Characterization of a Novel Thermostable 7α-Hydroxysteroid Dehydrogenase

Page: [153 - 160] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: 7α-Hydroxysteroid dehydrogenase (7α-HSDH) plays a pivotal role in vivo in the biotransformation of secondary bile acids and has great potential in industrial biosynthesis due to its broad substrate specificity. In this study, we expressed and characterized a novel thermostable 7α-HSDH (named Sa 7α-HSDH).

Methods: The DNA sequence was derived from the black bear gut microbiome metagenomic sequencing data, and the coding sequence of Sa 7α-HSDH was chemically synthesized. The heterologous expression of the enzyme was carried out using the pGEX-6p-1 vector. Subsequently, the activity of the purified enzyme was studied by measuring the absorbance change at 340 nm. Finally, the three-dimensional structure was predicted with AlphaFold2.

Results: Coenzyme screening results confirmed it to be NAD(H) dependent. Substrate specificity test revealed that Sa 7α-HSDH could catalyze taurochenodeoxycholic acid (TCDCA) with catalytic efficiency (kcat/Km) 3.81 S-1 mM-1. The optimum temperature of Sa 7α-HSDH was measured to be 75°C, confirming that it belongs to thermophilic enzymes. Additionally, its thermostability was assessed using an accelerated stability test over 32 hours. The catalytic activity of Sa 7α-HSDH remained largely unchanged for the first 24 hours and retained over 90% of its functionality after 32 hours at 50°C. Sa 7α-HSDH exhibited maximal activity at pH 10. The effect of metal ions-K+, Na+, Mg2+ and Cu2+-on the enzymatic activity of Sa 7α-HSDH was investigated. Only Mg2+ was observed to enhance the enzyme’s activity by 27% at a concentration of 300 mM. Neither K+ nor Na+ had a significant influence on activity. Only Cu2+ was found to reduce enzyme activity.

Conclusion: We characterized the thermostable 7α-HSDH, which provides a promising biocatalyst for bioconversion of steroids at high reaction temperatures.

Graphical Abstract

[1]
Žnidaršič-Plazl, P. Let the biocatalyst flow. Acta Chim. Slov., 2021, 68(1), 1-16.
[http://dx.doi.org/10.17344/acsi.2020.6488] [PMID: 34057533]
[2]
Bornscheuer, U.T.; Huisman, G.W.; Kazlauskas, R.J.; Lutz, S.; Moore, J.C.; Robins, K. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397), 185-194.
[http://dx.doi.org/10.1038/nature11117] [PMID: 22575958]
[3]
Ferrandi, E.E.; Bertuletti, S.; Monti, D.; Riva, S. Hydroxysteroid dehydrogenases: An ongoing story. Eur. J. Org. Chem., 2020, 2020(29), 4463-4473.
[http://dx.doi.org/10.1002/ejoc.202000192]
[4]
Doden, H.L.; Ridlon, J.M. Microbial hydroxysteroid dehydrogenases: From alpha to omega. Microorganisms, 2021, 9(3), 469.
[http://dx.doi.org/10.3390/microorganisms9030469] [PMID: 33668351]
[5]
Ferrandi, E.E.; Bertolesi, G.M.; Polentini, F.; Negri, A.; Riva, S.; Monti, D. In search of sustainable chemical processes: Cloning, recombinant expression, and functional characterization of the 7α- and 7β-hydroxysteroid dehydrogenases from Clostridium absonum. Appl. Microbiol. Biotechnol., 2012, 95(5), 1221-1233.
[http://dx.doi.org/10.1007/s00253-011-3798-x] [PMID: 22198717]
[6]
Lou, D.; Zhang, X.; Cao, Y.; Zhou, Z.; Liu, C.; Kuang, G.; Tan, J.; Zhu, L. A novel NADP(H)-dependent 3α-HSDH from the intestinal microbiome of Ursus thibetanus. Int. J. Biol. Macromol., 2022, 219, 159-165.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.07.252] [PMID: 35934074]
[7]
Kisiela, M.; Skarka, A.; Ebert, B.; Maser, E. Hydroxysteroid dehydrogenases (HSDs) in bacteria – A bioinformatic perspective. J. Steroid Biochem. Mol. Biol., 2012, 129(1-2), 31-46.
[http://dx.doi.org/10.1016/j.jsbmb.2011.08.002] [PMID: 21884790]
[8]
Chiang, J.Y. Bile acid metabolism and signaling. Compr. Physiol., 2013, 3(3), 1191-1212.
[http://dx.doi.org/10.1002/cphy.c120023] [PMID: 23897684]
[9]
Guzior, D.V.; Quinn, R.A. Review: microbial transformations of human bile acids. Microbiome, 2021, 9(1), 140.
[http://dx.doi.org/10.1186/s40168-021-01101-1] [PMID: 34127070]
[10]
Doden, H.L.; Wolf, P.G.; Gaskins, H.R.; Anantharaman, K.; Alves, J.M.P.; Ridlon, J.M. Completion of the gut microbial epi-bile acid pathway. Gut Microbes, 2021, 13(1), 1907271.
[http://dx.doi.org/10.1080/19490976.2021.1907271] [PMID: 33938389]
[11]
Lou, D.; Liu, X.; Tan, J. An overview of 7α- and 7β-hydroxysteroid dehydrogenases: Structure, specificity and practical application. Protein Pept. Lett., 2021, 28(11), 1206-1219.
[http://dx.doi.org/10.2174/0929866528666210816114032] [PMID: 34397319]
[12]
Orellana, R.; Macaya, C.; Bravo, G.; Dorochesi, F.; Cumsille, A.; Valencia, R.; Rojas, C.; Seeger, M. Living at the frontiers of life: Extremophiles in chile and their potential for bioremediation. Front. Microbiol., 2018, 9, 2309.
[http://dx.doi.org/10.3389/fmicb.2018.02309] [PMID: 30425685]
[13]
Dumorné, K.; Córdova, D.C.; Astorga-Eló, M.; Renganathan, P. Extremozymes: A potential source for industrial applications. J. Microbiol. Biotechnol., 2017, 27(4), 649-659.
[http://dx.doi.org/10.4014/jmb.1611.11006] [PMID: 28104900]
[14]
Fenice, M.; Khare, S.K.; Gorrasi, S. Editorial: Mining, designing, mechanisms and applications of extremophilic enzymes. Front. Microbiol., 2021, 12, 709377.
[http://dx.doi.org/10.3389/fmicb.2021.709377] [PMID: 34759895]
[15]
Tang, S.; Pan, Y.; Lou, D.; Ji, S.; Zhu, L.; Tan, J.; Qi, N.; Yang, Q.; Zhang, Z.; Yang, B.; Zhao, W.; Wang, B. Structural and functional characterization of a novel acidophilic 7α-Hydroxysteroid dehydrogenase. Protein Sci., 2019, 28(5), 910-919.
[http://dx.doi.org/10.1002/pro.3599] [PMID: 30839141]
[16]
Bakonyi, D.; Hummel, W. Cloning, expression, and biochemical characterization of a novel NADP + -dependent 7α-hydroxysteroid dehydrogenase from Clostridium difficile and its application for the oxidation of bile acids. Enzyme Microb. Technol., 2017, 99, 16-24.
[http://dx.doi.org/10.1016/j.enzmictec.2016.12.006] [PMID: 28193327]
[17]
Lou, D.; Wang, B.; Tan, J.; Zhu, L. Carboxyl-terminal and Arg38 are essential for activity of the 7α-hydroxysteroid dehydrogenase from Clostridium absonum. Protein Pept. Lett., 2014, 21(9), 894-900.
[http://dx.doi.org/10.2174/0929866521666140507160050] [PMID: 24810359]
[18]
Lou, D.; Tan, J.; Zhu, L.; Ji, S.; Wang, B. The β-sheet core is the favored candidate of engineering SDR for enhancing thermostability but not for activity. Protein Pept. Lett., 2017, 24(6), 511-516.
[PMID: 28128053]
[19]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[20]
Yuan, S.; Chan, H.C.S.; Hu, Z. Using PYMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 7(2), e1298.
[http://dx.doi.org/10.1002/wcms.1298]
[21]
Oppermann, U.; Filling, C.; Hult, M.; Shafqat, N.; Wu, X.; Lindh, M.; Shafqat, J.; Nordling, E.; Kallberg, Y.; Persson, B.; Jörnvall, H. Short-chain dehydrogenases/reductases (SDR): The 2002 update. Chem. Biol. Interact., 2003, 143-144, 247-253.
[http://dx.doi.org/10.1016/S0009-2797(02)00164-3] [PMID: 12604210]
[22]
Kallberg, Y.; Oppermann, U.; Jörnvall, H.; Persson, B. Short-chain dehydrogenases/reductases (SDRs). Eur. J. Biochem., 2002, 269(18), 4409-4417.
[http://dx.doi.org/10.1046/j.1432-1033.2002.03130.x] [PMID: 12230552]
[23]
Borg, A.J.E.; Dennig, A.; Weber, H.; Nidetzky, B. Mechanistic characterization of UDP-glucuronic acid 4-epimerase. FEBS J., 2021, 288(4), 1163-1178.
[http://dx.doi.org/10.1111/febs.15478] [PMID: 32645249]
[24]
Tanaka, N.; Nonaka, T.; Nakanishi, M.; Deyashiki, Y.; Hara, A.; Mitsui, Y. Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 å resolution: The structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family. Structure, 1996, 4(1), 33-45.
[http://dx.doi.org/10.1016/S0969-2126(96)00007-X] [PMID: 8805511]
[25]
Zhang, Y.; Skolnick, J. TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Res., 2005, 33(7), 2302-2309.
[http://dx.doi.org/10.1093/nar/gki524] [PMID: 15849316]
[26]
Ji, S.; Pan, Y.; Zhu, L.; Tan, J.; Tang, S.; Yang, Q.; Zhang, Z.; Lou, D.; Wang, B. A novel 7α-hydroxysteroid dehydrogenase: Magnesium ion significantly enhances its activity and thermostability. Int. J. Biol. Macromol., 2021, 177, 111-118.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.082] [PMID: 33592267]
[27]
Lou, D.; Wang, B.; Tan, J.; Zhu, L.; Cen, X.; Ji, Q.; Wang, Y. The three-dimensional structure of Clostridium absonum 7α-hydroxysteroid dehydrogenase: New insights into the conserved arginines for NADP(H) recognition. Sci. Rep., 2016, 6(1), 22885.
[http://dx.doi.org/10.1038/srep22885] [PMID: 26961171]
[28]
Tanaka, N.; Nonaka, T.; Tanabe, T.; Yoshimoto, T.; Tsuru, D.; Mitsui, Y. Crystal structures of the binary and ternary complexes of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli. Biochemistry, 1996, 35(24), 7715-7730.
[http://dx.doi.org/10.1021/bi951904d] [PMID: 8672472]
[29]
Ji, Q.; Tan, J.; Zhu, L.; Lou, D.; Wang, B. Preparing taur-oursodeoxycholic acid (TUDCA) using a double- enzyme-coupled system. Biochem. Eng. J., 2016, 105, 1-9.
[http://dx.doi.org/10.1016/j.bej.2015.08.005]
[30]
Raddadi, N.; Cherif, A.; Daffonchio, D.; Neifar, M.; Fava, F. Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl. Microbiol. Biotechnol., 2015, 99(19), 7907-7913.
[http://dx.doi.org/10.1007/s00253-015-6874-9] [PMID: 26272092]
[31]
Gaucher, E.A.; Govindarajan, S.; Ganesh, O.K. Palaeotemperature trend for precambrian life inferred from resurrected proteins. Nature, 2008, 451(7179), 704-707.
[http://dx.doi.org/10.1038/nature06510] [PMID: 18256669]
[32]
Akanuma, S.; Nakajima, Y.; Yokobori, S.; Kimura, M.; Nemoto, N.; Mase, T.; Miyazono, K.; Tanokura, M.; Yamagishi, A. Experimental evidence for the thermophilicity of ancestral life. Proc. Natl. Acad. Sci., 2013, 110(27), 11067-11072.
[http://dx.doi.org/10.1073/pnas.1308215110] [PMID: 23776221]
[33]
Nguyen, V.; Wilson, C.; Hoemberger, M.; Stiller, J.B.; Agafonov, R.V.; Kutter, S.; English, J.; Theobald, D.L.; Kern, D. Evolutionary drivers of thermoadaptation in enzyme catalysis. Science, 2017, 355(6322), 289-294.
[http://dx.doi.org/10.1126/science.aah3717] [PMID: 28008087]
[34]
Magliery, T.J. Protein stability: Computation, sequence statistics, and new experimental methods. Curr. Opin. Struct. Biol., 2015, 33, 161-168.
[http://dx.doi.org/10.1016/j.sbi.2015.09.002] [PMID: 26497286]
[35]
Suzuki, H.; Kobayashi, J.; Wada, K.; Furukawa, M.; Doi, K. Thermoadaptation-directed enzyme evolution in an error-prone thermophile derived from Geobacillus kaustophilus HTA426. Appl. Environ. Microbiol., 2015, 81(1), 149-158.
[http://dx.doi.org/10.1128/AEM.02577-14] [PMID: 25326311]
[36]
Li, G.; Zhang, H.; Sun, Z.; Liu, X.; Reetz, M.T. Multiparameter optimization in directed evolution: Engineering thermostability, enantioselectivity, and activity of an epoxide hydrolase. ACS Catal., 2016, 6(6), 3679-3687.
[http://dx.doi.org/10.1021/acscatal.6b01113]
[37]
Mamonova, T.B.; Glyakina, A.V.; Galzitskaya, O.V.; Kurnikova, M.G. Stability and rigidity/flexibility—Two sides of the same coin? Biochim. Biophys. Acta. Proteins Proteomics, 2013, 1834(5), 854-866.
[http://dx.doi.org/10.1016/j.bbapap.2013.02.011] [PMID: 23416444]
[38]
Rahban, M.; Zolghadri, S.; Salehi, N.; Ahmad, F.; Haertlé, T.; Rezaei-Ghaleh, N.; Sawyer, L.; Saboury, A.A. Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure. Int. J. Biol. Macromol., 2022, 214, 642-654.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.06.154] [PMID: 35772638]
[39]
Tang, H.; Shi, K.; Shi, C.; Aihara, H.; Zhang, J.; Du, G. Enhancing subtilisin thermostability through a modified normalized B-factor analysis and loop-grafting strategy. J. Biol. Chem., 2019, 294(48), 18398-18407.
[http://dx.doi.org/10.1074/jbc.RA119.010658] [PMID: 31615894]
[40]
Song, C.; Wang, B.; Tan, J.; Zhu, L.; Lou, D. Discovery of tauroursodeoxycholic acid biotransformation enzymes from the gut microbiome of black bears using metagenomics. Sci. Rep., 2017, 7(1), 45495.
[http://dx.doi.org/10.1038/srep45495] [PMID: 28436439]
[41]
Zhao, H. Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. J. Mol. Catal., B Enzym., 2005, 37(1-6), 16-25.
[http://dx.doi.org/10.1016/j.molcatb.2005.08.007]