Recent Patents on Engineering

Author(s): Yuan Zhang*, Zi-Qi Liu and Yi-Bing Wang

DOI: 10.2174/0118722121281570240122065836

DownloadDownload PDF Flyer Cite As
Development and Overview of Space Docking Mechanism

Article ID: e290124226390 Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

This patent paper provides an overview of representative patents related to space docking mechanisms in terms of structural and functional optimization. The working principle and characteristics are explained. By comparing different types of space docking mechanisms, we summarized the main problems of the current space docking mechanism and proposed some improvements. They include electromagnetic docking, modularization and standardization, together with the use of advanced design optimization algorithms and intelligent drive technology.

Keywords: Space docking, optimized and reliable design, capture, cushioning, docking lock, sealing.

Graphical Abstract

[1]
C. Zhang, Y. Xiao, M. Li, Y. Liu, and D. Yang, "Design method for buffer of aerocrafts docking mechanism", J. Harbin Inst. Technol., pp. 112-115, 1998.
[2]
H. Lou, G. Qu, and J. Liu, Space docking mechanism., Aviation Industry Press: Beijing, 1992.
[3]
J. Zhou, Space rendezvous and docking technology., National Defense Industry Press: Beijing, 2013, p. 322.
[4]
C. Zhang, B. Chen, Y. Zheng, Z. Liu, J. Shi, and W. Wang, Spacecraft docking mechanism., Science Press: Beijing, 2016, p. 275.
[5]
B. Huang, and Y. Ma, Space environment test technology of spacecraft., National Defense Industry Press: Beijing, 2002, p. 268.
[6]
X. Zhang, Y. Huang, W. Han, and X. Chen, "Research of flexible beam impact dynamics based on space probe-cone docking mechanism", Adv. Space Res., vol. 49, no. 6, pp. 1053-1061, 2012.
[http://dx.doi.org/10.1016/j.asr.2011.12.030]
[7]
W. Han, Y. Huang, X. Zhang, and X. Chen, "Collision simulation analysis for flexible probe-cone docking mechanism", Shanghai Hangtian, vol. 29, pp. 49-53, 2012.
[http://dx.doi.org/10.19328/j.cnki.1006-1630.2012.03.011]
[8]
Y. Qu, M. Zhao, and C. Zhang, Damping mechanism for space docking and its kinematics modeling., Aerospace Shanghai, 2002, pp. 13-16.
[http://dx.doi.org/10.19328/j.cnki.1006-1630.2002.01.003]
[9]
F. Yang, and G. Qu, "Analysis of mechanism drive principle of differential electromechanical buffer damping system for space docking mechanism", Mech. Eng., pp. 51-54, 2000.
[10]
Y. Zhao, X. Cao, X. Wang, and C. Shao, "Dynamic characteristics on differential cushion damping and transmission system of space docking mechanism", Kongjian Kexue Xuebao, vol. 19, no. 2, pp. 173-180, 1999.
[http://dx.doi.org/10.11728/cjss1999.02.173]
[11]
H. Jiang, F. Cheng, H. Yuan, M. Yu, W. Lyu, and D. Wu, "Accelerated degradation testing study on space docking mechanism wire rope stress relaxation", Shanghai Hangtian, vol. 39, pp. 101-106, 2022.
[http://dx.doi.org/10.19328/j.cnki.2096-8655.2022.s2.019]
[12]
C.H. Liao, H.R. Lu, X. Chang, H. Sun, S. Fan, and H. Wu, "Mechanical properties of silicone elastomer seals for space docking vehicles", In 2nd International Conference on Advanced Technologies in Design, Mechanical and Aeronautical Engineering (ATDMAE 2018) vol. 408, 2018 Dalian, China
[http://dx.doi.org/10.1088/1757-899X/408/1/012010]
[13]
T. Huang, M. Chen, and Y. Xiao, "Study of kinetic synchronous theory on space docking lock system", J. Syst. Simul., vol. 23, pp. 13-16, 2011.
[http://dx.doi.org/10.16182/j.cnki.joss.2011.01.013]
[14]
Y. Wu, Q. Song, and L. Chen, "Dynamics analysis for structure lock of spatial docking system", J Huazhon. Uni. Sci. Technol., vol. 2001, pp. 84-86, 2001.
[http://dx.doi.org/10.13245/j.hust.2001.09.029]
[15]
C. Sha, X. Song, Y. Xiong, G. Su, and L.G. Uo, "Surface strengthening and lubrication of space docking latch system", Chin. J. Vac. Sci. Technol., vol. 34, pp. 707-713, 2014.
[http://dx.doi.org/10.3969/j.issn.1672-7126.2014.07.08]
[16]
L. Chen, Spacecraft structures and mechanisms., Science and Technology of China Press: Beijing, 2005, p. 462.
[17]
H. Qiu, Y. Qin, H. Yuan, and G. Liu, "Study on docking and separation test technology for space docking mechanism in thermal vacuum environment", Zairen Hangtian, vol. 22, pp. 112-116, 2016.
[http://dx.doi.org/10.16329/j.cnki.zrht.2016.69.018]
[18]
P. Li, H. Cheng, and W. Qin, "The numerical simulation of the on-orbit temperature of the screws in docking mechanism", J. Shangh. Jiaot. Uni., pp. 1262-1277, 2006.
[http://dx.doi.org/10.16183/j.cnki.jsjtu.2006.08.002]
[19]
S. Xu, M. Chu, and H. Sun, "Design and stiffness optimization of bionic docking mechanism for space target acquisition", Appl. Sci., vol. 11, no. 21, p. 10278, 2021.
[http://dx.doi.org/10.3390/app112110278]
[20]
M. Chu, Z. Dong, S. Ren, and Q. Jia, "Multi-stage damping stabilization control for a space-borne series-wound flexible capturing mechanism", J. Shock. Vib, vol. 37, pp. 42-49, 2018.
[http://dx.doi.org/10.13465/j.cnki.jvs.2018.05.007]
[21]
S. Tang, B. Chen, H. Bai, and J. Zhao, "Application of genetic algorithm in the optimal design of space docking mechanism", J. Astronaut., vol. 2008, pp. 529-533, 2008.
[22]
J. Jiang, Z. Yang, and H. Wang, "Space electromagnetic flexible docking technology", J. Ordnance Equip. Eng., vol. 42, pp. 63-67, 2021.
[http://dx.doi.org/10.11809/bqzbgcxb2021.02.012]
[23]
J. Gao, J. Zhou, J. Ye, and L. Zeng, "Research of an eddy current damper design for docking mechanism", Shanghai Hangtian, vol. 33, pp. 23-28, 2016.
[http://dx.doi.org/10.19328/j.cnki.1006-1630.2016.05.004]
[24]
C. Underwood, S. Pellegrino, V.J. Lappas, C.P. Bridges, and J. Baker, "Using CubeSat/micro-satellite technology to demonstrate the Autonomous Assembly of a Reconfigurable Space Telescope (AAReST)", Acta Astronaut., vol. 114, pp. 112-122, 2015.
[http://dx.doi.org/10.1016/j.actaastro.2015.04.008]
[25]
A.K. Porter, D. Alinger, R.J. Sedwick, J. Merk, R. Opperman, A. Buck, G. Eslinger, P. Fisher, D. Miller, and E. Bou, "Dual-purpose resonate actuators for electromagnetic formation flight and wireless power transfer", In: AIAA 2014-0449, 2014.
[http://dx.doi.org/10.2514/6.2014-0449]
[26]
M. Barbetta, A. Boesso, F. Branz, A. Carron, L. Olivieri, J. Prendin, G. Rodeghiero, F. Sansone, L. Savioli, and F. Spinello, "Autonomous rendezvous, control and docking experiment - reflight 2", In Small Satellites Systems and Services Symposium, Mallorca, 2014.
[27]
A. Boesso, and A. Francesconi, "ARCADE small-scale docking mechanism for micro-satellites", Acta Astronaut., vol. 86, pp. 77-87, 2013.
[http://dx.doi.org/10.1016/j.actaastro.2013.01.006]
[28]
N.R. Hoff, Design and implementation of a relative state estimator for docking and formation control of modular autonomous spacecraft., Massachusetts Institute of Technology, 2007.
[29]
L. Rodgers, S. Nolet, and D.W. Miller, Development of the miniature video docking sensor.Modeling, Simulation, and Verification of Space-based Systems III., vol. Vol. 6221. SPIE, 2006, pp. 121-132.
[http://dx.doi.org/10.1117/12.665258]
[30]
L. Rodgers, N. Hoff, E. Jordan, M. Heiman, and D. Miller, "Small satellites sample paper", In Proceedings of the AIAA/USU Conference on Small Satellites, Mission Lessons, SSC12-XII-1, 2005.
[31]
R. Zhu, H. Wang, Y. Xu, and Y. Wei, "From ETS-VII to HTV: Study of Japanese rendezvous and docking/berthing technologies", Hangtianqi Gongcheng, vol. 20, pp. 6-31, 2011.
[http://dx.doi.org/10.3969/j.issn.1673-8748.2011.04.002]
[32]
F. Branz, L. Olivieri, F. Sansone, and A. Francesconi, "Miniature docking mechanism for CubeSats", Acta Astronaut., vol. 176, pp. 510-519, 2020.
[http://dx.doi.org/10.1016/j.actaastro.2020.06.042]
[33]
M. Duzzi, R. Casagrande, M. Mazzucato, F. Trevisi, F. Vitellino, M. Vitturi, A. Cenedese, and A. Francesconi, "Electromagnetic position and attitude control for PACMAN experiment", In Proceedings of the 10th International ESA Conference on Guidance, Navigation, vol. 29, Control Systems, Salzburg, Austria, 2017.
[34]
L. Olivieri, and A. Francesconi, "Design and test of a semiandrogynous docking mechanism for small satellites", Acta Astronaut., vol. 122, pp. 219-230, 2016.
[http://dx.doi.org/10.1016/j.actaastro.2016.02.004]
[35]
M. Kortman, S. Ruhl, J. Weise, J. Kreisel, T. Schervan, H. Schmidt, and A. Dafnis, "Building block based iBoss approach: Fully modular systems with standard interface to enhance future satellites", In 66th International Astronautical Congress, 2015, pp. 1-11 Jerusalem
[36]
J. Bowen, M. Villa, and A. Williams, "Cubesat based rendezvous, proximity operations, and docking in the CPOD mission", In 29th Annual AIAA/USU Conference on Small Satellites, 2015.
[37]
M. Barbetta, A. Boesso, F. Branz, A. Carron, L. Olivieri, J. Prendin, G. Rodeghiero, F. Sansone, L. Savioli, F. Spinello, and A. Francesconi, "ARCADE-R2 experiment on board BEXUS 17 stratospheric balloon", CEAS Space J., vol. 7, no. 3, pp. 347-358, 2015.
[http://dx.doi.org/10.1007/s12567-015-0083-3]
[38]
S. Mohan, A. Saenz-Otero, S. Nolet, D.W. Miller, and S. Sell, "SPHERES flight operations testing and execution", Acta Astronaut., vol. 65, no. 7-8, pp. 1121-1132, 2009.
[http://dx.doi.org/10.1016/j.actaastro.2009.03.039]
[39]
P. Tchoryk Jr, A.B. Hays, and J.C. Pavlich, A docking solution for on-orbit satellite servicing: Part of the responsive space equation., vol. 2001. AIAA-LA Section/SSTC, 2003, pp. 1-3.
[40]
L. Lin, Development course of space rendezvous and docking., Space International, 2018, pp. 39-42.
[41]
C. Zhang, and Z. Liu, "Review of space docking mechanism and its technology", Shanghai Hangtian, vol. 33, pp. 1-11, 2016.
[http://dx.doi.org/10.19328/j.cnki.1006-1630.2016.05.001]
[42]
Z. Yu, L. Chu, and Z. Wang, Hydraulic and pneumatic trans-mission., Beijing Institute of Technology Press: Beijing, 2017, p. 387.
[43]
Z. Liu, and G. Zhao, Fluid drive and control technology., Xidian University Press: Xi'an, 2016, p. 422.
[44]
W. Wang, Y. Zhuang, X. Zhang, and F. Yang, Spacecraft docking and capture mechanisms., China Aerospace Publishing House: Beijing, 2022, p. 185.
[45]
F. Xu, G. Yang, L. Wang, Z. Li, and X. Wang, "A robust game optimization for electromagnetic buffer under parameters uncertainty", Eng. Comput., vol. 39, pp. 1791-1806, 2022.
[http://dx.doi.org/10.1007/s00366-021-01561-x]
[46]
H.A. Sodano, J.S. Bae, D.J. Inman, and W.K. Belvin, "Improved concept and model of eddy current damper", J Vib Acoust, vol. 128, no. 3, p. 294, 2006.
[http://dx.doi.org/10.1115/1.2172256]
[47]
Z. Zhang, Y. Zhang, C. Yu, M. Li, and Z. Jiao, "Study of magnetorheological fluids", J. Funct. Mater. Devices, pp. 340-344, 2001.
[48]
Y. Xia, Q. He, and Q. Wang, "Increasingly compelling magnetorheological fluids - in many practical applications, magnetorheological fluids are superior to galvanic fluids in terms of strength and stability", In: Machine Tool & Hydraulics, 1996, pp. 52-53.
[49]
D.S. Yoon, Y.J. Park, and S.B. Choi, "An eddy current effect on the response time of a magnetorheological damper: Analysis and experimental validation", Mech. Syst. Signal Process., vol. 127, pp. 136-158, 2019.
[http://dx.doi.org/10.1016/j.ymssp.2019.02.058]
[50]
C. Bharathi Priya, and N. Gopalakrishnan, "Temperature dependent modelling of magnetorheological (MR) dampers using support vector regression", Smart Mater. Struct., vol. 28, no. 2, p. 025021, 2019.
[http://dx.doi.org/10.1088/1361-665X/aae5f0]
[51]
M. Cheng, J. Xing, Z. Chen, and Z. Pan, "Design, analysis and experimental investigation on the whole-spacecraft vibration isolation platform with magnetorheological dampers", Smart Mater. Struct., vol. 28, no. 7, p. 075016, 2019.
[http://dx.doi.org/10.1088/1361-665X/ab0ebe]
[52]
M. Luo, J. Yang, and F. Han, "Design and test verification of energy absorption material in the soft landing gear for tianwen-1 mars probe", J. Deep Space Explor., vol. 8, pp. 472-477, 2021.
[http://dx.doi.org/10.15982/j.issn.2096-9287.2021.20210044]
[53]
J. Huang, j. Man, J. Yang, Y. Ye, R. Liu, and Z. Zheng, "Experimental research on thermal environment adaptability of aluminum honeycomb”", Zairen Hangtian, vol. 22, pp. 313-316, 2016.
[http://dx.doi.org/10.16329/j.cnki.zrht.2016.03.007]
[54]
J. Chen, H. Nie, H. Bai, and Q. Zhao, "Review of the development of soft-landing buffer for lunar explorations", In The third academic conference of the deep space exploration technology committee of the Chinese academy of astronautics, Xi'an, Shaanxi, China, 2006, pp. 60-64
[55]
C. Luo, R. Liu, Z. Zheng, M. Li, and J. Shen, "Experimental investigations of an energy Absorber based on thin-walled metal tube's plastic deformation", Shock. Vib., vol. 28, no. 10, pp. 26-30, 2010.
[http://dx.doi.org/10.13465/j.cnki.jvs.2010.04.022]
[56]
T. Shen, C. Zhang, W. Wang, W. Fen, and H. Qiu, "Dynamic simulation analysis of capture and buffer system based on claw-type docking mechanism", Chin. J. Theor. Appl. Mech., vol. 52, pp. 1590-1598, 2020.
[http://dx.doi.org/10.6052/0459-1879-20-108]
[57]
R.J. McLaughlin, and W.H. Warr, The Common Berthing Mechanism (CBM) for international space station., Society of Automotive Engineers, 2001, pp. 2001-01.
[58]
[59]
J. Cook, V. Aksamentov, T. Hoffman, and W. Bruner, "ISS interface mechanisms and their heritage", In: AIAA SPACE 2011 Conference & Exposition.
2011 Long Beach, California [http://dx.doi.org/10.2514/6.2011-7150]
[60]
JAXA, "Kibo Exposed Facility User Handbook", Available from: https://iss.jaxa.jp/kibo/library/fact/data/JFE_HDBK_all_E.pdf
[61]
J. Yang, Y. Qi, and H. Lou, Unlockable attachment and detachment devices used on spacecraft., vol. 12. Spacecraft Engineering, 2003.
[62]
"Structural design of O-shaped rubber sealing rings commonly used in the aviation industry", Available from: http://www.dshmfq.com/articles/hkgyzc.html
[63]
Satellite vacuum thermal test contamination control method, QJ, 1992, pp. 2321-1992.
[64]
T. Meng, W. Liu, D. Liu, and M. Zhuang, "The effect of thickener on low temperature performance of grease", Pet. Process. Petrochemical., vol. 51, pp. 7-10, 2020.
[65]
D. Gonçalves, B. Graça, A.V. Campos, and J. Seabra, "Film thickness and friction behaviour of thermally aged lubricating greases", Tribol. Int., vol. 100, pp. 231-241, 2016.
[http://dx.doi.org/10.1016/j.triboint.2016.01.044]
[66]
H. Liu, and Z. Wang, "Overview of solid lubricants and solid lubricating film", Synth. Lubr., vol. 49, pp. 27-30, 2022.
[http://dx.doi.org/10.3969/j.issn.1672-4364.2022.02.008]
[67]
S. Wen, and P. Huang, Principles of Tribology., 2nd ed Tsinghua University Press: Beijing, 2017, p. 538.
[http://dx.doi.org/10.1002/9781119214908]
[68]
C. Hu, S. Gao, M. Xiong, Z. Tang, Y. Wang, C. Liang, D. Li, W. Zhang, L. Chen, L. Zeng, X. Liu, R. Wang, Q. Wei, C. Zhu, D. Pan, P. Xin, H. Yang, W. Luo, D. Liu, J. Zhou, and N. Dong, "Key technologies of the China space station core module manipulator", Sci. Sin. Technol., vol. 52, no. 9, pp. 1299-1331, 2022.
[http://dx.doi.org/10.1360/SST-2021-0507]
[69]
K.S. Young, P.S. Ho, P.J. Oh, S.J. An, J.J. Woo, and W. Deri, "A spacecraft docking system using a cable-driven parallel robot structure.", K.R. Patent 101808553B1, 2017.
[70]
Y.A. Vladimirovich, P.V. Nikolaevich, S.N. Alekseevich, B.M. Aleksandrovich, C.I. Evgenevich, and R.Y. Vladimirovich, "Space craft docking mechanism.", R.U. Patent 2662605C2. 2018
[71]
M. Isayama, and K. Okuda, "Docking device.", J.P. Patent 2018172025A, 2018.
[72]
A. Halsband, "Docking system and method forsatellites.", U.S. Patent 10611504B2. 2020
[73]
A. Halsband, "Docking system and method for satellites.", WO Patent 2016030890A1, 2016.
[74]
Z.V. Dmitrievich, and Z.D. Aleksandrovich, "Docking-mounting module.", W.O. Patent 2021126010A1. 2020
[75]
A.M.J. Miguel, and B.E. Ioritz, "Docking system for spacecraft and spacecraft comprising the same.", W.O. Patent 2022195137A1. 2022
[76]
H. Qiu, C. Zhang, H. Yuan, J. Yao, L. Ding, J. Gao, Z. Liu, and J. Shi, "Docking mechanism driving and buffering system with controllable damping.", C.N. Patent 108860665A. 2018
[77]
Y.A. Vladimirovich, P.V. Nikolaevich, C.I. Evgenevich, R.Y. Vladimirovich, Z.G. Aleksandrovich, and K.A. Aleksandrovich, "Peripheral docking adapter.", R.U. Patent 2657623C1. 2018
[78]
X. Xingnian, W. Hao, and C. Long, "Space electromagnetic docking mechanism capable of repeatedly achieving locking/unlocking, and docking method thereof.", C.N. Patent 108639389A. 2018
[79]
L. Zhi, Z. Chongfeng, J. Zongxiang, S. Junwei, X. Zhe, and H. Xueping, "Spacecraft docking system and method.", W.O. Patent 2018014676A1. 2018
[80]
S. Deng, Y. Wang, H. Cai, Y. Cheng, and Z. Yang, "Multi-sensing force control space soft butt joint mechanism.", C.N. Patent 109533399A, 2019.
[81]
Z.V. Dmitrievich, and Z.D. Aleksandrovich, "Spacecraft docking device.", W.O. Patent 2021126009A1. 2021
[82]
F. Tajan, and T. Blais, "Device for damping docking to a satellite.", W.O. Patent 2021123632A1. 2021
[83]
Y.A. Vladimirovich, P.V. Nikolaevich, R.Y. Vladimirovich, and C.I. Evgenevich, "Peripheral docking mechanism tightening device.", R.U. Patent 2706741C1. 2019
[84]
F. Yang, Y. Zhuang, B. Wang, W. Li, W. Wang, Y. Ye, W. Liu, K. Sun, and H. Yue, "Rotary T-shaped head type space docking locking and release mechanism.", C.N. Patent 111688955A. 2020
[85]
R. Han, B. Wang, Y. Zhuang, P. Liu, Y. Wang, W. Li, G. Sun, B. Pan, L. Li, Y. Ye, and Z. Zhao, "High-precision electromagnetic butt joint mechanism with large-angle tolerance.", C.N. Patent 111994306A. 2020
[86]
P.O. Sorensen, M.A. Miche, W.A. Llorens, D.M. Murphy, and J. Braden, "Systems for capturing a client vehicle.", U.S. Patent 11104459B2. 2021
[87]
N. Kong, B. Wang, S. Ma, R. Han, Y. Zhuang, Z. Niu, and Z. Geng, "Space docking mechanism based on electromagnetic ball lock structure.", C.N. Patent 113277126A. 2021
[88]
E.R. Ulrich, and S.T. Shimohara, "Omni-directional extensible grasp mechanisms.", U.S. Patent 11518552B2. 2022
[89]
B.M. Aleksandrovich, D.V. Pavlovich, M.I. Aleksandrovna, and R.E. Nikolaevich, "Sealing mechanism of the joint of the docking assembly of spacecraft.", R.U. Patent 2648662C2. 2018
[90]
K.K. Konstantinovich, "Sealing mechanism of joint of docking units.", R.U. Patent 2717287C1. 2020
[91]
N. Hejmanowski, A. Ghosh, and D.L. Carroll, "Guideless resilient androgynous serial port docking mechanism", "U.S. Patent 11401054B2", . 2022