Human Data on Pharmacokinetic Interactions of Cannabinoids: A Narrative Review

Page: [241 - 254] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Concomitant use of cannabinoids with other drugs may result in pharmacokinetic drug-drug interactions, mainly due to the mechanism involving Phase I and Phase II enzymes and/or efflux transporters. Cannabinoids are not only substrates but also inhibitors or inducers of some of these enzymes and/or transporters. This narrative review aims to provide the available information reported in the literature regarding human data on the pharmacokinetic interactions of cannabinoids with other medications. A search on Pubmed/Medline, Google Scholar, and Cochrane Library was performed. Some studies were identified with Google search. Additional articles of interest were obtained through cross-referencing of published literature. All original research papers discussing interactions between cannabinoids, used for medical or recreational/adult-use purposes, and other medications in humans were included. Thirty-two studies with medicinal or recreational/adult-use cannabis were identified (seventeen case reports/series, thirteen clinical trials, and two retrospective analyses). In three of these studies, a bidirectional pharmacokinetic drug-drug interaction was reported. In the rest of the studies, cannabinoids were the perpetrators, as in most of them, concentrations of cannabinoids were not measured. In light of the widespread use of prescribed and non-prescribed cannabinoids with other medications, pharmacokinetic interactions are likely to occur. Physicians should be aware of these potential interactions and closely monitor drug levels and/or responses. The existing literature regarding pharmacokinetic interactions is limited, and for some drugs, studies have relatively small cohorts or are only case reports. Therefore, there is a need for high-quality pharmacological studies on cannabinoid-drug interactions.

[1]
Chayasirisobhon S. Mechanisms of action and pharmacokinetics of cannabis. Perm J 2020; 25: 1-3.
[PMID: 33635755]
[2]
Devinsky O, Patel AD, Cross JH, et al. Effect of cannabidiol on drop seizures in the lennox-gastaut syndrome. N Engl J Med 2018; 378(20): 1888-97.
[http://dx.doi.org/10.1056/NEJMoa1714631] [PMID: 29768152]
[3]
Devinsky O, Cross JH, Wright S. Trial of cannabidiol for drug-resistant seizures in the dravet syndrome. N Engl J Med 2017; 377(7): 699-700.
[http://dx.doi.org/10.1056/NEJMc1708349] [PMID: 28813226]
[4]
Hess EJ, Moody KA, Geffrey AL, et al. Cannabidiol as a new treatment for drug-resistant epilepsy in tuberous sclerosis complex. Epilepsia 2016; 57(10): 1617-24.
[http://dx.doi.org/10.1111/epi.13499] [PMID: 27696387]
[5]
Argueta DA, Ventura CM, Kiven S, Sagi V, Gupta K. A balanced approach for cannabidiol use in chronic pain. Front Pharmacol 2020; 11: 561.
[http://dx.doi.org/10.3389/fphar.2020.00561] [PMID: 32425793]
[6]
Villanueva MRB, Joshaghani N, Villa N, et al. Efficacy, safety, and regulation of cannabidiol on chronic pain: A systematic review. Cureus 2022; 14(7): e26913.
[http://dx.doi.org/10.7759/cureus.26913] [PMID: 35860716]
[7]
Larsen C, Shahinas J. Dosage, efficacy and safety of cannabidiol administration in adults: A systematic review of human trials. J Clin Med Res 2020; 12(3): 129-41.
[http://dx.doi.org/10.14740/jocmr4090] [PMID: 32231748]
[8]
Leweke FM, Piomelli D, Pahlisch F, et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry 2012; 2(3): e94.
[http://dx.doi.org/10.1038/tp.2012.15] [PMID: 22832859]
[9]
Chagas MHN, Zuardi AW, Tumas V, et al. Effects of cannabidiol in the treatment of patients with Parkinson’s disease: An exploratory double-blind trial. J Psychopharmacol 2014; 28(11): 1088-98.
[http://dx.doi.org/10.1177/0269881114550355] [PMID: 25237116]
[10]
Mortimer TL, Mabin T, Engelbrecht AM. Cannabinoids: The lows and the highs of chemotherapy-induced nausea and vomiting. Future Oncol 2019; 15(9): 1035-49.
[http://dx.doi.org/10.2217/fon-2018-0530] [PMID: 30720344]
[11]
Naftali T, Mechulam R, Marii A, et al. Low-dose cannabidiol is safe but not effective in the treatment for Crohn’s disease, a randomized controlled trial. Dig Dis Sci 2017; 62(6): 1615-20.
[http://dx.doi.org/10.1007/s10620-017-4540-z] [PMID: 28349233]
[12]
Buchtova T, Lukac D, Skrott Z, Chroma K, Bartek J, Mistrik M. Drug-drug interactions of cannabidiol with standard-of-care chemotherapeutics. Int J Mol Sci 2023; 24(3): 2885.
[http://dx.doi.org/10.3390/ijms24032885] [PMID: 36769206]
[13]
Pisanti S, Malfitano AM, Ciaglia E, et al. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol Ther 2017; 175: 133-50.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.041] [PMID: 28232276]
[14]
Lucas CJ, Galettis P, Schneider J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br J Clin Pharmacol 2018; 84(11): 2477-82.
[http://dx.doi.org/10.1111/bcp.13710] [PMID: 30001569]
[15]
Ohlsson A, Lindgren JE, Andersson S, Agurell S, Gillespie H, Hollister LE. Single-dose kinetics of deuterium-labelled cannabidiol in man after smoking and intravenous administration. Biol Mass Spectrom 1986; 13(2): 77-83.
[http://dx.doi.org/10.1002/bms.1200130206] [PMID: 2937482]
[16]
Huestis MA. Human cannabinoid pharmacokinetics. Chem Biodivers 2007; 4(8): 1770-804.
[http://dx.doi.org/10.1002/cbdv.200790152] [PMID: 17712819]
[17]
Martin JH, Schneider J, Lucas CJ, Galettis P. Exogenous cannabinoid efficacy: Merely a pharmacokinetic interaction? Clin Pharmacokinet 2018; 57(5): 539-45.
[http://dx.doi.org/10.1007/s40262-017-0599-0] [PMID: 28921125]
[18]
Gieringer D, St. Laurent S, Goodrich S. Cannabis vaporizer combines efficient delivery of THC with effective suppression of pyrolytic compounds. J Cannabis Ther 2004; 1: 7-27.
[http://dx.doi.org/10.1300/J175v04n01_02]
[19]
Dev A, Mundke SS, Pawar PK, Mohanty S. Critical aspects in sublingual route of drug delivery. Pharm Biol Eval 2016; 3(1): 42-9.
[20]
Mahmoudinoodezh H, Telukutla SR, Bhangu SK, Bachari A, Cavalieri F, Mantri N. The transdermal delivery of therapeutic cannabinoids. Pharmaceutics 2022; 14(2): 438.
[http://dx.doi.org/10.3390/pharmaceutics14020438] [PMID: 35214170]
[21]
Mattes RD, Shaw LM, Edling-Owens J, Engelman K, Elsohly MA. Bypassing the first-pass effect for the therapeutic use of cannabinoids. Pharmacol Biochem Behav 1993; 44(3): 745-7.
[http://dx.doi.org/10.1016/0091-3057(93)90194-X] [PMID: 8383856]
[22]
Beers JL, Fu D, Jackson KD. Cytochrome P450-catalyzed metabolism of cannabidiol to the active metabolite 7-hydroxy- cannabidiol. Drug Metab Dispos 2021; 49(10): 882-91.
[http://dx.doi.org/10.1124/dmd.120.000350] [PMID: 34330718]
[23]
Smith RT, Gruber SA. Contemplating cannabis? The complex relationship between cannabinoids and hepatic metabolism resulting in the potential for drug-drug interactions. Front Psychiatry 2023; 13: 1055481.
[http://dx.doi.org/10.3389/fpsyt.2022.1055481] [PMID: 36704740]
[24]
Ujváry I, Hanuš L. Human metabolites of cannabidiol: A review on their formation, biological activity, and relevance in therapy. Cannabis Cannabinoid Res 2016; 1(1): 90-101.
[http://dx.doi.org/10.1089/can.2015.0012] [PMID: 28861484]
[25]
Mazur A, Lichti CF, Prather PL, et al. Characterization of human hepatic and extrahepatic UDP-glucuronosyltransferase enzymes involved in the metabolism of classic cannabinoids. Drug Metab Dispos 2009; 37(7): 1496-504.
[http://dx.doi.org/10.1124/dmd.109.026898] [PMID: 19339377]
[26]
Lucas CJ, Galettis P, Song S, et al. Cannabinoid disposition after human intraperitoneal use: An insight into intraperitoneal pharmacokinetic properties in metastatic cancer. Clin Ther 2018; 40(9): 1442-7.
[http://dx.doi.org/10.1016/j.clinthera.2017.12.008] [PMID: 29317112]
[27]
Rosenberg EC, Tsien RW, Whalley BJ, Devinsky O. Cannabinoids and epilepsy. Neurotherapeutics 2015; 12(4): 747-68.
[http://dx.doi.org/10.1007/s13311-015-0375-5] [PMID: 26282273]
[28]
Zhornitsky S, Potvin S. Cannabidiol in humans-the quest for therapeutic targets. Pharmaceuticals 2012; 5(5): 529-52.
[http://dx.doi.org/10.3390/ph5050529] [PMID: 24281562]
[29]
Jiang R, Yamaori S, Okamoto Y, Yamamoto I, Watanabe K. Cannabidiol is a potent inhibitor of the catalytic activity of cytochrome P450 2C19. Drug Metab Pharmacokinet 2013; 28(4): 332-8.
[http://dx.doi.org/10.2133/dmpk.DMPK-12-RG-129] [PMID: 23318708]
[30]
Doohan PT, Oldfield LD, Arnold JC, Anderson LL. Cannabinoid interactions with cytochrome P450 drug metabolism: A full-spectrum characterization. AAPS J 2021; 23(4): 91.
[http://dx.doi.org/10.1208/s12248-021-00616-7] [PMID: 34181150]
[31]
Yamaori S, Okamoto Y, Yamamoto I, Watanabe K. Cannabidiol, a major phytocannabinoid, as a potent atypical inhibitor for CYP2D6. Drug Metab Dispos 2011; 39(11): 2049-56.
[http://dx.doi.org/10.1124/dmd.111.041384] [PMID: 21821735]
[32]
Bansal S, Maharao N, Paine MF, Unadkat JD. Predicting the potential for cannabinoids to precipitate pharmacokinetic drug interactions via reversible inhibition or inactivation of major cytochromes P450. Drug Metab Dispos 2020; 48(10): 1008-17.
[http://dx.doi.org/10.1124/dmd.120.000073] [PMID: 32587099]
[33]
Vázquez M, Guevara N, Maldonado C, Guido PC, Schaiquevich P. Potential pharmacokinetic drug-drug interactions between cannabinoids and drugs used for chronic pain. BioMed Res Int 2020; 2020: 1-9.
[http://dx.doi.org/10.1155/2020/3902740] [PMID: 32855964]
[34]
Yamaori S, Ebisawa J, Okushima Y, Yamamoto I, Watanabe K. Potent inhibition of human cytochrome P450 3A isoforms by cannabidiol: Role of phenolic hydroxyl groups in the resorcinol moiety. Life Sci 2011; 88(15-16): 730-6.
[http://dx.doi.org/10.1016/j.lfs.2011.02.017] [PMID: 21356216]
[35]
Ebrahimi-Fakhari D, Agricola KD, Tudor C, Krueger D, Franz DN. Cannabidiol elevates mechanistic target of rapamycin inhibitor levels in patients with tuberous sclerosis complex. Pediatr Neurol 2020; 105: 59-61.
[http://dx.doi.org/10.1016/j.pediatrneurol.2019.11.017] [PMID: 31924480]
[36]
Leino AD, Emoto C, Fukuda T, Privitera M, Vinks AA, Alloway RR. Evidence of a clinically significant drug-drug interaction between cannabidiol and tacrolimus. Am J Transplant 2019; 19(10): 2944-8.
[http://dx.doi.org/10.1111/ajt.15398] [PMID: 31012522]
[37]
Kosel BW, Aweeka FT, Benowitz NL, et al. The effects of cannabinoids on the pharmacokinetics of indinavir and nelfinavir. AIDS 2002; 16(4): 543-50.
[http://dx.doi.org/10.1097/00002030-200203080-00005] [PMID: 11872997]
[38]
Bornheim LM, Everhart ET, Li J, Correia MA. Induction and genetic regulation of mouse hepatic cytochrome P450 by cannabidiol. Biochem Pharmacol 1994; 48(1): 161-71.
[http://dx.doi.org/10.1016/0006-2952(94)90236-4] [PMID: 8043019]
[39]
Qian Y, Wang X, Markowitz JS. In vitro inhibition of carboxylesterase 1 by major cannabinoids and selected metabolites. Drug Metab Dispos 2019; 47(5): 465-72.
[http://dx.doi.org/10.1124/dmd.118.086074] [PMID: 30833288]
[40]
Casey Laizure S, Herring V, Hu Z, Witbrodt K, Parker RB. The role of human carboxylesterases in drug metabolism: Have we overlooked their importance? Pharmacotherapy 2013; 33(2): 210-22.
[http://dx.doi.org/10.1002/phar.1194] [PMID: 23386599]
[41]
Alsherbiny M, Li C. Medicinal cannabis-potential drug interactions. Medicines 2018; 6(1): 3.
[http://dx.doi.org/10.3390/medicines6010003] [PMID: 30583596]
[42]
Zhu HJ, Wang JS, Markowitz JS, et al. Characterization of P-glycoprotein inhibition by major cannabinoids from marijuana. J Pharmacol Exp Ther 2006; 317(2): 850-7.
[http://dx.doi.org/10.1124/jpet.105.098541] [PMID: 16439618]
[43]
Holland ML, Lau DTT, Allen JD, Arnold JC. The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids. Br J Pharmacol 2007; 152(5): 815-24.
[http://dx.doi.org/10.1038/sj.bjp.0707467] [PMID: 17906686]
[44]
Auzmendi J, Palestro P, Blachman A, et al. Cannabidiol (CBD) inhibited rhodamine-123 efflux in cultured vascular endothelial cells and astrocytes under hypoxic conditions. Front Behav Neurosci 2020; 14: 32.
[http://dx.doi.org/10.3389/fnbeh.2020.00032] [PMID: 32256321]
[45]
Anderson LL, Etchart MG, MacNair L, et al. In vitro screening of three commercial cannabis-based products on ATP-binding cassette and solute-carrier transporter function. Cannabis Cannabinoid Res 2022; 7(3): 304-17.
[http://dx.doi.org/10.1089/can.2020.0053] [PMID: 33998860]
[46]
Spiro AS, Wong A, Boucher AA, Arnold JC. Enhanced brain disposition and effects of Δ9-tetrahydrocannabinol in P-glycoprotein and breast cancer resistance protein knockout mice. PLoS One 2012; 7(4): e35937.
[http://dx.doi.org/10.1371/journal.pone.0035937] [PMID: 22536451]
[47]
Anderson GD, Chan LN. Pharmacokinetic drug interactions with tobacco, cannabinoids and smoking cessation products. Clin Pharmacokinet 2016; 55(11): 1353-68.
[http://dx.doi.org/10.1007/s40262-016-0400-9] [PMID: 27106177]
[48]
Kaminsky LS, Zhang ZY. Human P450 metabolism of warfarin. Pharmacol Ther 1997; 73(1): 67-74.
[http://dx.doi.org/10.1016/S0163-7258(96)00140-4] [PMID: 9014207]
[49]
Grayson L, Vines B, Nichol K, Szaflarski JP. An interaction between warfarin and cannabidiol, a case report. Epilepsy Behav Case Rep 2018; 9: 10-1.
[http://dx.doi.org/10.1016/j.ebcr.2017.10.001] [PMID: 29387536]
[50]
Cortopassi J. Warfarin dose adjustment required after cannabidiol initiation and titration. Am J Health Syst Pharm 2020; 77(22): 1846-51.
[http://dx.doi.org/10.1093/ajhp/zxaa268] [PMID: 33016308]
[51]
Damkier P, Lassen D, Christensen MMH, Madsen KG, Hellfritzsch M, Pottegård A. Interaction between warfarin and cannabis. Basic Clin Pharmacol Toxicol 2019; 124(1): 28-31.
[http://dx.doi.org/10.1111/bcpt.13152] [PMID: 30326170]
[52]
Hsu A, Painter NA. Probable interaction between warfarin and inhaled and oral administration of cannabis. J Pharm Pract 2020; 33(6): 915-8.
[http://dx.doi.org/10.1177/0897190019854958] [PMID: 31319733]
[53]
Yamreudeewong W, Wong HK, Brausch LM, Pulley KR. Probable interaction between warfarin and marijuana smoking. Ann Pharmacother 2009; 43(7-8): 1347-53.
[http://dx.doi.org/10.1345/aph.1M064] [PMID: 19531696]
[54]
Thomas TF, Metaxas ES, Nguyen T, et al. Case report: Medical cannabis-warfarin drug-drug interaction. J Cannabis Res 2022; 4(1): 6.
[http://dx.doi.org/10.1186/s42238-021-00112-x] [PMID: 35012687]
[55]
Coe MA, Lofwall MR, Walsh SL. Buprenorphine pharmacology review: Update on transmucosal and long-acting formulations. J Addict Med 2019; 13(2): 93-103.
[http://dx.doi.org/10.1097/ADM.0000000000000457] [PMID: 30531584]
[56]
Vierke C, Marxen B, Boettcher M, Hiemke C, Havemann-Reinecke U. Buprenorphine-cannabis interaction in patients undergoing opioid maintenance therapy. Eur Arch Psychiatry Clin Neurosci 2021; 271(5): 847-56.
[http://dx.doi.org/10.1007/s00406-019-01091-0] [PMID: 31907614]
[57]
Kharasch ED. Current concepts in methadone metabolism and transport. Clin Pharmacol Drug Dev 2017; 6(2): 125-34.
[http://dx.doi.org/10.1002/cpdd.326] [PMID: 28263461]
[58]
Madden K, Tanco K, Bruera E. Clinically significant drug-drug interaction between methadone and cannabidiol. Pediatrics 2020; 145(6): e20193256.
[http://dx.doi.org/10.1542/peds.2019-3256] [PMID: 32444381]
[59]
Gauthier AC, Mattson RH. Clobazam: A safe, efficacious, and newly rediscovered therapeutic for epilepsy. CNS Neurosci Ther 2015; 21(7): 543-8.
[http://dx.doi.org/10.1111/cns.12399] [PMID: 25917225]
[60]
Gaston TE, Bebin EM, Cutter GR, Liu Y, Szaflarski JP. Interactions between cannabidiol and commonly used antiepileptic drugs. Epilepsia 2017; 58(9): 1586-92.
[http://dx.doi.org/10.1111/epi.13852] [PMID: 28782097]
[61]
Geffrey AL, Pollack SF, Bruno PL, Thiele EA. Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia 2015; 56(8): 1246-51.
[http://dx.doi.org/10.1111/epi.13060] [PMID: 26114620]
[62]
Morrison G, Crockett J, Blakey G, Sommerville K. A phase 1, open-label, pharmacokinetic trial to investigate possible drug-drug interactions between clobazam, stiripentol, or valproate and cannabidiol in healthy subjects. Clin Pharmacol Drug Dev 2019; 8(8): 1009-31.
[http://dx.doi.org/10.1002/cpdd.665] [PMID: 30791225]
[63]
VanLandingham KE, Crockett J, Taylor L, Morrison G. A phase 2, double-blind, placebo-controlled trial to investigate potential drug-drug interactions between cannabidiol and clobazam. J Clin Pharmacol 2020; 60(10): 1304-13.
[http://dx.doi.org/10.1002/jcph.1634] [PMID: 32652616]
[64]
Wheless JW, Dlugos D, Miller I, et al. Pharmacokinetics and tolerability of multiple doses of pharmaceutical-grade synthetic cannabidiol in pediatric patients with treatment-resistant epilepsy. CNS Drugs 2019; 33(6): 593-604.
[http://dx.doi.org/10.1007/s40263-019-00624-4] [PMID: 31049885]
[65]
Yang H, Yang L, Zhong X, Jiang X, Zheng L, Wang L. Physiologically based pharmacokinetic modeling of brivaracetam and its interactions with rifampin based on CYP2C19 phenotypes. Eur J Pharm Sci 2022; 177: 106258.
[http://dx.doi.org/10.1016/j.ejps.2022.106258] [PMID: 35840101]
[66]
Klotz KA, Hirsch M, Heers M, Schulze-Bonhage A, Jacobs J. Effects of cannabidiol on brivaracetam plasma levels. Epilepsia 2019; 60(7): e74-7.
[http://dx.doi.org/10.1111/epi.16071] [PMID: 31211851]
[67]
Levy RH, Lin HS, Blehaut HM, Tor JA. Pharmacokinetics of stiripentol in normal man: Evidence of nonlinearity. J Clin Pharmacol 1983; 23(11): 523-33.
[http://dx.doi.org/10.1002/j.1552-4604.1983.tb01799.x] [PMID: 6662977]
[68]
Ben-Menachem E, Gunning B, Arenas Cabrera CM, et al. A phase II randomized trial to explore the potential for pharmacokinetic drug-drug interactions with stiripentol or valproate when combined with cannabidiol in patients with epilepsy. CNS Drugs 2020; 34(6): 661-72.
[http://dx.doi.org/10.1007/s40263-020-00726-4] [PMID: 32350749]
[69]
Almeida L, Falcão A, Maia J, Mazur D, Gellert M, Soares-da-Silva P. Single-dose and steady-state pharmacokinetics of eslicarbazepine acetate (BIA 2-093) in healthy elderly and young subjects. J Clin Pharmacol 2005; 45(9): 1062-6.
[http://dx.doi.org/10.1177/0091270005279364] [PMID: 16100301]
[70]
Perucca E, Cloyd J, Critchley D, Fuseau E. Rufinamide: Clinical pharmacokinetics and concentration-response relationships in patients with epilepsy. Epilepsia 2008; 49(7): 1123-41.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01665.x] [PMID: 18503564]
[71]
Britzi M, Perucca E, Soback S, et al. Pharmacokinetic and metabolic investigation of topiramate disposition in healthy subjects in the absence and in the presence of enzyme induction by carbamazepine. Epilepsia 2005; 46(3): 378-84.
[http://dx.doi.org/10.1111/j.0013-9580.2005.55204.x] [PMID: 15730535]
[72]
Leppik IE. Zonisamide: Chemistry, mechanism of action, and pharmacokinetics. Seizure 2004; 13(S1): S5-9.
[http://dx.doi.org/10.1016/j.seizure.2004.04.016] [PMID: 15511691]
[73]
Franz DN, Capal JK. mTOR inhibitors in the pharmacologic management of tuberous sclerosis complex and their potential role in other rare neurodevelopmental disorders. Orphanet J Rare Dis 2017; 12(1): 51.
[http://dx.doi.org/10.1186/s13023-017-0596-2] [PMID: 28288694]
[74]
Hartinger JM, Ryšánek P, Slanař O, Šíma M. Pharmacokinetic principles of dose adjustment of MTOR inhibitors in solid organ transplanted patients. J Clin Pharm Ther 2022; 47(9): 1362-7.
[http://dx.doi.org/10.1111/jcpt.13753] [PMID: 35934622]
[75]
Wiemer-Kruel A, Stiller B, Bast T. Cannabidiol interacts significantly with everolimus-report of a patient with tuberous sclerosis complex. Neuropediatrics 2019; 50(6): 400-3.
[http://dx.doi.org/10.1055/s-0039-1695786] [PMID: 31539915]
[76]
Wray L, Berwaerts J, Critchley D, et al. Pharmacokinetic drug- drug interaction with coadministration of cannabidiol and everolimus in a phase 1 healthy volunteer trial. Clin Pharmacol Drug Dev 2023; 12(9): 911-9.
[http://dx.doi.org/10.1002/cpdd.1262] [PMID: 37132402]
[77]
Yu M, Liu M, Zhang W, Ming Y. Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation. Curr Drug Metab 2018; 19(6): 513-22.
[http://dx.doi.org/10.2174/1389200219666180129151948] [PMID: 29380698]
[78]
Hauser N, Sahai T, Richards R, Roberts T. High on cannabis and calcineurin inhibitors: A word of warning in an era of legalized marijuana. Case Rep Transplant 2016; 2016: 1-3.
[http://dx.doi.org/10.1155/2016/4028492] [PMID: 27595035]
[79]
Li Y, Theuretzbacher U, Clancy CJ, Nguyen MH, Derendorf H. Pharmacokinetic/pharmacodynamic profile of posaconazole. Clin Pharmacokinet 2010; 49(6): 379-96.
[http://dx.doi.org/10.2165/11319340-000000000-00000] [PMID: 20481649]
[80]
Cuñetti L, Manzo L, Peyraube R, Arnaiz J, Curi L, Orihuela S. Chronic pain treatment with cannabidiol in kidney transplant patients in uruguay. Transplant Proc 2018; 50(2): 461-4.
[http://dx.doi.org/10.1016/j.transproceed.2017.12.042] [PMID: 29579828]
[81]
Huddart R, Hicks JK, Ramsey LB, et al. PharmGKB summary: Sertraline pathway, pharmacokinetics. Pharmacogenet Genomics 2020; 30(2): 26-33.
[http://dx.doi.org/10.1097/FPC.0000000000000392] [PMID: 31851125]
[82]
Nanan J, Crosby S, Schuh MJ. Hyponatremic cognitive dysfunction resulting from drug-drug-gene interaction between sertraline and cannabidiol in an intermediate CYP2C19 metabolizer patient. Innov Pharm 2022; 13(3): 2.
[http://dx.doi.org/10.24926/iip.v13i3.4890] [PMID: 36627907]
[83]
Rottmann CN. SSRIs and the syndrome of inappropriate antidiuretic hormone secretion. Am J Nurs 2007; 107(1): 51-8.
[http://dx.doi.org/10.1097/00000446-200701000-00022] [PMID: 17200634]
[84]
Mentrasti G, Scortichini L, Torniai M, et al. Syndrome of inappropriate antidiuretic hormone secretion (SIADH): Optimal management. Ther Clin Risk Manag 2020; 16: 663-72.
[http://dx.doi.org/10.2147/TCRM.S206066] [PMID: 32801723]
[85]
Deodhar M, Rihani SBA, Darakjian L, Turgeon J, Michaud V. Assessing the mechanism of fluoxetine-mediated CYP2D6 inhibition. Pharmaceutics 2021; 13(2): 148.
[http://dx.doi.org/10.3390/pharmaceutics13020148] [PMID: 33498694]
[86]
Anderson LL, Arnold JC, McGregor IS, Nation TR. A potential drug-gene-drug interaction between cannabidiol, CYP2D6*4, and fluoxetine: A case report. J Clin Psychopharmacol 2022; 42(4): 422-4.
[http://dx.doi.org/10.1097/JCP.0000000000001568] [PMID: 35652796]
[87]
Sangkuhl K, Klein TE, Altman RB. PharmGKB summary: Citalopram pharmacokinetics pathway. Pharmacogenet Genomics 2011; 21(11): 769-72.
[http://dx.doi.org/10.1097/FPC.0b013e328346063f] [PMID: 21546862]
[88]
Anderson LL, Doohan PT, Oldfield L, et al. Citalopram and cannabidiol. J Clin Psychopharmacol 2021; 41(5): 525-33.
[http://dx.doi.org/10.1097/JCP.0000000000001427] [PMID: 34121064]
[89]
Prasad GS, Srisailam K, Sashidhar RB. Metabolic inhibition of meloxicam by specific CYP2C9 inhibitors in Cunninghamella blakesleeana NCIM 687: In silico and in vitro studies. Springerplus 2016; 5(1): 166.
[http://dx.doi.org/10.1186/s40064-016-1794-4] [PMID: 27026863]
[90]
Emig M, Kafaie J, Ong S, Li X. Cannabidiol and non-steroidal anti-inflammatory drug interactions: A case of drug-induced aseptic meningitis. J Neurol Res 2020; 10(4): 132-5.
[http://dx.doi.org/10.14740/jnr598]
[91]
O’Brien WM, Bagby GF. Rare adverse reactions to nonsteroidal antiinflammatory drugs. J Rheumatol 1985; 12(1): 13-20.
[PMID: 3981496]
[92]
Stevens T, Sangkuhl K, Brown JT, Altman RB, Klein TE. PharmGKB summary: Methylphenidate pathway, pharmacokinetics/pharmacodynamics. Pharmacogenet Genomics 2019; 29(6): 136-54.
[http://dx.doi.org/10.1097/FPC.0000000000000376] [PMID: 30950912]
[93]
Markowitz JS, De Faria L, Zhang Q, et al. The influence of cannabidiol on the pharmacokinetics of methylphenidate in healthy subjects. Med Cannabis Cannabinoids 2022; 5(1): 199-206.
[http://dx.doi.org/10.1159/000527189] [PMID: 36467779]
[94]
Granfors MT, Wang JS, Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT. Differential inhibition of cytochrome P450 3A4, 3A5 and 3A7 by five human immunodeficiency virus (HIV) protease inhibitors in vitro. Basic Clin Pharmacol Toxicol 2006; 98(1): 79-85.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_249.x] [PMID: 16433896]
[95]
Sanchez-Spitman AB, Swen JJ, Dezentje VO, Moes DJAR, Gelderblom H, Guchelaar HJ. Clinical pharmacokinetics and pharmacogenetics of tamoxifen and endoxifen. Expert Rev Clin Pharmacol 2019; 12(6): 523-36.
[http://dx.doi.org/10.1080/17512433.2019.1610390] [PMID: 31008668]
[96]
Parihar V, Rogers A, Blain AM, Zacharias SRK, Patterson LL, Siyam MAM. Reduction in tamoxifen metabolites endoxifen and n-desmethyltamoxifen with chronic administration of low dose cannabidiol: A CYP3A4 and CYP2D6 drug interaction. J Pharm Pract 2022; 35(2): 322-6.
[http://dx.doi.org/10.1177/0897190020972208] [PMID: 33191836]
[97]
Toth K, Csukly G, Sirok D, et al. Potential role of patients' CYP3A-status in clozapine pharmacokinetics. Int J Neuropsychopharmacol 2017; 20(7): 529-37.
[98]
Zubiaur P, Soria-Chacartegui P, Villapalos-García G, Gordillo-Perdomo JJ, Abad-Santos F. The pharmacogenetics of treatment with olanzapine. Pharmacogenomics 2021; 22(14): 939-58.
[http://dx.doi.org/10.2217/pgs-2021-0051] [PMID: 34528455]
[99]
Zullino DF, Delessert D, Eap CB, Preisig M, Baumann P. Tobacco and cannabis smoking cessation can lead to intoxication with clozapine or olanzapine. Int Clin Psychopharmacol 2002; 17(3): 141-3.
[http://dx.doi.org/10.1097/00004850-200205000-00008] [PMID: 11981356]
[100]
Jin Z, Wu Z, Cui Y, et al. Population pharmacokinetics and dosing regimen of lithium in chinese patients with bipolar disorder. Front Pharmacol 2022; 13: 913935.
[http://dx.doi.org/10.3389/fphar.2022.913935] [PMID: 35860024]
[101]
Singh RK, Dillon B, Tatum DA, Van Poppel KC, Bonthius DJ. Drug-drug interactions between cannabidiol and lithium. Child Neurol Open 2020; 7: 2329048X2094789.
[http://dx.doi.org/10.1177/2329048X20947896] [PMID: 32851114]
[102]
EPIDIOLEX® (cannabidiol) oral solution (US Prescribing Information). Greenwich Biosciences Inc 2018.
[103]
Greenblatt DJ, Zhao Y, Venkatakrishnan K, et al. Mechanism of cytochrome P450-3A inhibition by ketoconazole. J Pharm Pharmacol 2011; 63(2): 214-21.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01202.x] [PMID: 21235585]
[104]
Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivistö KT. Pharmacokinetic interactions with rifampicin: Clinical relevance. Clin Pharmacokinet 2003; 42(9): 819-50.
[http://dx.doi.org/10.2165/00003088-200342090-00003] [PMID: 12882588]
[105]
Stott C, White L, Wright S, Wilbraham D, Guy G. A Phase I, open-label, randomized, crossover study in three parallel groups to evaluate the effect of Rifampicin, Ketoconazole, and Omeprazole on the pharmacokinetics of THC/CBD oromucosal spray in healthy volunteers. Springerplus 2013; 2(1): 236.
[http://dx.doi.org/10.1186/2193-1801-2-236] [PMID: 23750331]
[106]
Yang MS, Yu CP, Chao PDL, Lin SP, Hou YC. R- and S-Warfarin were transported by breast cancer resistance protein: From in vitro to pharmacokinetic-pharmacodynamic studies. J Pharm Sci 2017; 106(5): 1419-25.
[http://dx.doi.org/10.1016/j.xphs.2017.01.012] [PMID: 28093289]
[107]
Coetzee C, Levendal RA, van de Venter M, Frost CL. Anticoagulant effects of a Cannabis extract in an obese rat model. Phytomedicine 2007; 14(5): 333-7.
[http://dx.doi.org/10.1016/j.phymed.2006.02.004] [PMID: 16644197]
[108]
Formukong EA, Evans AT, Evans FJ. The inhibitory effects of cannabinoids, the active constituents of Cannabis sativa L. on human and rabbit platelet aggregation. J Pharm Pharmacol 2011; 41(10): 705-9.
[http://dx.doi.org/10.1111/j.2042-7158.1989.tb06345.x] [PMID: 2575149]
[109]
Reitsma SE, Johnson J, Pang J, et al. Chronic edible dosing of δ9-tetrahydrocannabinol (THC) in non-human primates reduces systemic platelet activity and function. Res Pract Thromb Haemost 2021; 5(S2)
[110]
Chesney E, Oliver D, Green A, et al. Adverse effects of cannabidiol: A systematic review and meta-analysis of randomized clinical trials. Neuropsychopharmacology 2020; 45(11): 1799-806.
[http://dx.doi.org/10.1038/s41386-020-0667-2] [PMID: 32268347]
[111]
Tolbert D, Larsen F. A comprehensive overview of the clinical pharmacokinetics of clobazam. J Clin Pharmacol 2019; 59(1): 7-19.
[http://dx.doi.org/10.1002/jcph.1313] [PMID: 30285275]
[112]
Ghodke-Puranik Y, Thorn CF, Lamba JK, et al. Valproic acid pathway. Pharmacogenet Genomics 2013; 23(4): 236-41.
[http://dx.doi.org/10.1097/FPC.0b013e32835ea0b2] [PMID: 23407051]
[113]
Gibbs JP, Adeyeye MC, Yang Z, Shen DD. Valproic acid uptake by bovine brain microvessel endothelial cells: Role of active efflux transport. Epilepsy Res 2004; 58(1): 53-66.
[http://dx.doi.org/10.1016/j.eplepsyres.2003.12.008] [PMID: 15066675]
[114]
Nakanishi H, Yonezawa A, Matsubara K, Yano I. Impact of P-glycoprotein and breast cancer resistance protein on the brain distribution of antiepileptic drugs in knockout mouse models. Eur J Pharmacol 2013; 710(1-3): 20-8.
[http://dx.doi.org/10.1016/j.ejphar.2013.03.049] [PMID: 23588114]
[115]
Ibarra M, Vázquez M, Fagiolino P, Derendorf H. Sex related differences on valproic acid pharmacokinetics after oral single dose. J Pharmacokinet Pharmacodyn 2013; 40(4): 479-86.
[http://dx.doi.org/10.1007/s10928-013-9323-3] [PMID: 23784346]
[116]
Ethell BT, Anderson GD, Burchell B. The effect of valproic acid on drug and steroid glucuronidation by expressed human UDP-glucuronosyltransferases. Biochem Pharmacol 2003; 65(9): 1441-9.
[http://dx.doi.org/10.1016/S0006-2952(03)00076-5] [PMID: 12732356]
[117]
Lo LA, Christiansen A, Eadie L, et al. Cannabidiol-associated hepatotoxicity: A systematic review and meta-analysis. J Intern Med 2023; 293(6): 724-52.
[http://dx.doi.org/10.1111/joim.13627] [PMID: 36912195]
[118]
Meseguer ES, Elizalde MU, Borobia AM, Ramírez E. Valproic acid-induced liver injury: A case-control study from a prospective pharmacovigilance program in a tertiary hospital. J Clin Med 2021; 10(6): 1153.
[http://dx.doi.org/10.3390/jcm10061153] [PMID: 33801850]
[119]
McNamara NA, Dang LT, Sturza J, et al. Thrombocytopenia in pediatric patients on concurrent cannabidiol and valproic acid. Epilepsia 2020; 61(8): e85-9.
[http://dx.doi.org/10.1111/epi.16596] [PMID: 32614070]
[120]
Nasreddine W, Beydoun A. Valproate-induced thrombocytopenia: A prospective monotherapy study. Epilepsia 2008; 49(3): 438-45.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01429.x] [PMID: 18031547]
[121]
Lattanzi S, Trinka E, Striano P, et al. Highly purified cannabidiol for epilepsy treatment: A systematic review of epileptic conditions beyond dravet syndrome and lennox-gastaut syndrome. CNS Drugs 2021; 35(3): 265-81.
[http://dx.doi.org/10.1007/s40263-021-00807-y] [PMID: 33754312]
[122]
van Tellingen O, Buckle T, Jonker JW, van der Valk MA, Beijnen JH. P-glycoprotein and Mrp1 collectively protect the bone marrow from vincristine-induced toxicity in vivo. Br J Cancer 2003; 89(9): 1776-82.
[http://dx.doi.org/10.1038/sj.bjc.6601363] [PMID: 14583783]
[123]
Malki MA, Pearson ER. Drug-drug-gene interactions and adverse drug reactions. Pharmacogenomics J 2020; 20(3): 355-66.
[http://dx.doi.org/10.1038/s41397-019-0122-0] [PMID: 31792369]
[124]
Taylor L, Gidal B, Blakey G, Tayo B, Morrison G. A phase I, randomized, double-blind, placebo-controlled, single ascending dose, multiple dose, and food effect trial of the safety, tolerability and pharmacokinetics of highly purified cannabidiol in healthy subjects. CNS Drugs 2018; 32(11): 1053-67.
[http://dx.doi.org/10.1007/s40263-018-0578-5] [PMID: 30374683]
[125]
Paduch M, Thomason AR. Potential drug interactions between cannabinoids and its derivatives and oral anticoagulants. Hosp Pharm 2022; 57(1): 188-92.
[http://dx.doi.org/10.1177/0018578720985438] [PMID: 35521023]
[126]
Greger J, Bates V, Mechtler L, Gengo F. A review of cannabis and interactions with anticoagulant and antiplatelet agents. J Clin Pharmacol 2020; 60(4): 432-8.
[http://dx.doi.org/10.1002/jcph.1557] [PMID: 31724188]
[127]
Balachandran P, Elsohly M, Hill KP. Cannabidiol interactions with medications, illicit substances, and alcohol: A comprehensive review. J Gen Intern Med 2021; 36(7): 2074-84.
[http://dx.doi.org/10.1007/s11606-020-06504-8] [PMID: 33515191]
[128]
Abrams DI, Couey P, Shade SB, Kelly ME, Benowitz NL. Cannabinoid-opioid interaction in chronic pain. Clin Pharmacol Ther 2011; 90(6): 844-51.
[http://dx.doi.org/10.1038/clpt.2011.188] [PMID: 22048225]
[129]
Manini AF, Yiannoulos G, Bergamaschi MM, et al. Safety and pharmacokinetics of oral cannabidiol when administered concomitantly with intravenous fentanyl in humans. J Addict Med 2015; 9(3): 204-10.
[http://dx.doi.org/10.1097/ADM.0000000000000118] [PMID: 25748562]