Construction of a Miniaturized Electrochemical Sensor for Voltammetric Detection of 17β-Estradiol Using a g-C3N4-Decorated Gold Nanoparticles Electrode

Page: [183 - 190] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: 17β-estradiol (E2) is a steroid hormone that has the potential to disrupt the endocrine system, leading to adverse effects on both humans and ecosystems, even when present in low concentrations. The quantitative determination of E2 is of great practical significance.

Hypothesis: Electrochemical methods offer several advantages, including low cost, ease of operation, and potential for miniaturization, which makes them suitable for on-field detection applications.

Methods: This research developed a miniaturized electrochemical sensor utilizing graphitic carbon nitride (g-C3N4) assembled on an AuNPs/ITO film electrode for sensitive voltammetric detection of a steroid hormone, E2.

Results: Compared with AuNPs/ITO electrodes, the g-C3N4/AuNPs/ITO exhibits higher sensitivity for voltammetric detection of E2. Under optimal conditions, the differential pulse voltammetric response on the g-C3N4/AuNPs/ITO electrode was proportional to E2 concentration in the 25 ~ 600 μmol/L range, with a detection limit of 6.5 μmol/L.

Conclusion: The proposed g-C3N4/AuNPs/ITO electrode exhibited a wide linear range, good selectivity, and practical applicability for determining E2 in environmental water samples with acceptable recovery.

Graphical Abstract

[1]
Ren, Z.; Yang, X.; Sun, Z.; Ren, J.; Sang, N.; Zhou, Q.; Jiang, G. Regulation of environmental endocrine disrupting chemicals on the expressions and transactivation of estrogen receptors and the related analytical techniques. Huaxue Jinzhan, 2022, 34(10), 2121-2133.
[http://dx.doi.org/10.7536/PC220215]
[2]
Ma, L.; Yates, S.R. Dissolved organic matter and estrogen interactions regulate estrogen removal in the aqueous environment: A review. Sci. Total Environ., 2018, 640-641, 529-542.
[http://dx.doi.org/10.1016/j.scitotenv.2018.05.301] [PMID: 29874629]
[3]
Torres, N.H.; Santos, G.O.S.; Romanholo Ferreira, L.F.; Américo-Pinheiro, J.H.P.; Eguiluz, K.I.B.; Salazar-Banda, G.R. Environmental aspects of hormones estriol, 17β-estradiol and 17α-ethinylestradiol: Electrochemical processes as next-generation technologies for their removal in water matrices. Chemosphere, 2021, 267, 128888.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128888] [PMID: 33190907]
[4]
Richardson, S.D.; Kimura, S.Y. Water analysis: Emerging contaminants and current issues. Anal. Chem., 2016, 88(1), 546-582.
[http://dx.doi.org/10.1021/acs.analchem.5b04493] [PMID: 26616267]
[5]
Yamada, H.; Yoshizawa, K.; Hayase, T. Sensitive determination method of estradiol in plasma using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 775(2), 209-213.
[http://dx.doi.org/10.1016/S1570-0232(02)00292-1] [PMID: 12113987]
[6]
Xiao, Q.; Wu, W.; Yang, W.; Liang, R.; Li, S.; Liu, L. Simultaneous determination of three estrogens in feed by solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry. Se Pu, 2014, 32(11), 1209-1213.
[http://dx.doi.org/10.3724/SP.J.1123.2014.07039] [PMID: 25764655]
[7]
Pauwels, S.; Antonio, L.; Jans, I.; Lintermans, A.; Neven, P.; Claessens, F.; Decallonne, B.; Billen, J.; Vanderschueren, D.; Vermeersch, P. Sensitive routine liquid chromatography–tandem mass spectrometry method for serum estradiol and estrone without derivatization. Anal. Bioanal. Chem., 2013, 405(26), 8569-8577.
[http://dx.doi.org/10.1007/s00216-013-7259-5] [PMID: 23892882]
[8]
Tsakalof, A.K.; Gkagtzis, D.C.; Koukoulis, G.N.; Hadjichristodoulou, C.S. Development of GC–MS/MS method with programmable temperature vaporization large volume injection for monitoring of 17β-estradiol and 2-methoxyestradiol in plasma. Anal. Chim. Acta, 2012, 709, 73-80.
[http://dx.doi.org/10.1016/j.aca.2011.09.043] [PMID: 22122934]
[9]
Ho Choi, M.; Chul Chung, B.; Rae Kim, K. Determination of estrone and 17β-estradiol in human hair by gas chromatography–mass spectrometry. Analyst, 2000, 125(4), 711-714.
[http://dx.doi.org/10.1039/a909107f] [PMID: 10892024]
[10]
Janssens, G.; Mangelinckx, S.; Courtheyn, D.; Prévost, S.; De Poorter, G.; De Kimpe, N.; Le Bizec, B. Application of gas chromatography-mass spectrometry/combustion/isotope ratio mass spectrometry (GC-MS/C/IRMS) to detect the abuse of 17β-estradiol in cattle. J. Agric. Food Chem., 2013, 61(30), 7242-7249.
[http://dx.doi.org/10.1021/jf401797p] [PMID: 23815698]
[11]
Kumbhat, S.; Gehlot, R.; Sharma, K.; Singh, U.; Joshi, V. Surface plasmon resonance based indirect immunoassay for detection of 17β-estradiol. J. Pharm. Biomed. Anal., 2019, 163, 211-216.
[http://dx.doi.org/10.1016/j.jpba.2018.10.015] [PMID: 30321785]
[12]
Pu, H.; Xie, X.; Sun, D.W.; Wei, Q.; Jiang, Y. Double strand DNA functionalized Au@Ag Nps for ultrasensitive detection of 17β-estradiol using surface-enhanced raman spectroscopy. Talanta, 2019, 195, 419-425.
[http://dx.doi.org/10.1016/j.talanta.2018.10.021] [PMID: 30625564]
[13]
Brognara, A.; Mohamad Ali Nasri, I.F.; Bricchi, B.R.; Li Bassi, A.; Gauchotte-Lindsay, C.; Ghidelli, M.; Lidgi-Guigui, N. Highly sensitive detection of estradiol by a SERS sensor based on TiO 2 covered with gold nanoparticles. Beilstein J. Nanotechnol., 2020, 11, 1026-1035.
[http://dx.doi.org/10.3762/bjnano.11.87] [PMID: 32733777]
[14]
Shan, D-D.; Wen, X-G.; Liu, L-H.; Zhou, X-H. Immunoassay of estradiol by an array evanescent wave fluorescent biosensor. Guangpuxue Yu Guangpu Fenxi, 2018, 38(10), 3148-3152.
[http://dx.doi.org/10.3964/j.issn.1000-0593(2018)10-3148-05]
[15]
Nameghi, M.A.; Danesh, N.M.; Ramezani, M.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M. An ultrasensitive electrochemical sensor for 17β-estradiol using split aptamers. Anal. Chim. Acta, 2019, 1065, 107-112.
[http://dx.doi.org/10.1016/j.aca.2019.02.062] [PMID: 31005142]
[16]
Tanrıkut, E.; Özcan, İ.; Sel, E.; Köytepe, S.; Savan, E.K. Simultaneous electrochemical detection of estradiol and testosterone using nickel ferrite oxide doped mesoporous carbon nanocomposite modified sensor. J. Electrochem. Soc., 2020, 167(8), 087509.
[http://dx.doi.org/10.1149/1945-7111/ab927f]
[17]
Spychalska, K.; Zając, D.; Cabaj, J. Electrochemical biosensor for detection of 17β-estradiol using semi-conducting polymer and horseradish peroxidase. RSC Advances, 2020, 10(15), 9079-9087.
[http://dx.doi.org/10.1039/C9RA09902F] [PMID: 35496550]
[18]
Jaffrezic-Renault, N.; Kou, J.; Tan, D.; Guo, Z. New trends in the electrochemical detection of endocrine disruptors in complex media. Anal. Bioanal. Chem., 2020, 412(24), 5913-5923.
[http://dx.doi.org/10.1007/s00216-020-02516-9] [PMID: 32172326]
[19]
Azzouz, A.; Kailasa, S.K.; Kumar, P.; Ballesteros, E.; Kim, K.H. Advances in functional nanomaterial-based electrochemical techniques for screening of endocrine disrupting chemicals in various sample matrices. Trends Analyt. Chem., 2019, 113, 256-279.
[http://dx.doi.org/10.1016/j.trac.2019.02.017]
[20]
Wang, L.; Wang, H.; Tizaoui, C.; Yang, Y.; Ali, J.; Zhang, W. Endocrine disrupting chemicals in water and recent advances on their detection using electrochemical biosensors. Sensor. Diagnost., 2023, 2(1), 46-77.
[http://dx.doi.org/10.1039/D2SD00156J]
[21]
Hassan, M.H.; Khan, R.; Andreescu, S. Advances in electrochemical detection methods for measuring contaminants of emerging concerns. Electrochem. Sci. Adv., 2022, 2(6), e2100184.
[http://dx.doi.org/10.1002/elsa.202100184]
[22]
Bhattarai, J.; Neupane, D.; Nepal, B.; Mikhaylov, V.; Demchenko, A.; Stine, K. Preparation, modification, characterization, and biosensing application of nanoporous gold using electrochemical techniques. Nanomaterials, 2018, 8(3), 171.
[http://dx.doi.org/10.3390/nano8030171] [PMID: 29547580]
[23]
Bhanjana, G.; Dilbaghi, N.; Bhalla, V.; Kim, K.H.; Kumar, S. Direct ultrasensitive redox sensing of mercury using a nanogold platform. J. Mol. Liq., 2017, 225, 598-605.
[http://dx.doi.org/10.1016/j.molliq.2016.11.090]
[24]
Chauhan, P.; Annu,; Raja, A.N.; Jain, R. Nanogold modified glassy carbon sensor for the quantification of phytoestrogenchlorogenic acid. Surf. Interfaces, 2020, 19, 100536.
[http://dx.doi.org/10.1016/j.surfin.2020.100536]
[25]
Zou, J.; Wu, S.; Liu, Y.; Sun, Y.; Cao, Y.; Hsu, J.P.; Shen Wee, A.T.; Jiang, J. An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon, 2018, 130, 652-663.
[http://dx.doi.org/10.1016/j.carbon.2018.01.008]
[26]
Sangavi, R.; Keerthana, M.; Pushpa Malini, T. Rational design of dysprosium oxide nanochains decorated on graphitic carbon nitride nanosheet for the electrochemical sensing of riboflavin in food samples. Carbon Lett., 2023, 33(7), 2171-2188.
[http://dx.doi.org/10.1007/s42823-023-00546-8]
[27]
Liu, L.; Lv, H.; Wang, C.; Ao, Z.; Wang, G. Fabrication of the protonated graphitic carbon nitride nanosheets as enhanced electrochemical sensing platforms for hydrogen peroxide and paracetamol detection. Electrochim. Acta, 2016, 206, 259-269.
[http://dx.doi.org/10.1016/j.electacta.2016.04.123]
[28]
Zou, J.; Mao, D.; Wee, A.T.S.; Jiang, J. Micro/nano-structured ultrathin g-C3N4/Ag nanoparticle hybrids as efficient electrochemical biosensors for l-tyrosine. Appl. Surf. Sci., 2019, 467-468, 608-618.
[http://dx.doi.org/10.1016/j.apsusc.2018.10.187]
[29]
Zheng, H.; Ntuli, L.; Mbanjwa, M.; Palaniyandy, N.; Smith, S.; Modibedi, M.; Land, K.; Mathe, M. The Effect of g-C3N4 Materials on Pb(II) and Cd(II) detection using disposable screen-printed sensors. Electrocatalysis, 2019, 10(2), 149-155.
[http://dx.doi.org/10.1007/s12678-018-0504-0]
[30]
Zhu, J.; Nie, W.; Wang, Q.; Li, J.; Li, H.; Wen, W.; Bao, T.; Xiong, H.; Zhang, X.; Wang, S. In situ growth of copper oxide-graphite carbon nitride nanocomposites with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of hydrogen peroxide. Carbon, 2018, 129, 29-37.
[http://dx.doi.org/10.1016/j.carbon.2017.11.096]
[31]
Atacan, K.; Özacar, M. Construction of a non-enzymatic electrochemical sensor based on CuO/g-C3N4 composite for selective detection of hydrogen peroxide. Mater. Chem. Phys., 2021, 266, 124527.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124527]
[32]
Ahmad, K.; Kim, H. Design and preparation of g-C3N4/rGO modified screen printed electrode for hydrogen peroxide sensing application. Synth. Met., 2022, 286, 117047.
[http://dx.doi.org/10.1016/j.synthmet.2022.117047]
[33]
Ahmad, K.; Khan, M.Q.; Alsalme, A.; Kim, H. Sulfur-doped graphitic-carbon nitride (S@g-C3N4) as bi-functional catalysts for hydrazine sensing and hydrogen production applications. Synth. Met., 2022, 288, 117100.
[http://dx.doi.org/10.1016/j.synthmet.2022.117100]
[34]
Wang, H.; Xie, A.; Li, S.; Wang, J.; Chen, K.; Su, Z.; Song, N.; Luo, S. Three-dimensional g-C3N4/MWNTs/GO hybrid electrode as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine and uric acid. Anal. Chim. Acta, 2022, 1211, 339907.
[http://dx.doi.org/10.1016/j.aca.2022.339907] [PMID: 35589231]
[35]
Ma, Y.; Di, J.; Yan, X.; Zhao, M.; Lu, Z.; Tu, Y. Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application. Biosens. Bioelectron., 2009, 24(5), 1480-1483.
[http://dx.doi.org/10.1016/j.bios.2008.10.007] [PMID: 19038539]
[36]
Yan, K.; Zhu, Y.; Ji, W.; Chen, F.; Zhang, J. Visible light-driven membraneless photocatalytic fuel cell toward self-powered aptasensing of PCB77. Anal. Chem., 2018, 90(16), 9662-9666.
[http://dx.doi.org/10.1021/acs.analchem.8b02302] [PMID: 30074763]
[37]
Osonga, F.J.; Kariuki, V.M.; Wambua, V.M.; Kalra, S.; Nweke, B.; Miller, R.M.; Çeşme, M.; Sadik, O.A. Photochemical synthesis and catalytic applications of gold nanoplates fabricated using quercetin diphosphate macromolecules. ACS Omega, 2019, 4(4), 6511-6520.
[http://dx.doi.org/10.1021/acsomega.8b02389] [PMID: 31179406]
[38]
Farooq, N.; Rehman, A.; Qureshi, A.M.; Rehman, Z.; Ahmad, A.; Aslam, M.K.; Javed, H.M.A.; Hussain, S.; Habila, M.A.; AlMasoud, N.; Alomar, T.S. Au@GO@g-C3N4 and Fe2O3 nanocomposite for efficient photocatalytic and electrochemical applications. Surf. Interfaces, 2021, 26, 101399.
[http://dx.doi.org/10.1016/j.surfin.2021.101399]
[39]
Regiart, M.; Magallanes, J.L.; Barrera, D.; Villarroel-Rocha, J.; Sapag, K.; Raba, J.; Bertolino, F.A. An ordered mesoporous carbon modified electrochemical sensor for solid-phase microextraction and determination of triclosan in environmental samples. Sens. Actuators B Chem., 2016, 232, 765-772.
[http://dx.doi.org/10.1016/j.snb.2016.04.031]
[40]
Li, J.; Jiang, J.; Zhao, D.; Xu, Z.; Liu, M.; Deng, P.; Liu, X.; Yang, C.; Qian, D.; Xie, H. Facile synthesis of Pd/N-doped reduced graphene oxide via a moderate wet-chemical route for non-enzymatic electrochemical detection of estradiol. J. Alloys Compd., 2018, 769, 566-575.
[http://dx.doi.org/10.1016/j.jallcom.2018.08.016]
[41]
Guo, M.; Cui, X.; Wang, L.; Yang, K.; Xu, J.; Yu, L.; Luo, Z.; Zeng, A.; Zhang, J.; Fu, Q. Electrochemical sensor based on poly-l-tyrosine/AuNCs/PDA-CNTs nanocomposites for the detection of 17β-estradiol in wastewater. J. Electrochem. Soc., 2022, 169(10), 107506.
[http://dx.doi.org/10.1149/1945-7111/ac9bde]
[42]
Moraes, F.C.; Rossi, B.; Donatoni, M.C.; de Oliveira, K.T.; Pereira, E.C. Sensitive determination of 17β-estradiol in river water using a graphene based electrochemical sensor. Anal. Chim. Acta, 2015, 881, 37-43.
[http://dx.doi.org/10.1016/j.aca.2015.04.043] [PMID: 26041518]
[43]
Cincotto, F.H.; Moraes, F.C.; Machado, S.A.S. Graphene nanosheets and quantum dots: A smart material for electrochemical applications. Chemistry, 2014, 20(16), 4746-4753.
[http://dx.doi.org/10.1002/chem.201304853] [PMID: 24623673]