Current Protein & Peptide Science

Author(s): Meixin Li, Yaqi Xue, Lianli Chi and Lan Jin*

DOI: 10.2174/0113892037287189240122110819

Heparin Oligosaccharides as Vasoactive Intestinal Peptide Inhibitors via their Binding Process Characterization

Page: [480 - 491] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: It has been proven that vasoactive intestinal peptide (VIP) was involved in the pathogenesis of prostate cancer. Cardin et al. found that by an alanine scan, the heparin- binding site on VIP was exactly the same sequence in VIP and its receptor. Therefore, heparin could competitively block the binding of VIP and its receptor. However, the structure-activity relationship between heparin and VIP has not been reported, especially in terms of the sequence and sulfation patterns of heparin oligosaccharides upon binding to VIP.

Objective: A variety of experiments were designed to study the binding process and structure-activity relationship between heparin oligosaccharides and VIP.

Methods: Heparin was enzymatically digested and purified to produce heparin oligosaccharides, and the structures were characterized by NMR. The binding capacity between heparin oligosaccharides and VIP was analyzed by GMSA and ITC experiments. The binding between heparin oligosaccharides and VIP was simulated using a molecular docking program to show the complex. ELISA assay was used to investigate the effect of non-anticoagulant heparin oligosaccharides on the VIP-mediated cAMP/PKA signaling pathway in vitro.

Results: The results indicated that both the length and the sulfation pattern of heparin oligosaccharides affected its binding to VIP. VIP could induce the expression of cAMP at a higher level in PC3 cells, which could be regulated by the interaction of heparin oligosaccharides and VIP.

Conclusion: The binding between heparin oligosaccharides and VIP could block the binding between VIP and its receptor on tumor cells. Downloading the regulation of the expression level of cAMP could possibly further affect the subsequent activation of PKA. These non-anticoagulant heparin oligosaccharides may block the VIP-mediated cAMP/PKA signaling pathway and thus exert their antitumor activity.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Nunes-Xavier, C.E.; Mingo, J.; López, J.I.; Pulido, R. The role of protein tyrosine phosphatases in prostate cancer biology. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(1), 102-113.
[http://dx.doi.org/10.1016/j.bbamcr.2018.06.016] [PMID: 30401533]
[3]
Xing, Z.; Li, S.; Liu, Z.; Zhang, C.; Bai, Z. CircSERPINA3 regulates SERPINA3-mediated apoptosis, autophagy and aerobic glycolysis of prostate cancer cells by competitively binding to MiR-653-5p and recruiting BUD13. J. Transl. Med., 2021, 19(1), 492.
[http://dx.doi.org/10.1186/s12967-021-03063-2] [PMID: 34861864]
[4]
Fernández-Martínez, A.B.; Carmena, M.J.; Bajo, A.M.; Vacas, E.; Sánchez-Chapado, M.; Prieto, J.C. VIP induces NF-κB1-nuclear localisation through different signalling pathways in human tumour and non-tumour prostate cells. Cell. Signal., 2015, 27(2), 236-244.
[http://dx.doi.org/10.1016/j.cellsig.2014.11.005] [PMID: 25446255]
[5]
Xiao, P.; Ma, T.; Zhou, C.; Xu, Y.; Liu, Y.; Zhang, H. Anticancer effect of docetaxel induces apoptosis of prostate cancer via the cofilin-1 and paxillin signaling pathway. Mol. Med. Rep., 2016, 13(5), 4079-4084.
[http://dx.doi.org/10.3892/mmr.2016.5000] [PMID: 27035282]
[6]
Dickhut, S.; Urfer, W.; Reich, S.; Bandel, T.; Bremicker, K.D.; Neugebauer, W.; Sökeland, J.; Bolt, H.M.; Golka, K. Occupational risk factors for prostate cancer in an area of former coal, iron, and steel industries in Germany. Part 1: Results from a study performed in the 1980s. J. Toxicol. Environ. Health A, 2016, 79(22-23), 1125-1129.
[http://dx.doi.org/10.1080/15287394.2016.1219605] [PMID: 27924710]
[7]
Jiang, W.; Wang, H.; Li, Y.S.; Luo, W. Role of vasoactive intestinal peptide in osteoarthritis. J. Biomed. Sci., 2016, 23(1), 63.
[http://dx.doi.org/10.1186/s12929-016-0280-1] [PMID: 27553659]
[8]
Iwasaki, M; Akiba, Y; Kaunitz, JD Recent advances in vasoactive intestinal peptide physiology and pathophysiology: Focus on the gastrointestinal system. F1000Res, 2019, 8, F1000 Faculty Rev-1629.
[9]
Collado, B.; Sánchez-Chapado, M.; Prieto, J.C.; Carmena, M.J. Hypoxia regulation of expression and angiogenic effects of vasoactive intestinal peptide (VIP) and VIP receptors in LNCaP prostate cancer cells. Mol. Cell. Endocrinol., 2006, 249(1-2), 116-122.
[http://dx.doi.org/10.1016/j.mce.2006.02.004] [PMID: 16563610]
[10]
Juarranz, M.G.; Bolaños, O.; Gutiérrez-Cañas, I.; Lerner, E.A.; Robberecht, P.; Carmena, M.J.; Prieto, J.C.; Rodríguez-Henche, N. Neuroendocrine differentiation of the LNCaP prostate cancer cell line maintains the expression and function of VIP and PACAP receptors. Cell. Signal., 2001, 13(12), 887-894.
[http://dx.doi.org/10.1016/s0898-6568(01)00199-1] [PMID: 11728828]
[11]
Nagakawa, O.; Murata, J.; Junicho, A.; Matsuda, T.; Fujiuchi, Y.; Fuse, H.; Saiki, I. Vasoactive intestinal peptide (VIP) enhances the cell motility of androgen receptor-transfected DU-145 prostate cancer cells (DU-145/AR). Cancer Lett., 2002, 176(1), 93-99.
[http://dx.doi.org/10.1016/s0304-3835(01)00737-6] [PMID: 11790458]
[12]
Nagakawa, O.; Junicho, A.; Akashi, T.; Koizumi, K.; Matsuda, T.; Fuse, H.; Saiki, I. Vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide stimulate interleukin-6 production in prostate cancer cells and prostatic epithelial cells. Oncol. Rep., 2005, 13(6), 1217-1221.
[PMID: 15870945]
[13]
García-Fernández, M.O.; Solano, R.M.; Carmena, M.J.; Busto, R.; Bodega, G.; Ruíz-Villaespesa, A.; Prieto, J.C.; Sánchez-Chapado, M. Expression of functional PACAP/VIP receptors in human prostate cancer and healthy tissue. Peptides, 2003, 24(6), 893-902.
[http://dx.doi.org/10.1016/s0196-9781(03)00162-1] [PMID: 12948842]
[14]
Gutiérrez-Cañas, I.; Juarranz, M.G.; Collado, B.; Rodríguez-Henche, N.; Chiloeches, A.; Prieto, J.C.; Carmena, M.J. Vasoactive intestinal peptide induces neuroendocrine differentiation in the LNCaP prostate cancer cell line through PKA, ERK, and PI3K. Prostate, 2005, 63(1), 44-55.
[http://dx.doi.org/10.1002/pros.20173] [PMID: 15468165]
[15]
Sotomayor, S.; Carmena, M.J.; Schally, A.V.; Varga, J.L.; Sánchez-Chapado, M.; Prieto, J.C.; Bajo, A.M. Transactivation of HER2 by vasoactive intestinal peptide in experimental prostate cancer: Antagonistic action of an analog of growth-hormone-releasing hormone. Int. J. Oncol., 2007, 31(5), 1223-1230.
[PMID: 17912451]
[16]
Collado, B.; Gutiérrez-Cañas, I.; Rodríguez-Henche, N.; Prieto, J.C.; Carmena, M.J. Vasoactive intestinal peptide increases vascular endothelial growth factor expression and neuroendocrine differentiation in human prostate cancer LNCaP cells. Regul. Pept., 2004, 119(1-2), 69-75.
[http://dx.doi.org/10.1016/j.regpep.2004.01.013] [PMID: 15093699]
[17]
Sánchez-Milla, M.; Muñoz-Moreno, L.; Sánchez-Nieves, J.; Malý, M.; Gómez, R.; Carmena, M.J.; de la Mata, F.J. Anticancer activity of dendriplexes against advanced prostate cancer from protumoral peptides and cationic carbosilane dendrimers. Biomacromolecules, 2019, 20(3), 1224-1234.
[http://dx.doi.org/10.1021/acs.biomac.8b01632] [PMID: 30669830]
[18]
Gutiérrez-Cañas, I.; Rodríguez-Henche, N.; Bolaños, O.; Carmena, M.J.; Prieto, J.C.; Juarranz, M.G. VIP and PACAP are autocrine factors that protect the androgen-independent prostate cancer cell line PC-3 from apoptosis induced by serum withdrawal. Br. J. Pharmacol., 2003, 139(5), 1050-1058.
[http://dx.doi.org/10.1038/sj.bjp.0705317] [PMID: 12839880]
[19]
Polak, J.M.; Bloom, S.R. Localisation and measurement of VIP in the genitourinary system of man and animals. Peptides, 1984, 5(2), 225-230.
[http://dx.doi.org/10.1016/0196-9781(84)90211-0] [PMID: 6382193]
[20]
Collado, B.; Sánchez, M.G.; Díaz-Laviada, I.; Prieto, J.C.; Carmena, M.J. Vasoactive intestinal peptide (VIP) induces c-fos expression in LNCaP prostate cancer cells through a mechanism that involves Ca2+ signalling. Implications in angiogenesis and neuroendocrine differentiation. Biochim. Biophys. Acta, 2005, 1744(2), 224-233.
[http://dx.doi.org/10.1016/j.bbamcr.2005.04.009] [PMID: 15921770]
[21]
Fernández-Martínez, A.B.; Carmena, M.J.; Arenas, M.I.; Bajo, A.M.; Prieto, J.C.; Sánchez-Chapado, M. Overexpression of vasoactive intestinal peptide receptors and cyclooxygenase-2 in human prostate cancer. Analysis of potential prognostic relevance. Histol. Histopathol., 2012, 27(8), 1093-1101.
[http://dx.doi.org/10.14670/HH-27.1093] [PMID: 22763881]
[22]
Fernández-Martínez, A.B.; Collado, B.; Bajo, A.M.; Sánchez-Chapado, M.; Prieto, J.C.; Carmena, M.J. Vasoactive intestinal peptide induces cyclooxygenase-2 expression through nuclear factor-kappaB in human prostate cell lines Differential time-dependent responses in cancer progression. Mol. Cell. Endocrinol., 2007, 270(1-2), 8-16.
[http://dx.doi.org/10.1016/j.mce.2007.01.007] [PMID: 17434257]
[23]
Collado, B.; Carmena, M.J.; Sánchez-Chapado, M.; Ruíz-Villaespesa, A.; Bajo, A.M.; Fernández-Martínez, A.B.; Varga, J.L.; Schally, A.V.; Prieto, J.C. Expression of vasoactive intestinal peptide and functional VIP receptors in human prostate cancer: antagonistic action of a growth-hormone-releasing hormone analog. Int. J. Oncol., 2005, 26(6), 1629-1635.
[http://dx.doi.org/10.3892/ijo.26.6.1629] [PMID: 15870879]
[24]
Jayawardena, D.; Guzman, G.; Gill, R.K.; Alrefai, W.A.; Onyuksel, H.; Dudeja, P.K. Expression and localization of VPAC1, the major receptor of vasoactive intestinal peptide along the length of the intestine. Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 313(1), G16-G25.
[http://dx.doi.org/10.1152/ajpgi.00081.2017] [PMID: 28385693]
[25]
Xie, Y.; Wolff, D.W.; Lin, M.F.; Tu, Y. Vasoactive intestinal peptide transactivates the androgen receptor through a protein kinase A-dependent extracellular signal-regulated kinase pathway in prostate cancer LNCaP cells. Mol. Pharmacol., 2007, 72(1), 73-85.
[http://dx.doi.org/10.1124/mol.107.033894] [PMID: 17430995]
[26]
Fernández-Martínez, A.B.; Bajo, A.M.; Sánchez-Chapado, M.; Prieto, J.C.; Carmena, M.J. Vasoactive intestinal peptide behaves as a pro-metastatic factor in human prostate cancer cells. Prostate, 2009, 69(7), 774-786.
[http://dx.doi.org/10.1002/pros.20930] [PMID: 19189304]
[27]
Rekasi, Z.; Varga, J.L.; Schally, A.V.; Halmos, G.; Armatis, P.; Groot, K.; Czompoly, T. Antagonists of growth hormone-releasing hormone and vasoactive intestinal peptide inhibit tumor proliferation by different mechanisms: Evidence from in vitro studies on human prostatic and pancreatic cancers. Endocrinology, 2000, 141(6), 2120-2128.
[http://dx.doi.org/10.1210/endo.141.6.7511] [PMID: 10830299]
[28]
Chiang, N.Y.; Chang, G.W.; Huang, Y.S.; Peng, Y.M.; Hsiao, C.C.; Kuo, M.L.; Lin, H.H. Heparin interacts with the adhesion GPCR GPR56, reduces receptor shedding, and promotes cell adhesion and motility. J. Cell Sci., 2016, 129(11), 2156-2169.
[http://dx.doi.org/10.1242/jcs.174458] [PMID: 27068534]
[29]
Saad, O.M.; Ebel, H.; Uchimura, K.; Rosen, S.D.; Bertozzi, C.R.; Leary, J.A. Compositional profiling of heparin/heparan sulfate using mass spectrometry: assay for specificity of a novel extracellular human endosulfatase. Glycobiology, 2005, 15(8), 818-826.
[http://dx.doi.org/10.1093/glycob/cwi064] [PMID: 15843596]
[30]
Torri, G.; Cassinelli, G. Looking forward to the future of heparin: New sources, developments and applications. Molecules, 2018, 23(2), 293.
[http://dx.doi.org/10.3390/molecules23020293] [PMID: 29385025]
[31]
Vignoli, A.; Marchetti, M.; Falanga, A. Heparins inhibit the endothelial pro-thrombotic features induced by tumor cells. Thromb. Res., 2017, 157, 55-57.
[http://dx.doi.org/10.1016/j.thromres.2017.06.037] [PMID: 28692841]
[32]
Ejaz, U.; Akhtar, F.; Xue, J.; Wan, X.; Zhang, T.; He, S. Review: Inhibitory potential of low molecular weight Heparin in cell adhesion; emphasis on tumor metastasis. Eur. J. Pharmacol., 2021, 892, 173778.
[http://dx.doi.org/10.1016/j.ejphar.2020.173778] [PMID: 33271153]
[33]
Zhang, F.; Fei, J.; Sun, M.; Ping, Q. Heparin modification enhances the delivery and tumor targeting of paclitaxel-loaded N-octyl-N-trimethyl chitosan micelles. Int. J. Pharm., 2016, 511(1), 390-402.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.020] [PMID: 27426109]
[34]
Yu, Y.; Xu, C.; Zhen, L.; Yang, S.; Zhou, J.; Yao, J. Bio-inspired drug-dominated supramolecular nanocomplex based on low molecular weight heparin for progressive tumor therapy. Carbohydr. Polym., 2019, 220, 30-42.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.051] [PMID: 31196548]
[35]
Falanga, A.; Marchetti, M. Heparin in tumor progression and metastatic dissemination. Semin. Thromb. Hemost., 2007, 33(7), 688-694.
[http://dx.doi.org/10.1055/s-2007-991536] [PMID: 18000796]
[36]
Mueller, T.; Pfankuchen, D.B.; Wantoch von Rekowski, K.; Schlesinger, M.; Reipsch, F.; Bendas, G. The impact of the low molecular weight heparin tinzaparin on the sensitization of cisplatin-resistant ovarian cancers-preclinical in vivo evaluation in xenograft tumor models. Molecules, 2017, 22(5), 728.
[http://dx.doi.org/10.3390/molecules22050728] [PMID: 28467373]
[37]
Folkman, J.; Langer, R.; Linhardt, R.J.; Haudenschild, C.; Taylor, S. Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science, 1983, 221(4612), 719-725.
[http://dx.doi.org/10.1126/science.6192498] [PMID: 6192498]
[38]
Lantz, M.; Thysell, H.; Nilsson, E.; Olsson, I. On the binding of tumor necrosis factor (TNF) to heparin and the release in vivo of the TNF-binding protein I by heparin. J. Clin. Invest., 1991, 88(6), 2026-2031. [retracted in: J Clin Invest. 1993 Feb;91(2):737].
[http://dx.doi.org/10.1172/JCI115530] [PMID: 1752960]
[39]
Bendahl, P.O.; Belting, M.; Gezelius, E. Longitudinal assessment of circulating tumor cells and outcome in small cell lung cancer: A sub-study of RASTEN-a randomized trial with low molecular weight heparin. Cancers, 2023, 15(12), 3176.
[http://dx.doi.org/10.3390/cancers15123176] [PMID: 37370786]
[40]
Kragh, M.; Loechel, F. Non-anti-coagulant heparins: A promising approach for prevention of tumor metastasis (review). Int. J. Oncol., 2005, 27(4), 1159-1167.
[PMID: 16142335]
[41]
Liu, S.; Zeng, Y.; Li, Y.; Guo, W.; Liu, J.; Ouyang, N. VPAC1 overexpression is associated with poor differentiation in colon cancer. Tumour Biol., 2014, 35(7), 6397-6404.
[http://dx.doi.org/10.1007/s13277-014-1852-x] [PMID: 24671823]
[42]
Hejna, M.; Hamilton, G.; Brodowicz, T.; Haberl, I.; Fiebiger, W.C.; Scheithauer, W.; Virgolini, I.; Köstler, W.J.; Oberhuber, G.; Raderer, M. Serum levels of vasoactive intestinal peptide (VIP) in patients with adenocarcinomas of the gastrointestinal tract. Anticancer Res., 2001, 21(2A), 1183-1187.
[PMID: 11396161]
[43]
Li, G.H.; Qian, W.; Song, G.Q.; Hou, X.H. Effect of vasoactive intestinal peptide on gastric adenocarcinoma. J. Gastroenterol. Hepatol., 2007, 22(8), 1328-1335.
[http://dx.doi.org/10.1111/j.1440-1746.2007.04947.x] [PMID: 17559364]
[44]
García-Fernández, M.O.; Collado, B.; Bodega, G.; Cortés, J.; Ruíz-Villaespesa, A.; Carmena, M.J.; Prieto, J.C. Pituitary adenylate cyclase-activating peptide/vasoactive intestinal peptide receptors in human normal mammary gland and breast cancer tissue. Gynecol. Endocrinol., 2005, 20(6), 327-333.
[http://dx.doi.org/10.1080/09513590500098240] [PMID: 16019382]
[45]
Valdehita, A.; Bajo, A.M.; Schally, A.V.; Varga, J.L.; Carmena, M.J.; Prieto, J.C. Vasoactive intestinal peptide (VIP) induces transactivation of EGFR and HER2 in human breast cancer cells. Mol. Cell. Endocrinol., 2009, 302(1), 41-48.
[http://dx.doi.org/10.1016/j.mce.2008.11.024] [PMID: 19101605]
[46]
Valdehita, A.; Carmena, M.J.; Collado, B.; Prieto, J.C.; Bajo, A.M. Vasoactive intestinal peptide (VIP) increases vascular endothelial growth factor (VEGF) expression and secretion in human breast cancer cells. Regul. Pept., 2007, 144(1-3), 101-108.
[http://dx.doi.org/10.1016/j.regpep.2007.06.006] [PMID: 17683807]
[47]
Asano, S.; Yamasaka, M.; Ozasa, K.; Sakamoto, K.; Hayata-Takano, A.; Nakazawa, T.; Hashimoto, H.; Waschek, J.A.; Ago, Y. Vasoactive intestinal peptide-VIPR2 signaling regulates tumor cell migration. Front. Oncol., 2022, 12, 852358.
[http://dx.doi.org/10.3389/fonc.2022.852358] [PMID: 36237322]
[48]
Moody, T.W.; Leyton, J.; Gozes, I.; Lang, L.; Eckelman, W.C. VIP and breast cancer. Ann. N. Y. Acad. Sci., 1998, 865, 290-296.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb11189.x] [PMID: 9928023]
[49]
Smrtka, M.P.; Feng, L.; Murtha, A.P.; Grotegut, C.A. Thrombin-induced inflammation in human decidual cells is not affected by heparin. Reprod. Sci., 2017, 24(8), 1154-1163.
[http://dx.doi.org/10.1177/1933719116678685] [PMID: 27852920]
[50]
Dinkic, C.; Kruse, A.; Zygmunt, M.; Schuetz, F.; Brucker, J.; Rom, J.; Sohn, C.; Fluhr, H. Influence of paclitaxel and heparin on vitality, proliferation and cytokine production of endometrial cancer cells. Geburtshilfe Frauenheilkd., 2017, 77(10), 1104-1110.
[http://dx.doi.org/10.1055/s-0043-119289] [PMID: 29093604]
[51]
Lian, C.; Ruan, L.; Shang, D.; Wu, Y.; Lu, Y.; Lü, P.; Yang, Y.; Wei, Y.; Dong, X.; Ren, D.; Chen, K.; Liu, H.; Tu, Z. Heparin-binding epidermal growth factor-like growth factor as a potent target for breast cancer therapy. Cancer Biother. Radiopharm., 2016, 31(3), 85-90.
[http://dx.doi.org/10.1089/cbr.2015.1956] [PMID: 27093342]
[52]
Linhardt, R.J. 2003 Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. J. Med. Chem., 2003, 46(13), 2551-2564.
[http://dx.doi.org/10.1021/jm030176m] [PMID: 12801218]
[53]
Bu, C.; Jin, L. NMR characterization of the interactions between glycosaminoglycans and proteins. Front. Mol. Biosci., 2021, 8, 646808.
[http://dx.doi.org/10.3389/fmolb.2021.646808] [PMID: 33796549]
[54]
Joseph, P.R.B.; Sawant, K.V.; Iwahara, J.; Garofalo, R.P.; Desai, U.R.; Rajarathnam, K. Lysines and Arginines play non-redundant roles in mediating chemokine-glycosaminoglycan interactions. Sci. Rep., 2018, 8(1), 12289.
[http://dx.doi.org/10.1038/s41598-018-30697-y] [PMID: 30115951]
[55]
Zhang, F.; Zhang, Z.; Lin, X.; Beenken, A.; Eliseenkova, A.V.; Mohammadi, M.; Linhardt, R.J. Compositional analysis of heparin/heparan sulfate interacting with fibroblast growth factor.fibroblast growth factor receptor complexes. Biochemistry, 2009, 48(35), 8379-8386.
[http://dx.doi.org/10.1021/bi9006379] [PMID: 19591432]
[56]
Meyer-Hoffert, U.; Hornef, M.; Henriques-Normark, B.; Normark, S.; Andersson, M.; Pütsep, K. Identification of heparin/heparan sulfate interacting protein as a major broad-spectrum antimicrobial protein in lung and small intestine. FASEB J., 2008, 22(7), 2427-2434.
[http://dx.doi.org/10.1096/fj.07-103440] [PMID: 18299334]
[57]
Fu, L.; Suflita, M.; Linhardt, R.J. Bioengineered heparins and heparan sulfates. Adv. Drug Deliv. Rev., 2016, 97, 237-249.
[http://dx.doi.org/10.1016/j.addr.2015.11.002] [PMID: 26555370]
[58]
Gelbach, A.L.; Zhang, F.; Kwon, S.J.; Bates, J.T.; Farmer, A.P.; Dordick, J.S.; Wang, C.; Linhardt, R.J. Interactions between heparin and SARS-CoV-2 spike glycoprotein RBD from omicron and other variants. Front. Mol. Biosci., 2022, 9, 912887.
[http://dx.doi.org/10.3389/fmolb.2022.912887] [PMID: 36046608]
[59]
Zhang, F.; Zhao, J.; Liu, X.; Linhardt, R.J. Interactions between sclerostin and glycosaminoglycans. Glycoconj. J., 2020, 37(1), 119-128.
[http://dx.doi.org/10.1007/s10719-019-09900-3] [PMID: 31828567]
[60]
Zhang, F.; Zheng, L.; Cheng, S.; Peng, Y.; Fu, L.; Zhang, X.; Linhardt, R.J. Comparison of the interactions of different growth factors and glycosaminoglycans. Molecules, 2019, 24(18), 3360.
[http://dx.doi.org/10.3390/molecules24183360] [PMID: 31527407]
[61]
Zheng, Y.; Yang, C.; Zheng, X.; Guan, Q.; Yu, S. Acrylamide treatment alters the level of Ca2+ and Ca2+-related protein kinase in spinal cords of rats. Toxicol. Ind. Health, 2021, 37(3), 113-123.
[http://dx.doi.org/10.1177/0748233720971879] [PMID: 33487136]
[62]
Lim, D.M.; Park, K.Y.; Hwang, W.M.; Kim, J.Y.; Kim, B.J. Difference in protective effects of GIP and GLP-1 on endothelial cells according to cyclic adenosine monophosphate response. Exp. Ther. Med., 2017, 13(5), 2558-2564.
[http://dx.doi.org/10.3892/etm.2017.4279] [PMID: 28565879]
[63]
Bhat, A.; Tan, V.; Heng, B.; Lovejoy, D.B.; Sakharkar, M.K.; Essa, M.M.; Chidambaram, S.B.; Guillemin, G.J. Roflumilast, a cAMP-specific phosphodiesterase-4 inhibitor, reduces oxidative stress and improves synapse functions in human cortical neurons exposed to the excitotoxin quinolinic acid. ACS Chem. Neurosci., 2020, 11(24), 4405-4415.
[http://dx.doi.org/10.1021/acschemneuro.0c00636] [PMID: 33261317]
[64]
Zhang, Y.; Meng, X.; Liu, K. The modulation of cAMP/PKA pathway by asiaticoside ameliorates high glucose-induced inflammation and apoptosis of retinal pigment epithelial cells. J. Bioenerg. Biomembr., 2022, 54(1), 9-16.
[http://dx.doi.org/10.1007/s10863-021-09929-w] [PMID: 35038080]
[65]
Hameed, A.; Raza, S.A.; Israr Khan, M.; Baral, J.; Adhikari, A.; Nur-E-Alam, M.; Ahmed, S.; Al-Rehaily, A.J.; Ashraf, S.; Ul-Haq, Z.; Hafizur, R.M. Tambulin from Zanthoxylum armatum acutely potentiates the glucose-induced insulin secretion via KATP-independent Ca2+-dependent amplifying pathway. Biomed. Pharmacother., 2019, 120, 109348.
[http://dx.doi.org/10.1016/j.biopha.2019.109348] [PMID: 31629954]
[66]
Xu, S.; Qiu, M.; Zhang, X.; Chen, J. Expression and characterization of an enhanced recombinant heparinase I with chitin binding domain. Int. J. Biol. Macromol., 2017, 105(Pt 1), 1250-1258.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.158] [PMID: 28789962]
[67]
Zhou, X.; Wang, Y.; Zheng, W.; Deng, G.; Wang, F.; Jin, L. Characterizing heparin tetrasaccharides binding to amyloid-beta peptide. Front. Mol. Biosci., 2022, 9, 824146.
[http://dx.doi.org/10.3389/fmolb.2022.824146] [PMID: 35281253]
[68]
Werber, L.; Mastai, Y. Isothermal titration calorimetry for chiral chemistry. Chirality, 2018, 30(5), 619-631.
[http://dx.doi.org/10.1002/chir.22842] [PMID: 29528520]
[69]
Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[70]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[71]
Delano, W L PyMOL: An open-source molecular graphics tool. 2002. Available from: http://www.ccp4.ac.uk/newsletters/newsletter40/11_pymol.pdf
[72]
Liao, C.; Remington, J.M.; May, V.; Li, J. Molecular basis of class B GPCR selectivity for the neuropeptides PACAP and VIP. Front. Mol. Biosci., 2021, 8, 644644.
[http://dx.doi.org/10.3389/fmolb.2021.644644] [PMID: 33842547]
[73]
Castro-Vazquez, D.; Lamana, A.; Arribas-Castaño, P.; Gutiérrez-Cañas, I.; Villanueva-Romero, R.; Pérez-García, S.; Martínez, C.; Juarranz, Y.; Fernández de Córdoba, S.; González-Álvaro, I.; Gomariz, R.P.; Carrión, M. The neuropeptide VIP limits human osteoclastogenesis: Clinical associations with bone metabolism markers in patients with early arthritis. Biomedicines, 2021, 9(12), 1880.
[http://dx.doi.org/10.3390/biomedicines9121880] [PMID: 34944693]
[74]
Ono, D.; Honma, K.I.; Honma, S. Roles of neuropeptides, VIP and AVP, in the mammalian central circadian clock. Front. Neurosci., 2021, 15, 650154.
[http://dx.doi.org/10.3389/fnins.2021.650154] [PMID: 33935635]
[75]
Luger, T.A.; Lotti, T. Neuropeptides: Role in inflammatory skin diseases. J. Eur. Acad. Dermatol. Venereol., 1998, 10(3), 207-211.
[PMID: 9643321]