Mechanical and Morphological Analysis of Aramid Fiber (PPTA), Glass Wool (GW), Aluminum (Al), and Silicon Carbide (SiC) Particles Embedded High-density Polyethylene (HDPE) Hybrid Composites

Page: [46 - 56] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Composite research is adopting innovative materials in the current period due to their better qualities, such as being lightweight, having excellent mechanical properties, being relatively inexpensive, having a low coefficient of thermal expansion, etc.

Methods: Composite materials play a crucial part in this challenge, with the fast market growth for lightweight and high-performance materials. In the present research, different weight percentages of aramid fiber, glass wool, aluminum, and silicon carbide-reinforced high-density polyethylene hybrid composite are introduced. The degree of adhesion between the matrix and reinforcement was determined through microstructural investigation utilizing an optical and scanning electronic microscope.

Results: Mechanical properties (tensile behaviors, flexural behavior, impact strength and hardness property) of the fabricated composites are investigated. Comparative study of mechanical properties for different combinations of fabricated composites reveals an increase in elongation at break, flexural strength, flexural modulus and hardness, while tensile strength and impact strength have decreased sequentially from 5 to 40 wt.%.

Conclusion: The mechanical properties of HDPE-PPTA-GW-Al-SiC hybrid composites obtained at 40 wt.% PPTA (Poly (p-phenylene terephthalamide)), GW (glass wool), Al, and SiC powder loading are superior as compared to other hybrid composites.

Graphical Abstract

[1]
Sathishkumar, T.P.; Naveen, J.; Satheeshkumar, S. Hybrid fiber reinforced polymer composites – A review. J. Reinf. Plast. Compos., 2014, 33(5), 454-471.
[http://dx.doi.org/10.1177/0731684413516393]
[2]
Chandgude, S.; Salunkhe, S. In state of art: Mechanical behavior of natural fiber‐based hybrid polymeric composites for application of automobile components. Polym. Compos., 2021, 42(6), 2678-2703.
[http://dx.doi.org/10.1002/pc.26045]
[3]
Grujicic, M.; Sellappan, V.; Omar, M.A.; Seyr, N.; Obieglo, A.; Erdmann, M.; Holzleitner, J. An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components. J. Mater. Process. Technol., 2008, 197(1-3), 363-373.
[http://dx.doi.org/10.1016/j.jmatprotec.2007.06.058]
[4]
Kaur, G.; Adhikari, R.; Cass, P.; Bown, M.; Gunatillake, P. Electrically conductive polymers and composites for biomedical applications. RSC Advances, 2015, 5(47), 37553-37567.
[http://dx.doi.org/10.1039/C5RA01851J]
[5]
Beesetty, P. kale, A.; Patil, B.; Doddamani, M. Mechanical behavior of additively manufactured nanoclay/HDPE nanocomposites. Compos. Struct., 2020, 247, 112442.
[http://dx.doi.org/10.1016/j.compstruct.2020.112442]
[6]
Zhang, Q.; Khan, M.U.; Lin, X.; Cai, H.; Lei, H. Temperature varied biochar as a reinforcing filler for high-density polyethylene composites. Compos., Part B Eng., 2019, 175, 107151.
[http://dx.doi.org/10.1016/j.compositesb.2019.107151]
[7]
Lins, S.A.B.; Rocha, M.C.G.; d’Almeida, J.R.M. Mechanical and thermal properties of high-density polyethylene/alumina/glass fiber hybrid composites. J. Thermoplast. Compos. Mater., 2019, 32(11), 1566-1581.
[http://dx.doi.org/10.1177/0892705718797391]
[8]
Hillermeier, K. Prospects of aramid as a substitute for asbestos. Text. Res. J., 1984, 54(9), 575-580.
[http://dx.doi.org/10.1177/004051758405400903]
[9]
Chen, X.; Su, Y.; Reay, D.; Riffat, S. Recent research developments in polymer heat exchangers – A review. Renew. Sustain. Energy Rev., 2016, 60, 1367-1386.
[http://dx.doi.org/10.1016/j.rser.2016.03.024]
[10]
Xiong, X.; Wang, D.; Wei, J.; Zhao, P.; Ren, R.; Dong, J.; Cui, X. Resistance welding technology of fiber reinforced polymer composites: A review. J. Adhes. Sci. Technol., 2021, 35(15), 1593-1619.
[http://dx.doi.org/10.1080/01694243.2020.1856514]
[11]
Huang, Y.; Meng, X.; Xie, Y.; Wan, L.; Lv, Z.; Cao, J.; Feng, J. Friction stir welding/processing of polymers and polymer matrix composites. Compos., Part A Appl. Sci. Manuf., 2018, 105, 235-257.
[http://dx.doi.org/10.1016/j.compositesa.2017.12.005]
[12]
Yao, Z.; Stiglich, J.; Sudarshan, T.S. Molybdenum silicide based materials and their properties. J. Mater. Eng. Perform., 1999, 8(3), 291-304.
[http://dx.doi.org/10.1361/105994999770346837]
[13]
Mishra, S.K.; Biswas, S.; Satapathy, A. A study on processing, characterization and erosion wear behavior of silicon carbide particle filled ZA-27 metal matrix composites. Mater. Des., 2014, 55, 958-965.
[http://dx.doi.org/10.1016/j.matdes.2013.10.069]
[14]
Agnihotri, R.; Dagar, S. Mechanical properties of Al-SiC metal matrix composites fabricated by stir casting route. Res. Med. Eng. Sci., 2017, 2(5), 178-183.
[http://dx.doi.org/10.31031/RMES.2017.02.000549]
[15]
Zindani, D.; Kumar, K. An insight into additive manufacturing of fiber reinforced polymer composite. Int. J. Lightweight Mater. Manuf., 2019, 2(4), 267-278.
[http://dx.doi.org/10.1016/j.ijlmm.2019.08.004]
[16]
Sajan, S.; Philip, S.D. A review on polymer matrix composite materials and their applications. Mater. Today Proc., 2021, 47(15), 5493-5498.
[http://dx.doi.org/10.1016/j.matpr.2021.08.034]
[17]
Yuan, S.; Shen, F.; Chua, C.K.; Zhou, K. Polymeric composites for powder-based additive manufacturing: Materials and applications. Prog. Polym. Sci., 2019, 91, 141-168.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.11.001]
[18]
Rana, S.; Hasan, M.; Sheikh, M.R.K.; Faruqui, A.N. Mechanical and morphological properties of high density polyethylene-Al-SiC hybrid composites. Adv. Mater. Process. Technol., 2022, 8(1), 1135-1146.
[http://dx.doi.org/10.1080/2374068X.2020.1853497]
[19]
Rana, S.; Hasan, M.; Sheikh, M.R.K.; Faruqui, A.N. Effects of aluminum and silicon carbide on morphological and mechanical properties of epoxy hybrid composites. Polym. Polymer Compos., 2022, 30, 09673911211068918.
[http://dx.doi.org/10.1177/09673911211068918]
[20]
Manikandan, P.; Nayeem, F.A.; Raghukandan, K.; Mori, A.; Hokamoto, K. Underwater shock consolidation of Mg–SiC composites. J. Mater. Sci., 2010, 45(16), 4518-4523.
[http://dx.doi.org/10.1007/s10853-010-4547-8]
[21]
Faruqui, A.N.; Manikandan, P.; Sato, T.; Mitsuno, Y.; Hokamoto, K. Mechanical milling and synthesis of Mg-SiC composites using underwater shock consolidation. Met. Mater. Int., 2012, 18(1), 157-163.
[http://dx.doi.org/10.1007/s12540-012-0019-9]
[22]
Arthanarieswaran, V.P.; Kumaravel, A.; Kathirselvam, M. Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization. Mater. Des., 2014, 64, 194-202.
[http://dx.doi.org/10.1016/j.matdes.2014.07.058]
[23]
Nair, K.C.M.; Diwan, S.M.; Thomas, S. Tensile properties of short sisal fiber reinforced polystyrene composites. J. Appl. Polym. Sci., 1996, 60(9), 1483-1497.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19960531)60:9<1483:AID-APP23>3.0.CO;2-1]
[24]
Huang, R.; Xu, X.; Lee, S.; Zhang, Y.; Kim, B.J.; Wu, Q. High density polyethylene composites reinforced with hybrid inorganic fillers: Morphology, mechanical and thermal expansion performance. Materials, 2013, 6(9), 4122-4138.
[http://dx.doi.org/10.3390/ma6094122] [PMID: 28788322]
[25]
Suresha, B.; Chandramohan, G.; Renukappa, N.M. Siddaramaiah, Influence of silicon carbide filler on mechanical and dielectric properties of glass fabric reinforced epoxy composites. J. Appl. Polym. Sci., 2009, 111(2), 685-691.
[http://dx.doi.org/10.1002/app.29116]
[26]
Jamil, M.S.; Ahmad, I.; Abdullah, I. Effects of rice husk filler on the mechanical and thermal properties of liquid natural rubber compatibilized high-density polyethylene/natural rubber blends. J. Polym. Res., 2006, 13(4), 315-321.
[http://dx.doi.org/10.1007/s10965-005-9040-8]
[27]
Brown, A.M. A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Comput. Methods Programs Biomed., 2001, 65(3), 191-200.
[http://dx.doi.org/10.1016/S0169-2607(00)00124-3] [PMID: 11339981]
[28]
Yan, P.; Zhao, W.; Tonkin, S.J.; Chalker, J.M.; Schiller, T.L.; Hasell, T. Stretchable and durable inverse vulcanized polymers with chemical and thermal recycling. Chem. Mater., 2022, 34(3), 1167-1178.
[http://dx.doi.org/10.1021/acs.chemmater.1c03662]
[29]
Mareri, P.; Bastide, S.; Binda, N.; Crespy, A. Mechanical behaviour of polypropylene composites containing fine mineral filler: Effect of filler surface treatment. Compos. Sci. Technol., 1998, 58(5), 747-752.
[http://dx.doi.org/10.1016/S0266-3538(97)00156-5]
[30]
Alexander, D.L.J.; Tropsha, A.; Winkler, D.A. Beware of R2: simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J. Chem. Inf. Model., 2015, 55(7), 1316-1322.
[http://dx.doi.org/10.1021/acs.jcim.5b00206] [PMID: 26099013]
[31]
Haneefa, A.; Bindu, P.; Aravind, I.; Thomas, S. Studies on tensile and flexural properties of short banana/glass hybrid fiber reinforced polystyrene composites. J. Compos. Mater., 2008, 42(15), 1471-1489.
[http://dx.doi.org/10.1177/0021998308092194]
[32]
Lassila, L.V.J.; Nohrström, T.; Vallittu, P.K. The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites. Biomaterials, 2002, 23(10), 2221-2229.
[http://dx.doi.org/10.1016/S0142-9612(01)00355-6] [PMID: 11962663]
[33]
Ou, R.; Zhao, H.; Sui, S.; Song, Y.; Wang, Q. Reinforcing effects of Kevlar fiber on the mechanical properties of wood-flour/high-density-polyethylene composites. Compos., Part A Appl. Sci. Manuf., 2010, 41(9), 1272-1278.
[http://dx.doi.org/10.1016/j.compositesa.2010.05.011]
[34]
Brostow, W. Mechanical properties. In: Physical properties of polymers handbook; Mark, J.E., Ed.; Springer, 2007; pp. 423-445.
[http://dx.doi.org/10.1007/978-0-387-69002-5_24]
[35]
Uddin, M.K.; Chowdhury, M.A.; Hossain, S.; Islam, M.Z.; Sardar, M.S.; Ami, A.S.; Tasnia, F.N. Investigation on mechanical properties and water absorbency of jute glass reinforced epoxy composite. J. Text. Eng. Fash. Technol., 2020, 6(5), 190-197.
[http://dx.doi.org/10.15406/jteft.2020.06.00250]
[36]
Mazahery, A.; Shabani, M.O. A comparative study on abrasive wear behavior of semisolid–liquid processed Al–Si matrix reinforced with coated B4C reinforcement. Trans. Indian Inst. Met., 2012, 65(2), 145-154.
[http://dx.doi.org/10.1007/s12666-011-0116-3]
[37]
Sha, C.; Zhou, Z.; Xie, Z.; Munroe, P. FeMnNiCoCr-based high entropy alloy coatings: Effect of nitrogen additions on microstructural development, mechanical properties and tribological performance. Appl. Surf. Sci., 2020, 507, 145101.
[http://dx.doi.org/10.1016/j.apsusc.2019.145101]
[38]
Ali, K.S.A.; Mohanavel, V.; Ravichandran, M.; Arungalai Vendan, S.; Sathish, T.; Karthick, A. Microstructure and mechanical properties of friction stir welded SiC/TiB2 reinforced aluminum hybrid composites. Silicon, 2022, 14(7), 3571-3581.
[http://dx.doi.org/10.1007/s12633-021-01114-3]
[39]
Hruby, P.; Singh, S.S.; Williams, J.J.; Xiao, X.; De Carlo, F.; Chawla, N. Fatigue crack growth in SiC particle reinforced Al alloy matrix composites at high and low R-ratios by in situ X-ray synchrotron tomography. Int. J. Fatigue, 2014, 68, 136-143.
[http://dx.doi.org/10.1016/j.ijfatigue.2014.05.010]
[40]
Asuke, F.; Aigbodion, V.S.; Abdulwahab, M.; Fayomi, O.S.I.; Popoola, A.P.I.; Nwoyi, C.I.; Garba, B. Effects of bone particle on the properties and microstructure of polypropylene/bone ash particulate composites. Results Phys., 2012, 2, 135-141.
[http://dx.doi.org/10.1016/j.rinp.2012.09.001]
[41]
Fu, S.Y.; Feng, X.Q.; Lauke, B.; Mai, Y-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos., Part B Eng., 2008, 39(6), 933-961.
[http://dx.doi.org/10.1016/j.compositesb.2008.01.002]
[42]
Yang, H.; Jiang, L.; Balog, M.; Krizik, P.; Schoenung, J.M. Reinforcement size dependence of load bearing capacity in ultrafinegrained metal matrix composites. Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 2017, 48(9), 4385-4392.
[http://dx.doi.org/10.1007/s11661-017-4186-7]