(10), 105102.
[http://dx.doi.org/10.1088/1361-6528/aa5b7c] [PMID: 28177935]
[168]
Yumita, N.; Umemura, S. Sonodynamic antitumour effect of chloroaluminum phthalocyanine tetrasulfonate on murine solid tumour. J. Pharm. Pharmacol., 2010, 56(1), 85-90.
[http://dx.doi.org/10.1211/0022357022412] [PMID: 14980005]
[169]
Canavese, G.; Ancona, A.; Racca, L.; Canta, M.; Dumontel, B.; Barbaresco, F.; Limongi, T.; Cauda, V. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chem. Eng. J., 2018, 340, 155-172.
[http://dx.doi.org/10.1016/j.cej.2018.01.060] [PMID: 30881202]