Innovations in Treating Sporotrichosis: Drug Repurposing and Lead Compound Synthesis

Page: [991 - 1005] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Sporotrichosis, recognized by the World Health Organization (WHO) as a neglected tropical disease and classified among significant fungal health concerns, remains both underestimated and underreported. There is a profound impact of sporotrichosis on public health, affecting both humans and domestic animals. The causative agents are fungi within the Sporothrix genus, primarily transmitted through traumatic exposure to contaminated soil, plants, decomposing materials, or through scratches from infected animals, notably cats. While sporotrichosis is a global concern, its prevalence is particularly noteworthy in tropical and subtropical regions. The limited treatment options for sporotrichosis, with itraconazole as the preferred choice, underscore the challenges posed by fungal infections. Issues such as toxicity and drug resistance further complicate effective management. Consequently, this review aims to elucidate key objectives: identification of novel synthetic compounds revealed in the literature, highlighting ongoing efforts to develop new treatments against sporotrichosis, examining promising anti-sporothrix natural products, and providing an overview of endeavors to repurpose approved drugs. The key findings from the study underscore the urgent need for diversified and effective drugs for the treatment of Sporotrichosis.

Graphical Abstract

[1]
WHO, World Health Organization Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases. 2021. Available from: https://www.who.int/publications-detail-redirect/WHOUCN-NTD-2020.01
[2]
Schenck, B.R. On refractory subcutaneous abscess caused by a fungus possibly related to the Sporotricha. Bull. Johns Hopkins Hosp., 1898, 93, 286-290.
[3]
Lopes-Bezerra, L.M.; Schubach, A.; Costa, R.O. Sporothrix schenckii and sporotrichosis. An. Acad. Bras. Cienc., 2006, 78(2), 293-308.
[http://dx.doi.org/10.1590/S0001-37652006000200009] [PMID: 16710567]
[4]
Cognialli, R.C.R.; Cáceres, D.H.; Bastos, F.A.G.D.; Cavassin, F.B.; Lustosa, B.P.R.; Vicente, V.A.; Breda, G.L.; Santos-Weiss, I.; Queiroz-Telles, F. Rising incidence of Sporothrix brasiliensis infections, Curitiba, Brazil, 2011-2022. Emerg. Infect. Dis., 2023, 29(7), 1330-1339.
[http://dx.doi.org/10.3201/eid2907.230155] [PMID: 37347527]
[5]
Barros, M.B.L.; Schubach, T.P.; Coll, J.O.; Gremião, I.D.; Wanke, B.; Schubach, A. Esporotricose: A evolução e os desafios de uma epidemia. Rev. Panam. Salud Publica, 2010, 27(6), 455-460.
[PMID: 20721446]
[6]
Freitas, D.F.S.; do Valle, A.C.F.; de Almeida Paes, R.; Bastos, F.I.; Galhardo, M.C.G. Zoonotic sporotrichosis in Rio de Janeiro, Brazil: A protracted epidemic yet to be curbed. Clin. Infect. Dis., 2010, 50(3), 453.
[http://dx.doi.org/10.1086/649891] [PMID: 20064034]
[7]
de Lima Barros, M.B.; Schubach, A.O.; de Vasconcellos Carvalhaes, R.; Martins, E.B.; Teixeira, J.L.; Wanke, B. Treatment of cutaneous sporotrichosis with itraconazole-study of 645 patients. Clin. Infect. Dis., 2011, 52(12), e200-e206.
[http://dx.doi.org/10.1093/cid/cir245] [PMID: 21628477]
[8]
Bastos de Lima Barros, M.; Oliveira Schubach, A.; Francesconi do Valle, A.C.; Gutierrez Galhardo, M.C.; Conceição-Silva, F.; Pacheco Schubach, T.M.; Santos Reis, R.; Wanke, B.; Feldman Marzochi, K.B.; Conceição, M.J. Cat-transmitted sporotrichosis epidemic in Rio de Janeiro, Brazil: Description of a series of cases. Clin. Infect. Dis., 2004, 38(4), 529-535.
[http://dx.doi.org/10.1086/381200] [PMID: 14765346]
[9]
Silva, M.B.; Costa, M.M.; Torres, C.C.; Galhardo, M.C.; Valle, A.C.; Magalhães, M.A.; Sabroza, P.C.; Oliveira, R.M. Urban sporotrichosis: A neglected epidemic in Rio de Janeiro, Brazil. Cad. Saude Publica, 2012, 28(10), 1867-1880.
[http://dx.doi.org/10.1590/S0102-311X2012001000006] [PMID: 23090167]
[10]
Thomson, P.; González, C.; Blank, O.; Ramírez, V.; Río, C.; Santibáñez, S.; Pena, P. Sporotrichosis outbreak due to Sporothrix brasiliensis in domestic cats in Magallanes, Chile: A one-health-approach study. J. Fungi , 2023, 9(2), 226.
[http://dx.doi.org/10.3390/jof9020226] [PMID: 36836340]
[11]
Bongomin, F.; Gago, S.; Oladele, R.; Denning, D. Global and multi-national prevalence of fungal diseases-estimate precision. J. Fungi , 2017, 3(4), 57.
[http://dx.doi.org/10.3390/jof3040057] [PMID: 29371573]
[12]
Queiroz-Telles, F.; Bonifaz, A.; Cognialli, R.; Lustosa, B.P.R.; Vicente, V.A.; Ramírez-Marín, H.A. Sporotrichosis in children: Case series and narrative review. Curr. Fungal Infect. Rep., 2022, 16(2), 33-46.
[http://dx.doi.org/10.1007/s12281-022-00429-x] [PMID: 35284035]
[13]
Yelverton, C.B.; Stetson, C.L.; Bang, R.H.; Clark, J.W.; Butler, D.F. Fatal sporotrichosis. Cutis, 2006, 78(4), 253-256.
[PMID: 17121061]
[14]
Hardman, S.; Stephenson, I.; Jenkins, D.R.; Wiselka, M.J.; Johnson, E.M. Disseminated Sporothix schenckii in a patient with AIDS. J. Infect., 2005, 51(3), e73-e77.
[http://dx.doi.org/10.1016/j.jinf.2004.07.001] [PMID: 16230207]
[15]
Fonseca-Reyes, S.; López Maldonado, F.J.; Miranda-Ackerman, R.C.; Vélez-Gómez, E.; Alvarez-Iñiguez, P.; Velarde-Rivera, F.A.; Ascensio-Esparza, E.P. Extracutaneous sporotrichosis in a patient with liver cirrhosis. Rev. Iberoam. Micol., 2007, 24(1), 41-43.
[http://dx.doi.org/10.1016/S1130-1406(07)70010-4] [PMID: 17592891]
[16]
Larsson, C.E. Esporotricose. Braz. J. Vet. Res. Anim. Sci., 2011, 48(3), 250-259.
[http://dx.doi.org/10.11606/S1413-95962011000300010]
[17]
Rodrigues, A.M.; Cruz Choappa, R.; Fernandes, G.F.; de Hoog, G.S.; de Camargo, Z.P. Sporothrix chilensis sp. nov. (Ascomycota: Ophiostomatales), a soil-borne agent of human sporotrichosis with mild-pathogenic potential to mammals. Fungal Biol., 2016, 120(2), 246-264.
[http://dx.doi.org/10.1016/j.funbio.2015.05.006] [PMID: 26781380]
[18]
Gómez-Gaviria, M.; Martínez-Duncker, I.; García-Carnero, L.C.; Mora-Montes, H.M. Differential recognition of Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa by human monocyte-derived macrophages and dendritic cells. Infect. Drug Resist., 2023, 16, 4817-4834.
[http://dx.doi.org/10.2147/IDR.S419629] [PMID: 37520448]
[19]
Zaitz, C.; Campbell, I.; Marques, S.A.; Ruiz, L.R.B.; Framil, V.M.S. Compêndio de Micologia Médica, 2nd ed; Ed. Guanabara Koogan: Rio de Janeiro, 2010.
[20]
Fichman, V.; Almeida-Silva, F.; Francis Saraiva Freitas, D.; Zancopé-Oliveira, R.M.; Gutierrez-Galhardo, M.C.; Almeida-Paes, R. Severe sporotrichosis caused by Sporothrix brasiliensis: Antifungal susceptibility and clinical outcomes. J. Fungi , 2022, 9(1), 49.
[http://dx.doi.org/10.3390/jof9010049] [PMID: 36675870]
[21]
Xavier, M.O.; Poester, V.R.; Trápaga, M.R.; Stevens, D.A. Sporothrix brasiliensis: Epidemiology, therapy, and recent developments. J. Fungi , 2023, 9(9), 921.
[http://dx.doi.org/10.3390/jof9090921] [PMID: 37755029]
[22]
Rodrigues, A.M.; Della Terra, P.P.; Gremião, I.D.; Pereira, S.A.; Orofino-Costa, R.; de Camargo, Z.P. The threat of emerging and re-emerging pathogenic Sporothrix species. Mycopathologia, 2020, 185(5), 813-842.
[http://dx.doi.org/10.1007/s11046-020-00425-0] [PMID: 32052359]
[23]
Schubach, T.M.P.; Schubach, A.; Okamoto, T.; Barros, M.B.L.; Figueiredo, F.B.; Cuzzi, T.; Fialho-Monteiro, P.C.; Reis, R.S.; Perez, M.A.; Wanke, B. Evaluation of an epidemic of sporotrichosis in cats: 347 cases (1998-2001). J. Am. Vet. Med. Assoc., 2004, 224(10), 1623-1629.
[http://dx.doi.org/10.2460/javma.2004.224.1623] [PMID: 15154732]
[24]
Schubach, T.M.P.; Schubach, A.O. Esporotricose em Cães e Gatos. Rev. Clín. Vet., 2000, 29, 21-24.
[25]
Fichman, V.; Gremião, I.D.F.; Mendes-Júnior, A.A.V.; Sampaio, F.M.S.; Freitas, D.F.S.; Oliveira, M.M.E.; Almeida-Paes, R.; Valle, A.C.F.; Gutierrez-Galhardo, M.C. Sporotrichosis transmitted by a cockatiel (Nymphicus hollandicus). J. Eur. Acad. Dermatol. Venereol., 2018, 32(4), e157-e158.
[http://dx.doi.org/10.1111/jdv.14661] [PMID: 29080316]
[26]
Poester, V.R.; Basso, R.P.; Stevens, D.A.; Munhoz, L.S.; de Souza Rabello, V.B.; Almeida-Paes, R.; Zancopé-Oliveira, R.M.; Zanchi, M.; Benelli, J.L.; Xavier, M.O. Treatment of human sporotrichosis caused by Sporothrix brasiliensis. J. Fungi , 2022, 8(1), 70.
[http://dx.doi.org/10.3390/jof8010070] [PMID: 35050010]
[27]
Greene, C.E. Antifungal chemotherapy.In: Infectious diseases of the dog and cat, 4th ed; Greene, C.E., Ed.; Saunders Elsevier: Philadelphia, 2012, pp. 579-588.
[28]
Gremião, I.D.F. Martins da Silva da Rocha, E.; Montenegro, H.; Carneiro, A.J.B.; Xavier, M.O.; de Farias, M.R.; Monti, F.; Mansho, W.; de Macedo Assunção Pereira, R.H.; Pereira, S.A.; Lopes-Bezerra, L.M. Guideline for the management of feline sporotrichosis caused by Sporothrix brasiliensis and literature revision. Braz. J. Microbiol., 2021, 52(1), 107-124.
[http://dx.doi.org/10.1007/s42770-020-00365-3] [PMID: 32990922]
[29]
Dunstan, R.W.; Langham, R.F.; Reimann, K.A.; Wakenell, P.S. Feline sporotrichosis: A report of five cases with transmission to humans. J. Am. Acad. Dermatol., 1986, 15(1), 37-45.
[http://dx.doi.org/10.1016/S0190-9622(86)70139-4] [PMID: 3722508]
[30]
Mackay, B.M.; Menrath, V.H.; Ridley, M.F.; Kelly, W.R. Sporotrichosis in a cat. Aust. Vet. Pract., 1986, 16, 3-5.
[31]
Nusbaum, B.P.; Gulbas, N.; Horwitz, S.N. Sporotrichosis acquired from a cat. J. Am. Acad. Dermatol., 1983, 8(3), 386-391.
[http://dx.doi.org/10.1016/S0190-9622(83)80325-9] [PMID: 6220033]
[32]
Antunes, T.Á.; Nobre, M.O.; Faria, R.O.; Meinerz, A.R.M.; Martins, A.A.; Cleff, M.B.; Fernandes, C.G.; Meireles, M.C.A. Esporotricose cutânea experimental: Avaliação in vivo do itraconazol e terbinafina. Rev. Soc. Bras. Med. Trop., 2009, 42(6), 706-710.
[http://dx.doi.org/10.1590/S0037-86822009000600018] [PMID: 20209359]
[33]
Meinerz, A.R.M.; Nascente, P.S.; Schuch, L.F.D.; de Faria, R.O.; Antunes, T.Á.; Cleff, M.B.; de Sousa, L.L.; Xavier, M.O.; Madrid, I.M.; Meireles, M.C.A.; de Mello, J.R.B. Felino doméstico como transmissor da esporotricose em trabalhador rural - relato de caso. Arq. Inst. Biol. , 2007, 74(2), 149-151.
[http://dx.doi.org/10.1590/1808-1657v74p1492007]
[34]
Viana, P.G.; Figueiredo, A.B.F.; Gremião, I.D.F.; de Miranda, L.H.M.; da Silva Antonio, I.M.; Boechat, J.S.; de Sá Machado, A.C.; de Oliveira, M.M.E.; Pereira, S.A. Successful treatment of canine sporotrichosis with terbinafine: Case reports and literature review. Mycopathologia, 2018, 183(2), 471-478.
[http://dx.doi.org/10.1007/s11046-017-0225-6] [PMID: 29222709]
[35]
Cuenca-Estrella, M. Combinations of antifungal agents in therapy-what value are they? J. Antimicrob. Chemother., 2004, 54(5), 854-869.
[http://dx.doi.org/10.1093/jac/dkh434] [PMID: 15375111]
[36]
Gram, D. Esporotricose.In: Smith Jr., F. W. K. Consulta veterinária em 5 minutos, 1st ed; Tilley, L.P., Ed.; Ed. Manole Ltda: São Paulo, 2003.
[37]
Almeida-Paes, R.; Frases, S.; Araújo, G.S.; de Oliveira, M.M.E.; Gerfen, G.J.; Nosanchuk, J.D.; Zancopé-Oliveira, R.M. Biosynthesis and functions of a melanoid pigment produced by species of the Sporothrix complex in the presence of L-tyrosine. Appl. Environ. Microbiol., 2012, 78(24), 8623-8630.
[http://dx.doi.org/10.1128/AEM.02414-12] [PMID: 23042177]
[38]
Almeida-Paes, R.; Figueiredo-Carvalho, M.H.G.; Brito-Santos, F.; Almeida-Silva, F.; Oliveira, M.M.E.; Zancopé-Oliveira, R.M. Melanins protect Sporothrix brasiliensis and Sporothrix schenckii from the antifungal effects of terbinafine. PLoS One, 2016, 11(3), e0152796.
[http://dx.doi.org/10.1371/journal.pone.0152796] [PMID: 27031728]
[39]
Mazu, T.K.; Bricker, B.A.; Flores-Rozas, H.; Ablordeppey, S.Y. The mechanistic targets of antifungal agents: An overview. Mini Rev. Med. Chem., 2016, 16(7), 555-578.
[http://dx.doi.org/10.2174/1389557516666160118112103] [PMID: 26776224]
[40]
Waller, S.B.; Dalla Lana, D.F.; Quatrin, P.M.; Ferreira, M.R.A.; Fuentefria, A.M.; Mezzari, A. Antifungal resistance on Sporothrix species: An overview. Braz. J. Microbiol., 2021, 52(1), 73-80.
[http://dx.doi.org/10.1007/s42770-020-00307-z] [PMID: 32476087]
[41]
Dowd, P.; Ham, S.W.; Naganathan, S.; Hershline, R. The mechanism of action of vitamin K. Annu. Rev. Nutr., 1995, 15(1), 419-440.
[http://dx.doi.org/10.1146/annurev.nu.15.070195.002223] [PMID: 8527228]
[42]
de Carvalho da Silva, F.; Francisco Ferreira, V. Natural naphthoquinones with great importance in medicinal chemistry. Curr. Org. Synth., 2016, 13(3), 334-371.
[http://dx.doi.org/10.2174/1570179412666150817220343]
[43]
Tandon, V.K.; Maurya, H.K.; Tripathi, A. ShivaKeshava, G.B.; Shukla, P.K.; Srivastava, P.; Panda, D. 2,3-Disubstituted-1,4-naphthoquinones, 12H-benzo[b]phenothiazine-6,11-diones and related compounds: Synthesis and biological evaluation as potential antiproliferative and antifungal agents. Eur. J. Med. Chem., 2009, 44(3), 1086-1092.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.025] [PMID: 18708272]
[44]
Futuro, D.O.; Ferreira, P.G.; Nicoletti, C.D.; Borba-Santos, L.P.; Silva, F.C.D.; Rozental, S.; Ferreira, V.F. The antifungal activity of naphthoquinones: An integrative review. An. Acad. Bras. Cienc., 2018, 90((1 suppl 2)(Suppl. 2)), 1187-1214.
[http://dx.doi.org/10.1590/0001-3765201820170815] [PMID: 29873671]
[45]
Tandon, V.K.; Maurya, H.K.; Mishra, N.N.; Shukla, P.K. Micelles catalyzed chemoselective synthesis ‘in water’ and biological evaluation of oxygen containing hetero-1,4-naphthoquinones as potential antifungal agents. Bioorg. Med. Chem. Lett., 2011, 21(21), 6398-6403.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.095] [PMID: 21930375]
[46]
Tandon, V.K.; Chhor, R.B.; Singh, R.V.; Rai, S.; Yadav, D.B. Design, synthesis and evaluation of novel 1,4-naphthoquinone derivatives as antifungal and anticancer agents. Bioorg. Med. Chem. Lett., 2004, 14(5), 1079-1083.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.002] [PMID: 14980639]
[47]
Louvis, A.R.; Silva, N.A.A.; Semaan, F.S.; da Silva, F.C.; Saramago, G.; de Souza, L.C.S.V.; Ferreira, B.L.A.; Castro, H.C.; Salles, J.P.; Souza, A.L.A.; Faria, R.X.; Ferreira, V.F.; Martins, D.L. Synthesis, characterization and biological activities of 3-aryl-1,4-naphthoquinones - green palladium-catalysed Suzuki cross coupling. New J. Chem., 2016, 40(9), 7643-7656.
[http://dx.doi.org/10.1039/C6NJ00872K]
[48]
Riffel, A.; Medina, L.F.; Stefani, V.; Santos, R.C.; Bizani, D.; Brandelli, A. In vitro antimicrobial activity of a new series of 1,4-naphthoquinones. Braz. J. Med. Biol. Res., 2002, 35(7), 811-818.
[http://dx.doi.org/10.1590/S0100-879X2002000700008] [PMID: 12131921]
[49]
Freire, C.P.V.; Ferreira, S.B.; de Oliveira, N.S.M.; Matsuura, A.B.J.; Gama, I.L.; da Silva, F.C.; de Souza, M.C.B.V.; Lima, E.S.; Ferreira, V.F. Synthesis and biological evaluation of substituted α- and β-2,3-dihydrofuran naphthoquinones as potent anticandidal agents. MedChemComm, 2010, 1(3), 229.
[http://dx.doi.org/10.1039/c0md00074d]
[50]
Garcia Ferreira, P.; Pereira Borba-Santos, L.; Noronha, L.; Deckman Nicoletti, C.; de Sá Haddad Queiroz, M.; de Carvalho da Silva, F.; Rozental, S.; Omena Futuro, D.; Francisco Ferreira, V. Synthesis, stability studies, and antifungal evaluation of substituted α- and β-2,3-dihydrofuranaphthoquinones against Sporothrix brasiliensis and Sporothrix schenckii. Molecules, 2019, 24(5), 930.
[http://dx.doi.org/10.3390/molecules24050930] [PMID: 30866442]
[51]
Borba-Santos, L.P.; Nicoletti, C.D.; Vila, T.; Ferreira, P.G.; Araújo-Lima, C.F.; Galvão, B.V.D.; Felzenszwalb, I.; de Souza, W.; de Carvalho da Silva, F.; Ferreira, V.F.; Futuro, D.O.; Rozental, S. A novel naphthoquinone derivative shows selective antifungal activity against Sporothrix yeasts and biofilms. Braz. J. Microbiol., 2022, 53(2), 749-758.
[http://dx.doi.org/10.1007/s42770-022-00725-1] [PMID: 35258797]
[52]
Fieser, L.F. The alkylation of hydroxynaphthoquinone. J. Am. Chem. Soc., 1926, 48(12), 3201-3214.
[http://dx.doi.org/10.1021/ja01691a030]
[53]
Novais, J.S.; Rosandiski, A.C.; de Carvalho, C.M.; de Saules Silva, L.S.; Dos S Velasco de Souza, L.C. Santana, M.V.; Martins, N.R.C.; Castro, H.C.; Ferreira, V.F.; Gonzaga, D.T.G.; de Resende, G.O.; de C da Silva, F. Efficient synthesis and antibacterial profile of Bis(2-hydroxynaphthalene-1,4-dione). Curr. Top. Med. Chem., 2020, 20(2), 121-131.
[http://dx.doi.org/10.2174/1568026619666191210160342] [PMID: 31820692]
[54]
Oliveira, D.S. Of Clinical-epidemiological assessment and sensitivity profile to antifungals of Sporothrix.In: brasiliensis isolated from domestic felines in the State of Rio de Janeiro; Fluminense Federal University - Faculty of Pharmacy, 2016.
[55]
de Souza, L.C.S.V.; Alcântara, L.M.; de Macêdo-Sales, P.A.; Reis, N.F.; de Oliveira, D.S.; Machado, R.L.D.; Geraldo, R.B.; dos Santos, A.L.S.; Ferreira, V.F.; Gonzaga, D.T.G.; da Silva, F.C.; Castro, H.C.; Baptista, A.R.S. Synthetic derivatives against wild-type and non-wild-type Sporothrix brasiliensis: In vitro and in silico analyses. Pharmaceuticals, 2022, 15(1), 55.
[http://dx.doi.org/10.3390/ph15010055] [PMID: 35056112]
[56]
Secci, D.; Bizzarri, B.; Bolasco, A.; Carradori, S.; D’Ascenzio, M.; Rivanera, D.; Mari, E.; Polletta, L.; Zicari, A. Synthesis, anti-Candida activity, and cytotoxicity of new (4-(4-iodophenyl)thiazol-2-yl)hydrazine derivatives. Eur. J. Med. Chem., 2012, 53, 246-253.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.006] [PMID: 22560629]
[57]
Torroba, T. Poly-sulfur-nitrogen heterocycles via sulfur chlorides and nitrogen reagents. J. Prakt. Chem., 1999, 341(2), 99-113.
[http://dx.doi.org/10.1002/(SICI)1521-3897(199902)341:2<99:AID-PRAC99>3.0.CO;2-Z]
[58]
Konstantinova, L.S.; Rakitin, O.A.; Rees, C.W. Pentathiepins. Chem. Rev., 2004, 104(5), 2617-2630.
[http://dx.doi.org/10.1021/cr0200926] [PMID: 15137802]
[59]
Chenard, B.L. Substituted benzopentathiepins. US Patent 4571404, 1984.
[60]
Davidson, B.S.; Molinski, T.F.; Barrows, L.R.; Ireland, C.M. Varacin: A novel benzopentathiepin from Lissoclinum vareau that is cytotoxic toward a human colon tumor. J. Am. Chem. Soc., 1991, 113(12), 4709-4710.
[http://dx.doi.org/10.1021/ja00012a065]
[61]
Asquith, C.R.M.; Machado, A.C.S.; de Miranda, L.H.M.; Konstantinova, L.S.; Almeida-Paes, R.; Rakitin, O.A.; Pereira, S.A. Synthesis and identification of pentathiepin-based inhibitors of Sporothrix brasiliensis. Antibiotics , 2019, 8(4), 249.
[http://dx.doi.org/10.3390/antibiotics8040249] [PMID: 31816950]
[62]
Borba-Santos, L.P.; Vila, T.; Rozental, S. Identification of two potential inhibitors of Sporothrix brasiliensis and Sporothrix schenckii in the Pathogen Box collection. PLoS One, 2020, 15(10), e0240658.
[http://dx.doi.org/10.1371/journal.pone.0240658] [PMID: 33052959]
[63]
Karges, J. Combining inorganic chemistry and biology: The underestimated potential of metal complexes in medicine. ChemBioChem, 2020, 21(21), 3044-3046.
[http://dx.doi.org/10.1002/cbic.202000397] [PMID: 32896976]
[64]
Chandra, S. Synthesis, spectroscopic, anticancer, antibacterial and antifungal studies of Ni(II) and Cu(II) complexes with hydrazine carboxamide, 2-. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 356-363.
[http://dx.doi.org/10.1016/j.saa.2014.06.143] [PMID: 25087168]
[65]
Gagini, T.; Colina-Vegas, L.; Villarreal, W.; Borba-Santos, L.P.; de Souza Pereira, C.; Batista, A.A.; Kneip Fleury, M.; de Souza, W.; Rozental, S.; Costa, L.A.S.; Navarro, M. Metal-azole fungistatic drug complexes as anti- Sporothrix spp. agents. New J. Chem., 2018, 42(16), 13641-13650.
[http://dx.doi.org/10.1039/C8NJ01544A]
[66]
Melo, A.M.; Poester, V.R.; Trapaga, M.; Nogueira, C.W.; Zeni, G.; Martinez, M.; Sass, G.; Stevens, D.A.; Xavier, M.O. Diphenyl diselenide and its interaction with antifungals against Aspergillus spp. Med. Mycol., 2021, 59(6), 528-536.
[http://dx.doi.org/10.1093/mmy/myaa072] [PMID: 32844203]
[67]
Venturini, T.P.; Chassot, F.; Loreto, É.S.; Keller, J.T.; Azevedo, M.I.; Zeni, G.; Santurio, J.M.; Alves, S.H. Antifungal activities of diphenyl diselenide and ebselen alone and in combination with antifungal agents against Fusarium spp. Med. Mycol., 2016, 54(5), 550-555.
[http://dx.doi.org/10.1093/mmy/myv120] [PMID: 26773133]
[68]
Loreto, É.S.; Nunes Mario, D.A.; Santurio, J.M.; Alves, S.H.; Nogueira, C.W.; Zeni, G. In vitro antifungal evaluation and structure-activity relationship of diphenyl diselenide and synthetic analogues. Mycoses, 2011, 54(5), e572-e576.
[http://dx.doi.org/10.1111/j.1439-0507.2010.01994.x] [PMID: 21615531]
[69]
Zimmermann, E.S.; Ferreira, L.M.; Denardi, L.B.; Sari, M.H.M.; Cervi, V.F.; Nogueira, C.W.; Alves, S.H.; Cruz, L. Mucoadhesive gellan gum hydrogel containing diphenyl diselenide-loaded nanocapsules presents improved anti-candida action in a mouse model of vulvovaginal candidiasis. Eur. J. Pharm. Sci., 2021, 167, 106011.
[http://dx.doi.org/10.1016/j.ejps.2021.106011] [PMID: 34537375]
[70]
Rossato, L.; Loreto, E.S.; Venturini, T.P.; de Azevedo, M.I.; Al-Hatmi, A.M.S.; Santurio, J.M.; Alves, S.H. In vitro combination between antifungals and diphenyl diselenide against Cryptococcus species. Mycoses, 2019, 62(6), 508-512.
[http://dx.doi.org/10.1111/myc.12905] [PMID: 30776159]
[71]
Benelli, J.L.; Poester, V.R.; Munhoz, L.S.; Klafke, G.B.; Stevens, D.A.; Xavier, M.O. In vitro anti-Cryptococcus activity of diphenyl diselenide alone and in combination with amphotericin B and fluconazole. Braz. J. Microbiol., 2021, 52(4), 1719-1723.
[http://dx.doi.org/10.1007/s42770-021-00552-w] [PMID: 34195915]
[72]
Gnat, S. Łagowski, D.; Dyląg, M.; Jóźwiak, G.; Trościańczyk, A.; Nowakiewicz, A. In vitro activity of ebselen and diphenyl diselenide alone and in combination with drugs against Trichophyton mentagrophytes strains. Pharmaceutics, 2022, 14(6), 1158.
[http://dx.doi.org/10.3390/pharmaceutics14061158] [PMID: 35745731]
[73]
Poester, V.R.; Mattei, A.S.; Mendes, J.F.; Klafke, G.B.; Ramis, I.B.; Sanchotene, K.O.; Xavier, M.O. Antifungal activity of diphenyl diselenide alone and in combination with itraconazole against Sporothrix brasiliensis. Med. Mycol., 2019, 57(3), 328-331.
[http://dx.doi.org/10.1093/mmy/myy044] [PMID: 29924365]
[74]
Poester, V.R.; Munhoz, L.S.; Nogueira, C.W.; Zeni, G.R.; Stevens, D.A.; Xavier, M.O. Diphenyl diselenide alone and in combination with itraconazole against Sporothrix schenckii s.str. and Sporothrix globosa. Braz. J. Microbiol., 2021, 52(3), 1271-1274.
[http://dx.doi.org/10.1007/s42770-021-00506-2] [PMID: 33909253]
[75]
Poester, V.R.; Munhoz, L.S.; Benelli, J.L.; Klafke, G.B.; Nogueira, C.W.; Zeni, G.R.; Stevens, D.A.; Larwood, D.; Xavier, M.O. Synergism of nikkomycin Z in combination with diphenyl diselenide against Sporothrix spp. Curr. Microbiol., 2021, 78(8), 2905-2909.
[http://dx.doi.org/10.1007/s00284-021-02581-y] [PMID: 34181049]
[76]
Zenderland, J.; Hart, R.; Bussmann, R.W.; Paniagua Zambrana, N.Y.; Sikharulidze, S.; Kikvidze, Z.; Kikodze, D.; Tchelidze, D.; Khutsishvili, M.; Batsatsashvili, K. The use of “Use Value”: Quantifying importance in ethnobotany. Econ. Bot., 2019, 73(3), 293-303.
[http://dx.doi.org/10.1007/s12231-019-09480-1]
[77]
Hu, F.; Tu, X.F.; Thakur, K.; Hu, F.; Li, X.L.; Zhang, Y.S.; Zhang, J.G.; Wei, Z.J. Comparison of antifungal activity of essential oils from different plants against three fungi. Food Chem. Toxicol., 2019, 134, 110821.
[http://dx.doi.org/10.1016/j.fct.2019.110821] [PMID: 31533060]
[78]
Moghaddam, M.; Mehdizadeh, L. Chemical composition and antifungal activity of essential oil of Thymus vulgaris grown in iran against some plant pathogenic fungi. J. Essent. Oil-Bear. Plants, 2020, 23(5), 1072-1083.
[http://dx.doi.org/10.1080/0972060X.2020.1843547]
[79]
de Carvalho, M.G.; Rondon, F.C.M.; Carneiro-Torres, D.S.; Fampa, P.; Bevilaqua, C.M.L.; Nogueira Bandeira, P.; Gomes, G.A. Essential oils of croton pulegiodorus baill and croton piauhiensis mull. Arg. (Euphorbiaceae): Chemical composition and anti-leishmania activity. Rev. Virtual Quim., 2022, 14, 938-946.
[http://dx.doi.org/10.21577/1984-6835.20220049]
[80]
Waller, S.B.; Madrid, I.M.; Faria, R.O.; Cleff, M.B.; Mello, J.R.B.; Meireles, M.C.A. Anti- Sporothrix spp. Activity of medicinal plants. Braz. J. Pharm. Sci., 2016, 52(2), 221-237.
[http://dx.doi.org/10.1590/S1984-82502016000200001]
[81]
Forezi, L.S.M.; Ferreira, P.G.; Hüther, C.M.; da Silva, F.C.; Ferreira, V.F. Aqui Tem Química: parte IV. Terpenos na Perfumaria. Rev. Virtual Quim., 2022, 14, 1005-1024.
[82]
Couto, C.S.F.; Raposo, N.R.B.; Rozental, S.; Borba-Santos, L.P.; Bezerra, L.M.L.; De Almeida, P.A.; Brandão, M.A.F. Chemical composition and antifungal properties of essential oil of Origanum vulgare Linnaeus (Lamiaceae) against Sporothrix schenckii and Sporothrix brasiliensis. Trop. J. Pharm. Res., 2015, 14(7), 1207-1212.
[http://dx.doi.org/10.4314/tjpr.v14i7.12]
[83]
Waller, S.B.; Madrid, I.M.; Ferraz, V.; Picoli, T.; Cleff, M.B.; de Faria, R.O.; Meireles, M.C.A.; de Mello, J.R.B. Cytotoxicity and anti-Sporothrix brasiliensis activity of the Origanum majorana Linn. oil. Braz. J. Microbiol., 2016, 47(4), 896-901.
[http://dx.doi.org/10.1016/j.bjm.2016.07.017] [PMID: 27515466]
[84]
Schippmann, U.; Leaman, D.J.; Cunningham, A.B. Impact of cultivation and gathering of medicinal plants on biodiversity: Global trends and issues, biodiversity and the ecosystem approach in agriculture, forestry and fisheries. Satellite Event on the Occasion of the 9th Regular Session of the Commission on Genetic Resources for Food and Agriculture, Inter-Departmental Working Group on Biological Diversity for Food and Agri-culture, 2002, 1-21.
[85]
Waller, S.B.; Cleff, M.B.; Dalla Lana, D.F.; de Mattos, C.B.; Guterres, K.A.; Freitag, R.A.; Sallis, E.S.V.; Fuentefria, A.M.; de Mello, J.R.B.; de Faria, R.O.; Meireles, M.C.A. Can the essential oil of rosemary (Rosmarinus officinalis Linn.) protect rats infected with itraconazole-resistant Sporothrix brasiliensis from fungal spread? J. Mycol. Med., 2021, 31(4), 101199.
[http://dx.doi.org/10.1016/j.mycmed.2021.101199] [PMID: 34418685]
[86]
Cleff, M.B.; Meinerz, A.R.M.; Schuch, L.F.D.; Rodrigues, M.R.A.; Meireles, M.C.A.; Mello, J.R.B. In vitro activity of the essential oil of Origanum vulgare against Sporothrix schenckii. Arq. Bras. Med. Vet. Zootec., 2008, 60, 513-516.
[http://dx.doi.org/10.1590/S0102-09352008000200039]
[87]
Waller, S.B.; Madrid, I.M.; Silva, A.L.; Dias de Castro, L.L.; Cleff, M.B.; Ferraz, V.; Meireles, M.C.A.; Zanette, R.; de Mello, J.R.B. In vitro susceptibility of Sporothrix brasiliensis to essential oils of lamiaceae family. Mycopathologia, 2016, 181(11-12), 857-863.
[http://dx.doi.org/10.1007/s11046-016-0047-y] [PMID: 27558224]
[88]
Waller, S.B.; Peter, C.M.; Hoffmann, J.F.; Cleff, M.B. Faria de, R.O.; Zani, J.L. Jabuticaba [Plinia peruviana (Poir.) Govaerts]: A Brazilian fruit with a promising application against itraconazole-susceptible and -resistant Sporothrix brasiliensis. Nat. Prod. Res., 2021, 35(24), 5988-5992.
[http://dx.doi.org/10.1080/14786419.2020.1810034] [PMID: 32840143]
[89]
Teramoto, Y.; Matsuse, I.; Koga, T.; Ueda, S. Characterization of a novel antimycotic agent, cinnamyl benzoate, using yeast-phase Sporothrix schenckii. World J. Microbiol. Biotechnol., 1994, 10(4), 396-400.
[http://dx.doi.org/10.1007/BF00144459] [PMID: 24421084]
[90]
Waller, S.B.; Ripoll, M.K.; Gonçalves, H.P.; Dalla Lana, D.F.; de Faria, R.O.; Meireles, M.C.A.; Fuentefria, A.M.; de Mello, J.R.B.; Cleff, M.B. Are γ-terpinene, 1,8-cineole, p-coumaric acid, and quercetin active against wild-type and non-wild-type Sporothrix brasiliensis to itraconazole? Braz. J. Microbiol., 2023, 54(1), 531-541.
[http://dx.doi.org/10.1007/s42770-022-00879-y] [PMID: 36422848]
[91]
Salomão, K.; Dantas, A.P.; Borba, C.M.; Campos, L.C.; Machado, D.G.; Aquino Neto, F.R.; Castro, S.L. Chemical composition and microbicidal activity of extracts from Brazilian and Bulgarian propolis. Lett. Appl. Microbiol., 2004, 38(2), 87-92.
[http://dx.doi.org/10.1111/j.1472-765X.2003.01458.x] [PMID: 14746537]
[92]
Waller, S.B.; Peter, C.M.; Hoffmann, J.F.; Picoli, T.; Osório, L.G.; Chaves, F.; Zani, J.L.; de Faria, R.O.; de Mello, J.R.B.; Meireles, M.C.A. Chemical and cytotoxic analyses of brown Brazilian propolis (Apis mellifera) and its in vitro activity against itraconazole-resistant Sporothrix brasiliensis. Microb. Pathog., 2017, 105, 117-121.
[http://dx.doi.org/10.1016/j.micpath.2017.02.022] [PMID: 28219829]
[93]
Waller, S.B.; Cleff, M.B.; Ripoll, M.K.; Meireles, M.C.A.; Ferrarini, M.; Varela, M.T.; Fernandes, J.P.S. Bioisosteric modification on benzylidene-carbonyl compounds improved the drug-likeness and maintained the antifungal activity against Sporothrix brasiliensis. Chem. Biol. Drug Des., 2022, 99(3), 391-397.
[http://dx.doi.org/10.1111/cbdd.13994] [PMID: 34873847]
[94]
Čolović, M.B.; Lacković, M.; Lalatović, J.; Mougharbel, A.S.; Kortz, U.; Krstić, D.Z. Polyoxometalates in biomedicine: Update and overview. Curr. Med. Chem., 2020, 27(3), 362-379.
[http://dx.doi.org/10.2174/0929867326666190827153532] [PMID: 31453779]
[95]
Kamata, K.; Sugahara, K. Base catalysis by mono- and polyoxometalates. Catalysts, 2017, 7(11), 345.
[http://dx.doi.org/10.3390/catal7110345]
[96]
Qi, Y.; Han, L.; Qi, Y.; Jin, X.; Zhang, B.; Niu, J.; Zhong, J.; Xu, Y. Anti-flavivirus activity of polyoxometalate. Antiviral Res., 2020, 179, 104813.
[http://dx.doi.org/10.1016/j.antiviral.2020.104813] [PMID: 32376449]
[97]
Shigeta, S.; Mori, S.; Yamase, T.; Yamamoto, N.; Yamamoto, N. Anti-RNA virus activity of polyoxometalates. Biomed. Pharmacother., 2006, 60(5), 211-219.
[http://dx.doi.org/10.1016/j.biopha.2006.03.009] [PMID: 16737794]
[98]
Qi, Y.; Xiang, Y.; Wang, J.; Qi, Y.; Li, J.; Niu, J.; Zhong, J. Inhibition of hepatitis C virus infection by polyoxometalates. Antiviral Res., 2013, 100(2), 392-398.
[http://dx.doi.org/10.1016/j.antiviral.2013.08.025] [PMID: 24025401]
[99]
Zhang, Y.; Pi, Y.; Hua, Y.; Xie, J.; Wang, C.; Guo, K.; Zhao, Z.; Yong, Y. Bacteria responsive polyoxometalates nanocluster strategy to regulate biofilm microenvironments for enhanced synergetic antibiofilm activity and wound healing. Theranostics, 2020, 10(22), 10031-10045.
[http://dx.doi.org/10.7150/thno.49008] [PMID: 32929332]
[100]
Inoue, M.; Suzuki, T.; Fujita, Y.; Oda, M.; Matsumoto, N.; Yamase, T. Enhancement of antibacterial activity of β-lactam antibiotics by [P2W18O62]6- [SiMo12O40]4- and [PTi2W10O40]7- against methicillin-resistant and vancomycin-resistant Staphylococcus aureus. J. Inorg. Biochem., 2006, 100(7), 1225-1233.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.02.004] [PMID: 16563513]
[101]
Mathias, L.; Almeida, J.; Passoni, L.; Gossani, C.; Taveira, G.; Gomes, V.; Motta, O. Antifungal activity of silver salts of Keggin-type heteropolyacids against Sporothrix spp. J. Microbiol. Biotechnol., 2020, 30(4), 540-551.
[http://dx.doi.org/10.4014/jmb.1907.07064] [PMID: 31893614]
[102]
Borba-Santos, L.P.; Reis de Sá, L.F.; Ramos, J.A.; Rodrigues, A.M.; de Camargo, Z.P.; Rozental, S.; Ferreira-Pereira, A. Tacrolimus increases the effectiveness of itraconazole and fluconazole against Sporothrix spp. Front. Microbiol., 2017, 8, 1759.
[http://dx.doi.org/10.3389/fmicb.2017.01759] [PMID: 28966608]
[103]
Zhang, Y.; Wade, M.M.; Scorpio, A.; Zhang, H.; Sun, Z. Mode of action of pyrazinamide: Disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother., 2003, 52(5), 790-795.
[http://dx.doi.org/10.1093/jac/dkg446] [PMID: 14563891]
[104]
Zimhony, O.; Cox, J.S.; Welch, J.T.; Vilchèze, C.; Jacobs, W.R., Jr Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat. Med., 2000, 6(9), 1043-1047.
[http://dx.doi.org/10.1038/79558] [PMID: 10973326]
[105]
Waller, S.B.; Nakasu, C.; Silva, A.L.; Faria, R.O.; Fernandes, J.P.S.; Cleff, M.B. Anti-Sporothrix brasiliensis activity of different pyrazinoic acid prodrugs: A repurposing evaluation. Braz. J. Pharm. Sci., 2018, 54(4), e17858.
[http://dx.doi.org/10.1590/s2175-97902018000417858]
[106]
Rodrigues, A.M.; Fernandes, G.F.; Araujo, L.M.; Della Terra, P.P.; dos Santos, P.O.; Pereira, S.A.; Schubach, T.M.P.; Burger, E.; Lopes-Bezerra, L.M.; de Camargo, Z.P. Proteomics-based characterization of the humoral immune response in sporotrichosis: Toward discovery of potential diagnostic and vaccine antigens. PLoS Negl. Trop. Dis., 2015, 9(8), e0004016.
[http://dx.doi.org/10.1371/journal.pntd.0004016] [PMID: 26305691]
[107]
Brilhante, R.S.N.; Malaquias, Â.D.M.; Caetano, É.P.; Castelo-Branco, D.S.C.M.; Lima, R.A.C.; Marques, F.J.F.; Silva, N.F.; Alencar, L.P.; Monteiro, A.J.; Camargo, Z.P.; Bandeira, T.J.P.G.; Rodrigues, A.M.; Cordeiro, R.A.; Moreira, J.L.B.; Sidrim, J.J.C.; Rocha, M.F.G. In vitro inhibitory effect of miltefosine against strains of Histoplasma capsulatum var. capsulatum and Sporothrix spp. Med. Mycol., 2014, 52(3), 320-325.
[http://dx.doi.org/10.1093/mmy/myt027] [PMID: 24662247]
[108]
Borba-Santos, L.P.; Gagini, T.; Ishida, K.; de Souza, W.; Rozental, S. Miltefosine is active against Sporothrix brasiliensis isolates with in vitro low susceptibility to amphotericin B or itraconazole. J. Med. Microbiol., 2015, 64(4), 415-422.
[http://dx.doi.org/10.1099/jmm.0.000041] [PMID: 25681323]
[109]
Borba-Santos, L.P.; Rodrigues, A.M.; Gagini, T.B.; Fernandes, G.F.; Castro, R.; de Camargo, Z.P.; Nucci, M.; Lopes-Bezerra, L.M.; Ishida, K.; Rozental, S. Susceptibility of Sporothrix brasiliensis isolates to amphotericin b, azoles, and terbinafine. Med. Mycol., 2015, 53(2), 178-188.
[http://dx.doi.org/10.1093/mmy/myu056] [PMID: 25394542]
[110]
Moreira, R.A.; Mendanha, S.A.; Hansen, D.; Alonso, A. Interaction of miltefosine with the lipid and protein components of the erythrocyte membrane. J. Pharm. Sci., 2013, 102(5), 1661-1669.
[http://dx.doi.org/10.1002/jps.23496] [PMID: 23457073]
[111]
Dorlo, T.P.C.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother., 2012, 67(11), 2576-2597.
[http://dx.doi.org/10.1093/jac/dks275] [PMID: 22833634]
[112]
Martinez, L.R.; Fries, B.C. Fungal biofilms: Relevance in the setting of human disease. Curr. Fungal Infect. Rep., 2010, 4(4), 266-275.
[http://dx.doi.org/10.1007/s12281-010-0035-5] [PMID: 21660222]
[113]
Phillips, P.L.; Schultz, G.S. Molecular mechanisms of biofilm infection: Biofilm virulence factors. Adv. Wound Care , 2012, 1(3), 109-114.
[http://dx.doi.org/10.1089/wound.2011.0301] [PMID: 24527289]
[114]
Nett, J.E.; R Andes, D. Fungal biofilms: In vivo models for discovery of anti-biofilm drugs. Microbiol. Spectr., 2015, 3(3), E30.
[http://dx.doi.org/10.1128/microbiolspec.MB-0008-2014] [PMID: 26397003]
[115]
Brilhante, R.S.N.; Silva, M.L.Q.; Pereira, V.S.; de Oliveira, J.S.; Maciel, J.M.; Silva, I.N.G.; Garcia, L.G.S.; Guedes, G.M.M.; Cordeiro, R.A.; Pereira-Neto, W.A.; de Camargo, Z.P.; Rodrigues, A.M.; Sidrim, J.J.C.; Castelo-Branco, D.S.C.M.; Rocha, M.F.G. Potassium iodide and miltefosine inhibit biofilms of Sporothrix schenckii species complex in yeast and filamentous forms. Med. Mycol., 2019, 57(6), 764-772.
[http://dx.doi.org/10.1093/mmy/myy119] [PMID: 30462271]
[116]
de Miranda, L.; Silva, J.; Gremião, I.; Menezes, R.; Almeida-Paes, R.; dos Reis, É.; de Oliveira, R.; de Araujo, D.; Ferreiro, L.; Pereira, S. Monitoring fungal burden and viability of Sporothrix spp. in skin lesions of cats for predicting antifungal treatment response. J. Fungi , 2018, 4(3), 92.
[http://dx.doi.org/10.3390/jof4030092] [PMID: 30087237]
[117]
dos Santos, G.M.P.; Borba-Santos, L.P.; Vila, T.; Ferreira Gremião, I.D.; Pereira, S.A.; De Souza, W.; Rozental, S. Sporothrix spp. biofilms impact in the zoonotic transmission route: Feline claws associated biofilms, itraconazole tolerance, and potential repurposing for miltefosine. Pathogens, 2022, 11(2), 206.
[http://dx.doi.org/10.3390/pathogens11020206] [PMID: 35215149]
[118]
Król, J.; Nawrot, U.; Bartoszewicz, M. Anti-candidal activity of selected analgesic drugs used alone and in combination with fluconazole, itraconazole, voriconazole, posaconazole and isavuconazole. J. Mycol. Med., 2018, 28(2), 327-331.
[http://dx.doi.org/10.1016/j.mycmed.2018.03.002] [PMID: 29605543]
[119]
Borba-Santos, L.P.; Nucci, M.; Ferreira-Pereira, A.; Rozental, S. Anti-Sporothrix activity of ibuprofen combined with antifungal. Braz. J. Microbiol., 2021, 52(1), 101-106.
[http://dx.doi.org/10.1007/s42770-020-00327-9] [PMID: 32617835]
[120]
Seibert, G.; Poletto, A.L.R.; Prade, J.V.; Mario, D.N.; Stopiglia, C.D.O. Reversal of itraconazole resistance in Sporothrix brasiliensis and Sporothrix schenckii by nonsteroidal anti-inflammatory drugs. Rev. Iberoam. Micol., 2022, 39(3-4), 68-71.
[http://dx.doi.org/10.1016/j.riam.2022.01.003] [PMID: 36336556]
[121]
Diaz, M.C.; Camponovo, R.; Araya, I.; Cerda, A.; Santander, M.P.; Carrillo-Muñoz, A-J. Identification and in vitro antifungal susceptibility of vaginal Candida spp. isolates to fluconazole, clotrimazole and nystatin. Rev. Esp. Quimioter., 2016, 29(3), 151-154.
[PMID: 27167765]
[122]
McCurdy, H.D.; Hepler, D.I.; Larson, K.A. Effectiveness of a topical antifungal agent (clotrimazole) in dogs. J. Am. Vet. Med. Assoc., 1981, 179(2), 163-165.
[PMID: 7021507]
[123]
Lobell, R.; Weingarten, A.; Simmons, R. A new agent for the treatment of canine otitis externa. Hora Vet., 1995, 88, 29-33.
[124]
Ferreira, P.G.; Noronha, L.; Teixeira, R.; Vieira, I.; Borba-Santos, L.P.; Viçosa, A.; de Moraes, M.; Calil-Elias, S.; de Freitas, Z.; da Silva, F.C.; Rozental, S.; Futuro, D.O.; Ferreira, V.F. Investigation of a microemulsion containing clotrimazole and itraconazole for transdermal delivery for the treatment of sporothrichosis. J. Pharm. Sci., 2020, 109(2), 1026-1034.
[http://dx.doi.org/10.1016/j.xphs.2019.10.009] [PMID: 31604084]
[125]
Garcia Ferreira, P.; Guimarães de Souza Lima, C.; Noronha, L.L.; de Moraes, M.C.; Silva, F.C.; Lifsitch Viçosa, A.; Omena Futuro, D.; Francisco Ferreira, V. Development of a method for the quantification of clotrimazole and itraconazole and study of their stability in a new microemulsion for the treatment of sporotrichosis. Molecules, 2019, 24(12), 2333.
[http://dx.doi.org/10.3390/molecules24122333] [PMID: 31242573]
[126]
Noronha, L.L.; Ferreira, P.G.; G S Lima, C. Borba-Santos, L.P.; Rozental, S.; de Moraes, M.; Silva, F.C.D.; Ferreira, V.F.; Futuro, D.O. Formulation and evaluation of a novel itraconazole-clotrimazole topical emulgel for the treatment of sporotrichosis. Curr. Pharm. Des., 2020, 26(14), 1566-1570.
[http://dx.doi.org/10.2174/1381612826666200406081249] [PMID: 32250218]
[127]
Groll, A.H.; Piscitelli, S.C.; Walsh, T.J. Clinical pharmacology of systemic antifungal agents: A comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Adv. Pharmacol., 1998, 44, 343-500.
[http://dx.doi.org/10.1016/S1054-3589(08)60129-5] [PMID: 9547888]
[128]
Bell, A.S. Major antifungal drugs.In: Comprehensive medicinal chemistry II; Taylor, J.B.; Triggle, D.J., Eds.; Elsevier: Oxford, 2007, pp. 445-468.
[http://dx.doi.org/10.1016/B0-08-045044-X/00216-9]
[129]
Hector, R.F. Use of nikkomycin compounds to treat infections of dimorphic, highly chitinous fungi. US Patent 4851389, 1989.
[130]
Hector, R.F.; Sabouni, A. Methods and compositions for treating fungal infections in animals. US Patent 5789387, 1998.
[131]
Poester, V.R.; Munhoz, L.S.; Larwood, D.; Martinez, M.; Stevens, D.A.; Xavier, M.O. Potential use of nikkomycin Z as an anti- Sporothrix spp. drug. Med. Mycol., 2020, 1-5.
[PMID: 32634218]
[132]
Lim, W.; Verbon, A.; van de Sande, W. Identifying novel drugs with new modes of action for neglected tropical fungal skin diseases (fungal skinNTDs) using an open source drug discovery approach. Expert Opin. Drug Discov., 2022, 17(6), 641-659.
[http://dx.doi.org/10.1080/17460441.2022.2080195] [PMID: 35612364]
[133]
Borba-Santos, L.P.; Barreto, T.L.; Vila, T.; Chi, K.D.; dos Santos Monti, F.; de Farias, M.R.; Alviano, D.S.; Alviano, C.S.; Futuro, D.O.; Ferreira, V.; de Souza, W.; Ishida, K.; Rozental, S. In vitro and in vivo antifungal activity of buparvaquone against Sporothrix brasiliensis. Antimicrob. Agents Chemother., 2021, 65(9), e00699-e21.
[http://dx.doi.org/10.1128/AAC.00699-21] [PMID: 34152816]
[134]
Cong, L.; Liao, Y.; Yang, S.; Yang, R. In vitro antifungal activity of sertraline and synergistic effects in combination with antifungal drugs against planktonic forms and biofilms of clinical Trichosporon asahii isolates. PLoS One, 2016, 11(12), e0167903.
[http://dx.doi.org/10.1371/journal.pone.0167903] [PMID: 27930704]
[135]
Oliveira, A.S.; Martinez-de-Oliveira, J.; Donders, G.G.G.; Palmeira-de-Oliveira, R.; Palmeira-de-Oliveira, A. Anti-Candida activity of antidepressants sertraline and fluoxetine: Effect upon pre-formed biofilms. Med. Microbiol. Immunol. , 2018, 207(3-4), 195-200.
[http://dx.doi.org/10.1007/s00430-018-0539-0] [PMID: 29556778]
[136]
Paul, S.; Mortimer, R.B.; Mitchell, M. Sertraline demonstrates fungicidal activity in vitro for Coccidioides immitis. Mycology, 2016, 7(3), 99-101.
[http://dx.doi.org/10.1080/21501203.2016.1204368] [PMID: 30123621]
[137]
Rhein, J.; Morawski, B.M.; Hullsiek, K.H.; Nabeta, H.W.; Kiggundu, R.; Tugume, L.; Musubire, A.; Akampurira, A.; Smith, K.D.; Alhadab, A.; Williams, D.A.; Abassi, M.; Bahr, N.C.; Velamakanni, S.S.; Fisher, J.; Nielsen, K.; Meya, D.B.; Boulware, D.R. Efficacy of adjunctive sertraline for the treatment of HIV-associated cryptococcal meningitis: An open-label dose-ranging study. Lancet Infect. Dis., 2016, 16(7), 809-818.
[http://dx.doi.org/10.1016/S1473-3099(16)00074-8] [PMID: 26971081]
[138]
Villanueva-Lozano, H.; Treviño-Rangel, R.J.; Téllez-Marroquín, R.; Bonifaz, A.; Rojas, O.C.; Hernández-Rodríguez, P.A.; González, G.M. In vitro inhibitory activity of sertraline against clinical isolates of Sporothrix schenckii. Rev. Iberoam. Micol., 2019, 36(3), 139-141.
[http://dx.doi.org/10.1016/j.riam.2019.01.004] [PMID: 31171430]
[139]
Salas, V.; Pastor, F.J.; Calvo, E.; Sutton, D.A.; Chander, J.; Mayayo, E.; Alvarez, E.; Guarro, J. Efficacy of posaconazole in a murine model of disseminated infection caused by Apophysomyces variabilis. J. Antimicrob. Chemother., 2012, 67(7), 1712-1715.
[http://dx.doi.org/10.1093/jac/dks090] [PMID: 22427614]
[140]
Mario, D.N.; Guarro, J.; Santurio, J.M.; Alves, S.H.; Capilla, J. In vitro and in vivo efficacy of amphotericin b combined with posaconazole against experimental disseminated sporotrichosis. Antimicrob. Agents Chemother., 2015, 59(8), 5018-5021.
[http://dx.doi.org/10.1128/AAC.00052-15] [PMID: 26014930]