Rapid Determination of Diverse Ganoderic Acids in Ganoderma Using UPLC–MS/MS

Page: [191 - 200] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Ganoderma is known for its pharmaceutical, nutritional, and functional benefits. Its primary bioactive components are ganoderic acids. However, previous quantification methods only analyzed an individual or limited number of ganoderic acids. This study aims to develop a reliable method for simultaneously quantifying the major ganoderic acids to enhance Ganoderma quality control and study its active ingredients.

Methods: We developed a rapid quality assessment method to simultaneously determine the eleven ganoderic acids in Ganoderma using ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The sample extraction method, along with mass spectrometric detection and chromatographic separation conditions was optimized. The separation was carried out using the ACQUITY UPLC BEH C18 column with a gradient elution of 0.1% (v/v) formic acid in water and acetonitrile. The mass spectrometry utilized negative mode electrospray ionization (ESI), with quantitative analysis being carried out in the MRM mode.

Results: The calibration curves showed good correlation coefficients (r2 > 0.998). The recovery range was 89.1–114.0%. The intra-day and inter-day relative standard deviation (RSD) were below 6.8% (n = 6) and 8.1% (n = 6), respectively. Furthermore, the detection and quantification limits were 0.66–6.55 μg/kg and 2.20–21.84 μg/kg, respectively. All 11 ganoderic acids in the sample solution remained stable at room temperature for 72 hours. A total of 11 ganoderic acids were quantified in the 13 Ganoderma samples. The levels of ganoderic acids were higher in Ganoderma lucidum than in Ganoderma sinense.

Conclusion: The method developed in this study can quantify ganoderic acids in Ganoderma lucidum, thus establishing a technical foundation for evaluating the Ganoderma quality.

Graphical Abstract

[1]
Cör Andrejč, D.; Knez, Ž.; Knez Marevci, M. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevro-protective activity of Ganoderma lucidum: An overview. Front. Pharmacol., 2022, 13, 934982.
[http://dx.doi.org/10.3389/fphar.2022.934982] [PMID: 35935849]
[2]
Wu, S.; Zhang, S.; Peng, B.; Tan, D.; Wu, M.; Wei, J.; Wang, Y.; Luo, H. Ganoderma lucidum: A comprehensive review of phytochemistry, efficacy, safety and clinical study. Food Sci. Hum. Wellness, 2024, 13(2), 568-596.
[http://dx.doi.org/10.26599/FSHW.2022.9250051]
[3]
Zhang, C.; Fu, D.; Chen, G.; Guo, M. Comparative and chemometric analysis of correlations between the chemical fingerprints and anti‐proliferative activities of ganoderic acids from three Ganoderma species. Phytochem. Anal., 2019, 30(4), 474-480.
[http://dx.doi.org/10.1002/pca.2830] [PMID: 30932273]
[4]
Satria, D.; Tamrakar, S.; Suhara, H.; Kaneko, S.; Shimizu, K. Mass spectrometry-based untargeted metabolomics and α-glucosidase inhibitory activity of lingzhi (Ganoderma lingzhi) during the developmental stages. Molecules, 2019, 24(11), 2044.
[http://dx.doi.org/10.3390/molecules24112044] [PMID: 31146329]
[5]
Kolniak-Ostek, J.; Oszmiański, J.; Szyjka, A.; Moreira, H.; Barg, E. Anticancer and antioxidant activities in Ganoderma lucidum wild mushrooms in poland, as well as their phenolic and triterpenoid compounds. Int. J. Mol. Sci., 2022, 23(16), 9359.
[http://dx.doi.org/10.3390/ijms23169359] [PMID: 36012645]
[6]
Ahmad, R.; Riaz, M.; Khan, A.; Aljamea, A.; Algheryafi, M.; Sewaket, D.; Alqathama, A. Ganoderma lucidum (Reishi) an edible mushroom; A comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytother. Res., 2021, 35(11), 6030-6062.
[http://dx.doi.org/10.1002/ptr.7215] [PMID: 34411377]
[7]
Yang, Y.; Zhang, H.; Zuo, J.; Gong, X.; Yi, F.; Zhu, W.; Li, L. Advances in research on the active constituents and physiological effects of Ganoderma lucidum. Biomed. Dermatol., 2019, 3(1), 6.
[http://dx.doi.org/10.1186/s41702-019-0044-0]
[8]
Liang, C.; Tian, D.; Liu, Y.; Li, H.; Zhu, J.; Li, M.; Xin, M.; Xia, J. Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. Eur. J. Med. Chem., 2019, 174, 130-141.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.039] [PMID: 31035236]
[9]
Ahmad, M.F.; Wahab, S.; Ahmad, F.A.; Ashraf, S.A.; Abullais, S.S.; Saad, H.H. Ganoderma lucidum: A potential pleiotropic approach of ganoderic acids in health reinforcement and factors influencing their production. Fungal Biol. Rev., 2022, 39, 100-125.
[http://dx.doi.org/10.1016/j.fbr.2021.12.003]
[10]
Ren, L. Protective effect of ganoderic acid against the streptozotocin induced diabetes, inflammation, hyperlipidemia and microbiota imbalance in diabetic rats. Saudi J. Biol. Sci., 2019, 26(8), 1961-1972.
[http://dx.doi.org/10.1016/j.sjbs.2019.07.005] [PMID: 31889779]
[11]
Guo, W.L.; Guo, J.B.; Liu, B.Y.; Lu, J.Q.; Chen, M.; Liu, B.; Bai, W.D.; Rao, P.F.; Ni, L.; Lv, X.C. Ganoderic acid A from Ganoderma lucidum ameliorates lipid metabolism and alters gut microbiota composition in hyperlipidemic mice fed a high-fat diet. Food Funct., 2020, 11(8), 6818-6833.
[http://dx.doi.org/10.1039/D0FO00436G] [PMID: 32686808]
[12]
Zhu, J.; Jin, J.; Ding, J.; Li, S.; Cen, P.; Wang, K.; Wang, H.; Xia, J. Ganoderic Acid A improves high fat diet-induced obesity, lipid accumulation and insulin sensitivity through regulating SREBP pathway. Chem. Biol. Interact., 2018, 290, 77-87.
[http://dx.doi.org/10.1016/j.cbi.2018.05.014] [PMID: 29852127]
[13]
Liu, F.; Shi, K.; Dong, J.; Jin, Z.; Wu, Y.; Cai, Y.; Lin, T.; Cai, Q.; Liu, L.; Zhang, Y. Ganoderic acid A attenuates high-fat-diet-induced liver injury in rats by regulating the lipid oxidation and liver inflammation. Arch. Pharm. Res., 2020, 43(7), 744-754.
[http://dx.doi.org/10.1007/s12272-020-01256-9] [PMID: 32715385]
[14]
Guo, W.L.; Cao, Y.J.; You, S.Z.; Wu, Q.; Zhang, F.; Han, J.Z.; Lv, X.C.; Rao, P.F.; Ai, L.Z.; Ni, L. Ganoderic acids-rich ethanol extract from Ganoderma lucidum protects against alcoholic liver injury and modulates intestinal microbiota in mice with excessive alcohol intake. Curr. Res. Food Sci., 2022, 5, 515-530.
[http://dx.doi.org/10.1016/j.crfs.2022.02.013] [PMID: 35281335]
[15]
Hsu, C.L.; Yen, G.C. Ganoderic acid and lucidenic acid (Triterpenoid). Enzymes, 2014, 36, 33-56.
[http://dx.doi.org/10.1016/B978-0-12-802215-3.00003-3] [PMID: 27102698]
[16]
Ha, D.; Loan, L.; Hung, T.; Han, L.; Khoi, N.; Dung, L.; Min, B.; Nguyen, N. An improved HPLC-DAD method for quantitative comparisons of triterpenes in Ganoderma lucidum and its five related species originating from Vietnam. Molecules, 2015, 20(1), 1059-1077.
[http://dx.doi.org/10.3390/molecules20011059] [PMID: 25584835]
[17]
Yao, S.; Zhang, J.Q.; Hou, J.J.; Hu, X.S.; Wang, L.; Da, J.; Rao, W.; Wang, D.D.; Huang, Y.; Wu, W.Y.; Guo, D.A. Simple and robust differentiation of Ganoderma species by high performance thin-layer chromatography coupled with single quadrupole mass spectrometry QDa. Chin. J. Nat. Med., 2021, 19(4), 295-304.
[http://dx.doi.org/10.1016/S1875-5364(21)60030-4] [PMID: 33875169]
[18]
Li, S.; Yuan, Y.; Yu, C.; Gao, H.; Tan, J.; Tian, Y.; El-Demerdash, F.M. Establishment and application of a method for the determination of ganoderic Acid A. J. Food Qual., 2020, 2020, 1-7.
[http://dx.doi.org/10.1155/2020/6621853]
[19]
Sakamoto, S.; Kohno, T.; Shimizu, K.; Tanaka, H.; Morimoto, S. Detection of ganoderic acid A in ganoderma lingzhi by an indirect competitive enzyme-linked immunosorbent assay. Planta Med., 2016, 82(8), 747-751.
[http://dx.doi.org/10.1055/s-0042-104202] [PMID: 27093250]
[20]
Ramakrishna, M.; Babu, D.R.; Veena, S.S.; Pandey, M.; Rao, N. A validated reverse-phase HPLC method for quantitative determination of ganoderic acids A and B in cultivated strains of ganoderma spp. (Agaricomycetes) indigenous to India. Int. J. Med. Mushrooms, 2017, 19(5), 457-465.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v19.i5.70] [PMID: 28845774]
[21]
Yang, Z.K.; Han, W.; Feng, N.; Zhang, J.S. Determination of triterpenoids in Ganoderma lingzhi spore powder by HPLC. Junwu Xuebao, 2020, 39(1), 185-191.
[22]
Yang, Y.; Zhao, H.; Zhu, F.; Liu, X.; Liu, Y.; Zeng, F.; Liu, B. Analysis of isoflavones in pueraria by UHPLC-Q-Orbitrap HRMS and study on α-glucosidase inhibitory activity. Foods, 2022, 11(21), 3523.
[http://dx.doi.org/10.3390/foods11213523] [PMID: 36360136]
[23]
Ahn, S.J.; Kim, H.J.; Lee, A.; Min, S.S.; In, S.; Kim, E. Determination of 12 herbal compounds for estimating the presence of Angelica Gigas Root, Cornus Fruit, Licorice Root, Pueraria Root, and Schisandra Fruit in foods by LC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2020, 37(9), 1437-1448.
[http://dx.doi.org/10.1080/19440049.2020.1778187] [PMID: 32530783]
[24]
Wu, L.; Liang, W.; Chen, W.; Li, S.; Cui, Y.; Qi, Q.; Zhang, L. Screening and analysis of the marker components in Ganoderma lucidum by HPLC and HPLC-MSn with the aid of chemometrics. Molecules, 2017, 22(4), 584.
[http://dx.doi.org/10.3390/molecules22040584] [PMID: 28383512]
[25]
Fan, L.; Chen, Z.J.; Wu, C.C. Quality evaluation of ganoderma lucidum based on the determination of multi index components by UPLC-MS/MS. China Pharmacist, 2019, 22(5), 844-848.
[26]
Liu, W.; Zhang, J.; Han, W.; Liu, Y.; Feng, J.; Tang, C.; Feng, N.; Tang, Q. One single standard substance for the simultaneous determination of 17 triterpenes in Ganoderma lingzhi and its related species using high-performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1068-1069, 49-55.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.010] [PMID: 29028618]
[27]
Da, J.; Cheng, C.R.; Yao, S.; Long, H.L.; Wang, Y.H.; Khan, I.A.; Li, Y.F.; Wang, Q.R.; Cai, L.Y.; Jiang, B.H.; Liu, X.; Wu, W.Y.; Guo, D.A. A reproducible analytical system based on the multi-component analysis of triterpene acids in Ganoderma lucidum. Phytochemistry, 2015, 114, 146-154.
[http://dx.doi.org/10.1016/j.phytochem.2014.08.007] [PMID: 25212865]
[28]
Sun, Y.; Liu, X.; Fu, X.; Xu, W.; Guo, Q.; Zhang, Y. Discrepancy study of the chemical constituents of panax ginseng from different growth environments with UPLC-MS-based metabolomics strategy. Molecules, 2023, 28(7), 2928.
[http://dx.doi.org/10.3390/molecules28072928] [PMID: 37049688]
[29]
Li, Q.; Chen, F.; Luo, Z.; Wang, M.; Han, X.; Zhu, J.; Li, J.E.; Liu, J.; Li, K.; Gong, P. Determination of nine bioactive phenolic components usually found in apple juice by simultaneous UPLC‐MS / MS. Food Sci. Nutr., 2023, 11(7), 4093-4099.
[http://dx.doi.org/10.1002/fsn3.3399] [PMID: 37457181]
[30]
Adotey, G.; Alolga, R.N.; Quarcoo, A.; Gedel, M.A.; Anang, A.K.; Holliday, J.C. Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS)-based metabolomic analysis of mycelial biomass of three ganoderma isolates from the lower volta river basin of ghana. J. Pharm. Biomed. Anal., 2021, 205, 114355.
[http://dx.doi.org/10.1016/j.jpba.2021.114355] [PMID: 34500238]
[31]
Di Donna, L.; Bartella, L.; Napoli, A.; Sindona, G.; Mazzotti, F. Assay of lovastatin containing dietary supplement by LC‐MS/MS under MRM condition. J. Mass Spectrom., 2018, 53(9), 811-816.
[http://dx.doi.org/10.1002/jms.4202] [PMID: 29770527]
[32]
Zhang, Q.; Huang, L.; Wu, Y.; Huang, L.; Xu, X.; Lin, R. Study on quality control of compound anoectochilus roxburghii (Wall.) Lindl. by liquid chromatography–tandem mass spectrometry. Molecules, 2022, 27(13), 4130.
[http://dx.doi.org/10.3390/molecules27134130] [PMID: 35807378]
[33]
Tang, X.; Cai, W.; Xu, B. Comparison of the chemical profiles and antioxidant and antidiabetic activities of extracts from two ganoderma species (Agaricomycetes). Int. J. Med. Mushrooms, 2016, 18(7), 609-620.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v18.i7.60] [PMID: 27649729]
[34]
Wong, H.Y.; Wong, M.Y.M.; Hu, B.; So, P.K.; Chan, C.O.; Mok, D.K.W.; Yao, Z.P. Rapid differentiation of Ganoderma species by direct ionization mass spectrometry. Anal. Chim. Acta, 2018, 999, 99-106.
[http://dx.doi.org/10.1016/j.aca.2017.11.006] [PMID: 29254579]
[35]
Wang, X.M.; Yang, M.; Guan, S.H.; Liu, R.X.; Xia, J.M.; Bi, K.S.; Guo, D.A. Quantitative determination of six major triterpenoids in Ganoderma lucidum and related species by high performance liquid chromatography. J. Pharm. Biomed. Anal., 2006, 41(3), 838-844.
[http://dx.doi.org/10.1016/j.jpba.2006.01.053] [PMID: 16530372]
[36]
Xia, J.; He, X.; Yang, W.; Song, H.; Yang, J.; Zhang, G.; Yang, Z.; Chen, H.; Liang, Z.; Kollie, L.; Abozeid, A.; Zhang, X.; Li, Z.; Yang, D. Unveiling the distribution of chemical constituents at different body parts and maturity stages of Ganoderma lingzhi by combining metabolomics with desorption electrospray ionization mass spectrometry imaging (DESI). Food Chem., 2024, 436, 137737.
[http://dx.doi.org/10.1016/j.foodchem.2023.137737] [PMID: 37857205]
[37]
Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Alves, M.J.; Barros, L.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food Chem. Toxicol., 2017, 108(Pt A), 139-147.
[http://dx.doi.org/10.1016/j.fct.2017.07.051] [PMID: 28760544]
[38]
Biswal, R.P.; Dandamudi, R.B.; Patnana, D.P.; Pandey, M.; Vutukuri, V.N.R.K. Metabolic fingerprinting of Ganoderma spp. using UHPLC-ESI-QTOF-MS and its chemometric analysis. Phytochemistry, 2022, 199, 113169.
[http://dx.doi.org/10.1016/j.phytochem.2022.113169] [PMID: 35331732]
[39]
Hadda, M.; Djamel, C.; Akila, O. Production and qualitative analysis of triterpenoids and steroids of ganoderma species harvested from cork oak forest of north-eastern algeria. Res. J. Microbiol., 2015, 10(8), 366-376.
[http://dx.doi.org/10.3923/jm.2015.366.376]
[40]
Boromenskyi, D.O.; Nina, B.; Galeb, A-M.; Oksana, P. The contents of ganoderic acids in mycellium of different Ganoderma species (Ganodermataceae) obtained by different methods of cultivation. EBSCO, 2021, 1, 14-18.
[http://dx.doi.org/10.17721/1728_2748.2021.84.14-18]