Caenorhabditis elegans as an Outstanding Model to Explore Flavonoids Under Stress Conditions

Article ID: e260124226352 Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Plants produce promising chemicals called secondary metabolites in response to stress, which protect against oxidative damage in both plants and humans. Reactive oxygen species (ROS) levels combined with an imbalance in the antioxidant responses can trigger oxidative stress that is related to many conditions such as Alzheimer's disease, diabetes, and cancer. One way to counteract or avoid the stress excess is by flavonoid administration, a class of plant metabolites with a consistent antioxidant action and the ability to inactivate the free radical excess. The mechanisms, as well as the benefits and toxicity of antioxidant products, can be tested in alternative animal models. The mechanisms, as well as the benefits and toxicity of antioxidant products, can be tested in alternative animal models. In this review, we explored how Caenorhabditis elegans, a nematode with high genetic similarity to human genes and the antioxidant response pathway conserved, can be considered an attractive model organism for testing flavonoid compounds. Here, we emphasize the crucial results regarding C. elegans and the flavonoid quercetin, focusing on oxidative stress and aging investigations. Also, this review highlights the quercetin benefits in C. elegans lifespan, healthspan, neurodegeneration, and impacts on insulin/IGF-1 signaling (IIS).

Graphical Abstract

[1]
Jucá, M.M.; Cysne Filho, F.M.S.; de Almeida, J.C.; Mesquita, D.S.; Barriga, J.R.M.; Dias, K.C.F.; Barbosa, T.M.; Vasconcelos, L.C.; Leal, L.K.A.M.; Ribeiro, J.E.; Vasconcelos, S.M.M. Flavonoids: Biological activities and therapeutic potential. Nat. Prod. Res., 2020, 34(5), 692-705.
[http://dx.doi.org/10.1080/14786419.2018.1493588] [PMID: 30445839]
[2]
Royani, A.; Hanafi, M.; Julistiono, H.; Manaf, A. The total phenolic and flavonoid contents of Aloe vera and Morinda citrifolia extracts as antibacterial material against Pseudomonas aeruginosa. Mater. Today Proc., 2023, 72, 2796-2802.
[http://dx.doi.org/10.1016/j.matpr.2022.06.466]
[3]
Williamson, G.; Kay, C.D.; Crozier, A. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Compr. Rev. Food Sci. Food Saf., 2018, 17(5), 1054-1112.
[http://dx.doi.org/10.1111/1541-4337.12351] [PMID: 33350159]
[4]
D’Autréaux, B.; Toledano, M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol., 2007, 8(10), 813-824.
[http://dx.doi.org/10.1038/nrm2256] [PMID: 17848967]
[5]
Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev., 2016, 2016, 1-18.
[http://dx.doi.org/10.1155/2016/4350965] [PMID: 26998193]
[6]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[7]
Lin, Y.; Lin, C.; Cao, Y.; Chen, Y. Caenorhabditis elegans as an in vivo model for the identification of natural antioxidants with anti-aging actions. Biomed. Pharmacother., 2023, 167, 115594.
[http://dx.doi.org/10.1016/j.biopha.2023.115594] [PMID: 37776641]
[8]
Chew, Y.L.; Walker, D.S.; Towlson, E.K.; Vértes, P.E.; Yan, G.; Barabási, A.L.; Schafer, W.R. Recordings of Caenorhabditis elegans locomotor behaviour following targeted ablation of single motorneurons. Sci. Data, 2017, 4(1), 170156.
[http://dx.doi.org/10.1038/sdata.2017.156] [PMID: 29047458]
[9]
Kim, Y.; Park, Y.; Hwang, J.; Kwack, K. Comparative genomic analysis of the human and nematode Caenorhabditis elegans uncovers potential reproductive genes and disease associations in humans. Physiol. Genomics, 2018, 50(11), 1002-1014.
[http://dx.doi.org/10.1152/physiolgenomics.00063.2018] [PMID: 30240344]
[10]
Sugawara, T.; Sakamoto, K. Quercetin enhances motility in aged and heat-stressed Caenorhabditis elegans nematodes by modulating both HSF-1 activity, and insulin-like and p38-MAPK signalling. PLoS One, 2020, 15(9), e0238528.
[http://dx.doi.org/10.1371/journal.pone.0238528] [PMID: 32881908]
[11]
Lee, H.; Lee, S.J.V. Recent progress in regulation of aging by insulin/IGF-1 signaling in caenorhabditis elegans. Mol. Cells, 2022, 45(11), 763-770.
[http://dx.doi.org/10.14348/molcells.2022.0097] [PMID: 36380728]
[12]
Wolpe Simas, L.A.; Granzoti, R.O.; Porsch, L. Estresse oxidativo e o seu impacto no envelhecimento: Uma revisão bibliográfica. Brazi. J. Nat. Sci., 2019, 2(2)
[http://dx.doi.org/10.31415/bjns.v2i2.53]
[13]
Koch, K.; Havermann, S.; Büchter, C.; Wätjen, W. Caenorhabditis elegans as model system in pharmacology and toxicology: effects of flavonoids on redox-sensitive signalling pathways and ageing. ScientificWorldJournal, 2014, 2014, 1-15.
[http://dx.doi.org/10.1155/2014/920398] [PMID: 24895670]
[14]
Lee, J.; Han, M.; Shin, Y.; Lee, J.M.; Heo, G.; Lee, Y. How Extracellular reactive oxygen species reach their intracellular targets in plants. Mol. Cells, 2023, 46(6), 329-336.
[http://dx.doi.org/10.14348/molcells.2023.2158] [PMID: 36799103]
[15]
Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov., 2021, 20(9), 689-709.
[http://dx.doi.org/10.1038/s41573-021-00233-1] [PMID: 34194012]
[16]
Matschke, V.; Theiss, C.; Matschke, J. Oxidative stress: The lowest common denominator of multiple diseases. Neural Regen. Res., 2019, 14(2), 238-241.
[http://dx.doi.org/10.4103/1673-5374.244780] [PMID: 30531003]
[17]
Li, Y.; Feng, X.; Yu, X.; Wang, Y.; Liu, Y.; Ye, X.; Jia, R.; Chen, W.; Yu, T.; Zheng, X.; Chu, Q. Radix Tetrastigma flavonoids inhibit the migration and promote the apoptosis of A549 cells both in vitro and in vivo. J. Funct. Foods, 2020, 72, 104076.
[http://dx.doi.org/10.1016/j.jff.2020.104076]
[18]
Mehdi, M.M.; Solanki, P.; Singh, P. Oxidative stress, antioxidants, hormesis and calorie restriction: The current perspective in the biology of aging. Arch. Gerontol. Geriatr., 2021, 95, 104413.
[http://dx.doi.org/10.1016/j.archger.2021.104413] [PMID: 33845417]
[19]
Harman, G.E. Overview of mechanisms and uses of trichoderma spp. Phytopathology, 2006, 96(2), 190-194.
[http://dx.doi.org/10.1094/PHYTO-96-0190] [PMID: 18943924]
[20]
Engwa, G.A. Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases.In: Phytochemicals - Source of Antioxidants and Role in Disease Prevention; Intechopen; , 2018.
[http://dx.doi.org/10.5772/intechopen.76719]
[21]
Stadtman, E.R.; Levine, R.L. Protein oxidation. Ann. N. Y. Acad. Sci., 2000, 899(1), 191-208.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06187.x] [PMID: 10863540]
[22]
Butterfield, D.A.; Koppal, T.; Howard, B.; Subramaniam, R.; Hall, N.; Hensley, K.; Yatin, S.; Allen, K.; Aksenov, M.; Aksenova, M.; Carney, J. Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-alpha-phenylnitrone and vitamin E. Ann. N. Y. Acad. Sci., 1998, 854(1), 448-462.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb09924.x] [PMID: 9928452]
[23]
Höhn, A.; Jung, T.; Grune, T. Pathophysiological importance of aggregated damaged proteins. Free Radic. Biol. Med., 2014, 71, 70-89.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.02.028] [PMID: 24632383]
[24]
Yan, L.L.; Zaher, H.S. How do cells cope with RNA damage and its consequences? J. Biol. Chem., 2019, 294(41), 15158-15171.
[http://dx.doi.org/10.1074/jbc.REV119.006513] [PMID: 31439666]
[25]
Guo, C.; Ding, P.; Xie, C.; Ye, C.; Ye, M.; Pan, C.; Cao, X.; Zhang, S.; Zheng, S. Potential application of the oxidative nucleic acid damage biomarkers in detection of diseases. Oncotarget, 2017, 8(43), 75767-75777.
[http://dx.doi.org/10.18632/oncotarget.20801] [PMID: 29088908]
[26]
Wang, J.X.; Gao, J.; Ding, S.L.; Wang, K.; Jiao, J.Q.; Wang, Y.; Sun, T.; Zhou, L.Y.; Long, B.; Zhang, X.J.; Li, Q.; Liu, J.P.; Feng, C.; Liu, J.; Gong, Y.; Zhou, Z.; Li, P.F. Oxidative modification of miR-184 enables it to target Bcl-xL and Bcl-w. Mol. Cell, 2015, 59(1), 50-61.
[http://dx.doi.org/10.1016/j.molcel.2015.05.003] [PMID: 26028536]
[27]
Lin, Y.; Yang, N.; Bao, B.; Wang, L.; Chen, J.; Liu, J. Luteolin reduces fat storage in Caenorhabditis elegans by promoting the central serotonin pathway. Food Funct., 2020, 11(1), 730-740.
[http://dx.doi.org/10.1039/C9FO02095K] [PMID: 31912839]
[28]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[29]
Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules, 2021, 26(17), 5377.
[http://dx.doi.org/10.3390/molecules26175377] [PMID: 34500810]
[30]
van Acker, S.A.B.E.; de Groot, M.J.; van den Berg, D.J.; Tromp, M.N.J.L.; Donné-Op den Kelder, G.; van der Vijgh, W.J.F.; Bast, A. A quantum chemical explanation of the antioxidant activity of flavonoids. Chem. Res. Toxicol., 1996, 9(8), 1305-1312.
[http://dx.doi.org/10.1021/tx9600964] [PMID: 8951233]
[31]
Ravishankar, D.; Rajora, A.K.; Greco, F.; Osborn, H.M.I. Flavonoids as prospective compounds for anti-cancer therapy. Int. J. Biochem. Cell Biol., 2013, 45(12), 2821-2831.
[http://dx.doi.org/10.1016/j.biocel.2013.10.004] [PMID: 24128857]
[32]
Bors, W.; Heller, W.; Michel, C.; Saran, M. Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods Enzymol., 1990, 186, 343-355.
[http://dx.doi.org/10.1016/0076-6879(90)86128-I]
[33]
Dong, Y.; Huang, H.; Zhao, M.; Sun-Waterhouse, D.; Lin, L.; Xiao, C. Mechanisms underlying the xanthine oxidase inhibitory effects of dietary flavonoids galangin and pinobanksin. J. Funct. Foods, 2016, 24, 26-36.
[http://dx.doi.org/10.1016/j.jff.2016.03.021]
[34]
Panday, A.; Sahoo, M.K.; Osorio, D.; Batra, S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell. Mol. Immunol., 2015, 12(1), 5-23.
[http://dx.doi.org/10.1038/cmi.2014.89] [PMID: 25263488]
[35]
Steffen, Y.; Gruber, C.; Schewe, T.; Sies, H. Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch. Biochem. Biophys., 2008, 469(2), 209-219.
[http://dx.doi.org/10.1016/j.abb.2007.10.012] [PMID: 17996190]
[36]
Banjarnahor, S.D.S.; Artanti, N. Antioxidant properties of flavonoids. Med. J. Indones., 2015, 23(4), 239-244.
[http://dx.doi.org/10.13181/mji.v23i4.1015]
[37]
Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev., 2019, 18(1), 241-272.
[http://dx.doi.org/10.1007/s11101-018-9591-z]
[38]
Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 2011, 82(4), 513-523.
[http://dx.doi.org/10.1016/j.fitote.2011.01.018] [PMID: 21277359]
[39]
Fernández, J.; Silván, B.; Entrialgo-Cadierno, R.; Villar, C.J.; Capasso, R.; Uranga, J.A.; Lombó, F.; Abalo, R. Antiproliferative and palliative activity of flavonoids in colorectal cancer. Biomed. Pharmacother., 2021, 143, 112241.
[http://dx.doi.org/10.1016/j.biopha.2021.112241] [PMID: 34649363]
[40]
Agrawal, K.; Chakraborty, P.; Dewanjee, S.; Arfin, S.; Das, S.S.; Dey, A.; Moustafa, M.; Mishra, P.C.; Jafari, S.M.; Jha, N.K.; Jha, S.K.; Kumar, D. Neuropharmacological interventions of quercetin and its derivatives in neurological and psychological disorders. Neurosci. Biobehav. Rev., 2023, 144, 104955.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104955] [PMID: 36395983]
[41]
Pan, M.H.; Lai, C.S.; Ho, C.T. Anti-inflammatory activity of natural dietary flavonoids. Food Funct., 2010, 1(1), 15-31.
[http://dx.doi.org/10.1039/c0fo00103a] [PMID: 21776454]
[42]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7(1), 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[43]
Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[44]
Cho, I.; Song, H.O.; Cho, J.H. Flavonoids mitigate neurodegeneration in aged Caenorhabditis elegans by mitochondrial uncoupling. Food Sci. Nutr., 2020, 8(12), 6633-6642.
[http://dx.doi.org/10.1002/fsn3.1956] [PMID: 33312547]
[45]
Jia, H.; Zhang, Y.; Si, X.; Jin, Y.; Jiang, D.; Dai, Z.; Wu, Z. Quercetin alleviates oxidative damage by activating nuclear factor erythroid 2-related factor 2 signaling in porcine enterocytes. Nutrients, 2021, 13(2), 375.
[http://dx.doi.org/10.3390/nu13020375] [PMID: 33530513]
[46]
Peng, J.; Yang, Z.; Li, H.; Hao, B.; Cui, D.; Shang, R.; Lv, Y.; Liu, Y.; Pu, W.; Zhang, H.; He, J.; Wang, X.; Wang, S. Quercetin reprograms immunometabolism of macrophages via the SIRT1/PGC-1α signaling pathway to ameliorate lipopolysaccharide-induced oxidative damage. Int. J. Mol. Sci., 2023, 24(6), 5542.
[http://dx.doi.org/10.3390/ijms24065542] [PMID: 36982615]
[47]
Yang, Y.; Li, Y.; Du, X.; Liu, Z.; Zhu, C.; Mao, W.; Liu, G.; Jiang, Q. Anti-aging effects of quercetin in cladocera simocephalus vetulus using proteomics. ACS Omega, 2023, 8(20), 17609-17619.
[http://dx.doi.org/10.1021/acsomega.2c08242] [PMID: 37251128]
[48]
Picciotto, S.; Santonicola, P.; Paterna, A.; Rao, E.; Raccosta, S.; Romancino, D.P.; Noto, R.; Touzet, N.; Manno, M.; Di Schiavi, E.; Bongiovanni, A.; Adamo, G. Extracellular vesicles from microalgae: Uptake studies in human cells and caenorhabditis elegans. Front. Bioeng. Biotechnol., 2022, 10, 830189.
[http://dx.doi.org/10.3389/fbioe.2022.830189] [PMID: 35402397]
[49]
Mudd, N.; Liceaga, A.M. Caenorhabditis elegans as an in vivo model for food bioactives: A review. Curr. Res. Food Sci., 2022, 5, 845-856.
[http://dx.doi.org/10.1016/j.crfs.2022.05.001] [PMID: 35619588]
[50]
Taylor, C.A.; Tuschl, K.; Nicolai, M.M.; Bornhorst, J.; Gubert, P.; Varão, A.M.; Aschner, M.; Smith, D.R.; Mukhopadhyay, S. Maintaining translational relevance in animal models of manganese neurotoxicity. J. Nutr., 2020, 150(6), 1360-1369.
[http://dx.doi.org/10.1093/jn/nxaa066] [PMID: 32211802]
[51]
Wheelan, S.J.; Boguski, M.S.; Duret, L. Makałowski, W. Human and nematode orthologs - lessons from the analysis of 1800 human genes and the proteome of Caenorhabditis elegans. Gene, 1999, 238(1), 163-170.
[http://dx.doi.org/10.1016/S0378-1119(99)00298-X] [PMID: 10570994]
[52]
Zhu, A.; Zheng, F.; Zhang, W.; Li, L.; Li, Y.; Hu, H.; Wu, Y.; Bao, W.; Li, G.; Wang, Q.; Li, H. Oxidation and antioxidation of natural products in the model organism caenorhabditis elegans. Antioxidants, 2022, 11(4), 705.
[http://dx.doi.org/10.3390/antiox11040705] [PMID: 35453390]
[53]
Altun, Z.F.; Hall, D.H. WormAtas Hermaphrodite Handbook - Introduction; WormAtlas, 2006.
[http://dx.doi.org/10.3908/wormatlas.1.1]
[54]
Corsi, A.K.; Wightman, B.; Chalfie, M. A transparent window into biology: A primer on caenorhabditis elegans. Genetics, 2015, 200(2), 387-407.
[http://dx.doi.org/10.1534/genetics.115.176099] [PMID: 26088431]
[55]
Wang, D. Exposure Toxicology in Caenorhabditis elegans; Springer Singapore: Singapore, 2020.
[http://dx.doi.org/10.1007/978-981-15-6129-0]
[56]
Van Raamsdonk, J.M.; Hekimi, S. Superoxide dismutase is dispensable for normal animal lifespan. Proc. Natl. Acad. sci., 2012, 109(15), 5785-5790.
[http://dx.doi.org/10.1073/pnas.1116158109] [PMID: 22451939]
[57]
Hu, Q.; D’Amora, DR.; MacNeil, LT.; Walhout, AJM.; Kubiseski, TJ. The caenorhabditis elegans oxidative stress response requires the NHR-49 transcription factor. G3 , 2018, 8, 3857-3863.
[http://dx.doi.org/10.1534/g3.118.200727]
[58]
Wei, Y.; Kenyon, C. Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans. Proc. Natl. Acad. Sci., 2016, 113(20), E2832-E2834.
[http://dx.doi.org/10.1073/pnas.1524727113]
[59]
Altintas, O.; Park, S.; Lee, S.J.V. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep., 2016, 49(2), 81-92.
[http://dx.doi.org/10.5483/BMBRep.2016.49.2.261] [PMID: 26698870]
[60]
Berdichevsky, A.; Viswanathan, M.; Horvitz, H.R.; Guarente, L.C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell, 2006, 125(6), 1165-1177.
[http://dx.doi.org/10.1016/j.cell.2006.04.036] [PMID: 16777605]
[61]
Wu, M.; Kang, X.; Wang, Q.; Zhou, C.; Mohan, C.; Peng, A. Regulator of G protein signaling-1 modulates paraquat-induced oxidative stress and longevity via the insulin like signaling pathway in Caenorhabditis elegans. Toxicol. Lett., 2017, 273, 97-105.
[http://dx.doi.org/10.1016/j.toxlet.2017.03.027] [PMID: 28366735]
[62]
Cheng, D.; Lee, J.S.; Brown, M.; Ebert, M.S.; McGrath, P.T.; Tomioka, M.; Iino, Y.; Bargmann, C.I. Insulin/IGF signaling regulates presynaptic glutamate release in aversive olfactory learning. Cell Rep., 2022, 41(8), 111685.
[http://dx.doi.org/10.1016/j.celrep.2022.111685] [PMID: 36417877]
[63]
Lattmann, E.; Deng, T.; Walser, M.; Widmer, P.; Rexha-Lambert, C.; Prasad, V.; Eichhoff, O.; Daube, M.; Dummer, R.; Levesque, M.P.; Hajnal, A. A DNA replication-independent function of pre-replication complex genes during cell invasion in C. elegans. PLoS Biol., 2022, 20(2), e3001317.
[http://dx.doi.org/10.1371/journal.pbio.3001317] [PMID: 35192608]
[64]
Matty, M.A.; Lau, H.E.; Haley, J.A.; Singh, A.; Chakraborty, A.; Kono, K.; Reddy, K.C.; Hansen, M.; Chalasani, S.H. Intestine-to-neuronal signaling alters risk-taking behaviors in food-deprived Caenorhabditis elegans. PLoS Genet., 2022, 18(5), e1010178.
[http://dx.doi.org/10.1371/journal.pgen.1010178] [PMID: 35511794]
[65]
Graczyk, N.; Youngman, M. Regulation of the age‐dependent activity of the foxo transcription factor DAF‐16 in adult caenorhabditis elegans roundworms FASEB J., 2022, 36(S1), fasebj.2022.36.S1.L8126..
[http://dx.doi.org/10.1096/fasebj.2022.36.S1.L8126]
[66]
Konwar, C.; Maini, J.; Kohli, S.; Brahmachari, V.; Saluja, D. SIN-3 functions through multi-protein interaction to regulate apoptosis, autophagy, and longevity in Caenorhabditis elegans. Sci. Rep., 2022, 12(1), 10560.
[http://dx.doi.org/10.1038/s41598-022-13864-0] [PMID: 35732652]
[67]
Wang, Q.; Zhu, Y.; Song, B.; Fu, R.; Zhou, Y. The in vivo toxicity assessments of water-dispersed fluorescent silicon nanoparticles in caenorhabditis elegans. Int. J. Environ. Res. Public Health, 2022, 19(7), 4101.
[http://dx.doi.org/10.3390/ijerph19074101] [PMID: 35409783]
[68]
Moreno-Arriola, E.; Cárdenas-Rodríguez, N.; Coballase-Urrutia, E.; Pedraza-Chaverri, J.; Carmona-Aparicio, L.; Ortega-Cuellar, D. Caenorhabditis elegans: A useful model for studying metabolic disorders in which oxidative stress is a contributing factor. Oxid. Med. Cell. Longev., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/705253] [PMID: 24955209]
[69]
Petriv, O.I.; Rachubinski, R.A. Lack of peroxisomal catalase causes a progeric phenotype in Caenorhabditis elegans. J. Biol. Chem., 2004, 279(19), 19996-20001.
[http://dx.doi.org/10.1074/jbc.M400207200] [PMID: 14996832]
[70]
Sakamoto, T.; Imai, H. Hydrogen peroxide produced by superoxide dismutase SOD-2 activates sperm in Caenorhabditis elegans. J. Biol. Chem., 2017, 292(36), 14804-14813.
[http://dx.doi.org/10.1074/jbc.M117.788901] [PMID: 28724632]
[71]
Wook Oh, S.; Mukhopadhyay, A.; Dixit, B.L.; Raha, T.; Green, M.R.; Tissenbaum, H.A. Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nat. Genet., 2006, 38(2), 251-257.
[http://dx.doi.org/10.1038/ng1723] [PMID: 16380712]
[72]
Hoogewijs, D.; Houthoofd, K.; Matthijssens, F.; Vandesompele, J.; Vanfleteren, J.R. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol. Biol., 2008, 9(1), 9.
[http://dx.doi.org/10.1186/1471-2199-9-9] [PMID: 18211699]
[73]
Yanase, S.; Yasuda, K.; Ishii, N. Adaptive responses to oxidative damage in three mutants of Caenorhabditis elegans (age-1, mev-1 and daf-16) that affect life span. Mech. Ageing Dev., 2002, 123(12), 1579-1587.
[http://dx.doi.org/10.1016/S0047-6374(02)00093-3] [PMID: 12470895]
[74]
Yanase, S.; Onodera, A.; Tedesco, P.; Johnson, T.E.; Ishii, N. SOD-1 deletions in Caenorhabditis elegans alter the localization of intracellular reactive oxygen species and show molecular compensation. J. Gerontol. A Biol. Sci. Med. Sci., 2009, 64A(5), 530-539.
[http://dx.doi.org/10.1093/gerona/glp020] [PMID: 19282511]
[75]
Murphy, C.T.; McCarroll, S.A.; Bargmann, C.I.; Fraser, A.; Kamath, R.S.; Ahringer, J.; Li, H.; Kenyon, C. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 2003, 424(6946), 277-283.
[http://dx.doi.org/10.1038/nature01789] [PMID: 12845331]
[76]
Manière, X.; Krisko, A.; Pellay, F.X.; Di Meglio, J.M.; Hersen, P.; Matic, I. High transcript levels of heat-shock genes are associated with shorter lifespan of Caenorhabditis elegans. Exp. Gerontol., 2014, 60, 12-17.
[http://dx.doi.org/10.1016/j.exger.2014.09.005] [PMID: 25218444]
[77]
Doonan, R.; McElwee, J.J.; Matthijssens, F.; Walker, G.A.; Houthoofd, K.; Back, P.; Matscheski, A.; Vanfleteren, J.R.; Gems, D. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev., 2008, 22(23), 3236-3241.
[http://dx.doi.org/10.1101/gad.504808] [PMID: 19056880]
[78]
Fernando, L.M.; Adeel, S.; Basar, M.A.; Allen, A.K.; Duttaroy, A. In-gel SOD assay reveals SOD-2 is the single active, water-soluble SOD enzyme in C. elegans. Free Radic. Res., 2021, 55(6), 619-624.
[http://dx.doi.org/10.1080/10715762.2021.1979228] [PMID: 34514925]
[79]
Back, P.; Braeckman, B.P.; Matthijssens, F. ROS in aging Caenorhabditis elegans: Damage or signaling? Oxid. Med. Cell. Longev., 2012, 2012, 1-14.
[http://dx.doi.org/10.1155/2012/608478] [PMID: 22966416]
[80]
Herbette, S.; Roeckel-Drevet, P.; Drevet, J.R. Seleno-independent glutathione peroxidases. FEBS J., 2007, 274(9), 2163-2180.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05774.x] [PMID: 17419737]
[81]
Ferguson, G.D.; Bridge, W.J. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol., 2019, 24, 101171.
[http://dx.doi.org/10.1016/j.redox.2019.101171] [PMID: 30901603]
[82]
Dancy, B.M.; Brockway, N.; Ramadasan-Nair, R.; Yang, Y.; Sedensky, M.M.; Morgan, P.G. Glutathione S-transferase mediates an ageing response to mitochondrial dysfunction. Mech. Ageing Dev., 2016, 153, 14-21.
[http://dx.doi.org/10.1016/j.mad.2015.12.001] [PMID: 26704446]
[83]
Stefanello, S.T.; Gubert, P.; Puntel, B.; Mizdal, C.R.; Campos, M.M.A.; Salman, S.M.; Dornelles, L.; Avila, D.S.; Aschner, M.; Soares, F.A.A. Protective effects of novel organic selenium compounds against oxidative stress in the nematode Caenorhabditis elegans. Toxicol. Rep., 2015, 2, 961-967.
[http://dx.doi.org/10.1016/j.toxrep.2015.06.010] [PMID: 26726309]
[84]
Tawe, W.N.; Eschbach, M.L.; Walter, R.D.; Henkle-Dührsen, K. Identification of stress-responsive genes in Caenorhabditis elegans using RT-PCR differential display. Nucleic Acids Res., 1998, 26(7), 1621-1627.
[http://dx.doi.org/10.1093/nar/26.7.1621] [PMID: 9512531]
[85]
van der Hoeven, R.; McCallum, K.C.; Cruz, M.R.; Garsin, D.A. Ce-Duox1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans. PLoS Pathog., 2011, 7(12), e1002453.
[http://dx.doi.org/10.1371/journal.ppat.1002453] [PMID: 22216003]
[86]
Hernández-Cruz, E.Y.; Eugenio-Pérez, D.; Ramírez-Magaña, K.J.; Pedraza-Chaverri, J. Effects of vegetal extracts and metabolites against oxidative stress and associated diseases: Studies in caenorhabditis elegans. ACS Omega, 2023, 8(10), 8936-8959.
[http://dx.doi.org/10.1021/acsomega.2c07025] [PMID: 36936291]
[87]
Bora, S.; Vardhan, G.S.H.; Deka, N.; Khataniar, L.; Gogoi, D.; Baruah, A. Paraquat exposure over generation affects lifespan and reproduction through mitochondrial disruption in C. elegans. Toxicology, 2021, 447, 152632.
[http://dx.doi.org/10.1016/j.tox.2020.152632] [PMID: 33197508]
[88]
Lima, M.; Colpo, A.; Salgueiro, W.; Sardinha, G.; Ávila, D.; Folmer, V. Ilex paraguariensis extract increases lifespan and protects against the toxic effects caused by paraquat in caenorhabditis elegans. Int. J. Environ. Res. Public Health, 2014, 11(10), 10091-10104.
[http://dx.doi.org/10.3390/ijerph111010091] [PMID: 25264684]
[89]
Possik, E.; Pause, A. Measuring oxidative stress resistance of caenorhabditis elegans in 96-well microtiter plates. J. Vis. Exp., 2015, (99), e52746.
[http://dx.doi.org/10.3791/52746] [PMID: 25993260]
[90]
Naß, J.; Efferth, T. Ursolic acid ameliorates stress and reactive oxygen species in C. elegans knockout mutants by the dopamine Dop1 and Dop3 receptors. Phytomedicine, 2021, 81, 153439.
[http://dx.doi.org/10.1016/j.phymed.2020.153439] [PMID: 33352493]
[91]
Nicolai, M.M.; Witt, B.; Hartwig, A.; Schwerdtle, T.; Bornhorst, J. A fast and reliable method for monitoring genomic instability in the model organism Caenorhabditis elegans. Arch. Toxicol., 2021, 95(10), 3417-3424.
[http://dx.doi.org/10.1007/s00204-021-03144-7] [PMID: 34458933]
[92]
Vertino, A.; Ayyadevara, S.; Thaden, J.J.; Reis, R.J.S. A narrow quantitative trait locus in C. elegans coordinately affects longevity, thermotolerance, and resistance to paraquat. Front. Genet., 2011, 2, 63.
[http://dx.doi.org/10.3389/fgene.2011.00063] [PMID: 22303358]
[93]
Crombie, T.A.; Tang, L.; Choe, K.P.; Julian, D. Inhibition of the oxidative stress response by heat stress in Caenorhabditis elegans. J. Exp. Biol., 2016, 219(Pt 14), jeb.135327..
[http://dx.doi.org/10.1242/jeb.135327] [PMID: 27207646]
[94]
Lu, L.; Zhao, X.; Zhang, J.; Li, M.; Qi, Y.; Zhou, L. Calycosin promotes lifespan in Caenorhabditis elegans through insulin signaling pathway via daf-16, age-1 and daf-2. J. Biosci. Bioeng., 2017, 124(1), 1-7.
[http://dx.doi.org/10.1016/j.jbiosc.2017.02.021] [PMID: 28434978]
[95]
Yoon, D.; Lee, M.H.; Cha, D. Measurement of intracellular ROS in caenorhabditis elegans using 2′,7′-dichlorodihydrofluorescein diacetate. Bio Protoc., 2018, 8(6), e2774.
[http://dx.doi.org/10.21769/BioProtoc.2774] [PMID: 29744374]
[96]
Gomes, A.; Fernandes, E.; Lima, J.L.F.C. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods, 2005, 65(2-3), 45-80.
[http://dx.doi.org/10.1016/j.jbbm.2005.10.003] [PMID: 16297980]
[97]
Teuscher, A.; Ewald, C. Overcoming autofluorescence to assess GFP expression during normal physiology and aging in caenorhabditis elegans. Bio Protoc., 2018, 8(14), e2940.
[http://dx.doi.org/10.21769/BioProtoc.2940] [PMID: 30073182]
[98]
Nguyen, V.T.; Park, A.R.; Duraisamy, K.; Vo, D.D.; Kim, J.C. Elucidation of the nematicidal mode of action of grammicin on Caenorhabditis elegans. Pestic. Biochem. Physiol., 2022, 188, 105244.
[http://dx.doi.org/10.1016/j.pestbp.2022.105244] [PMID: 36464355]
[99]
Urban, N.; Tsitsipatis, D.; Hausig, F.; Kreuzer, K.; Erler, K.; Stein, V.; Ristow, M.; Steinbrenner, H.; Klotz, L.O. Non-linear impact of glutathione depletion on C. elegans life span and stress resistance. Redox Biol., 2017, 11, 502-515.
[http://dx.doi.org/10.1016/j.redox.2016.12.003] [PMID: 28086197]
[100]
Rieckher, M.; Lopes, A.; Schumacher, B. Genome Stability in C. elegans. In: Genome Stability - From Virus to Human Application; Kovalchuk, I.; Kovalchuk, O., Eds.; Elsevier Book, 2016, pp. 163-186.
[101]
Imanikia, S.; Galea, F.; Nagy, E.; Phillips, D.H.; Stürzenbaum, S.R.; Arlt, V.M. The application of the comet assay to assess the genotoxicity of environmental pollutants in the nematode Caenorhabditis elegans. Environ. Toxicol. Pharmacol., 2016, 45, 356-361.
[http://dx.doi.org/10.1016/j.etap.2016.06.020] [PMID: 27389785]
[102]
Hawkins, C.L.; Davies, M.J. Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem., 2019, 294(51), 19683-19708.
[http://dx.doi.org/10.1074/jbc.REV119.006217] [PMID: 31672919]
[103]
Kuzmic, M.; Javot, H.; Bonzom, J.M.; Lecomte-Pradines, C.; Radman, M.; Garnier-Laplace, J.; Frelon, S. In situ visualization of carbonylation and its co-localization with proteins, lipids, DNA and RNA in Caenorhabditis elegans. Free Radic. Biol. Med., 2016, 101, 465-474.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.004] [PMID: 27840319]
[104]
Tamarit, J.; de Hoogh, A.; Obis, E.; Alsina, D.; Cabiscol, E.; Ros, J. Analysis of oxidative stress-induced protein carbonylation using fluorescent hydrazides. J. Proteomics, 2012, 75(12), 3778-3788.
[http://dx.doi.org/10.1016/j.jprot.2012.04.046] [PMID: 22579746]
[105]
Ishii, N.; Goto, S.; Hartman, P.S. Protein oxidation during aging of the nematode Caenorhabditis elegans. Free Radic. Biol. Med., 2002, 33(8), 1021-1025.
[http://dx.doi.org/10.1016/S0891-5849(02)00857-2] [PMID: 12374613]
[106]
Qin, S.; Wang, Y.; Li, L.; Liu, J.; Xiao, C.; Duan, D.; Hao, W.; Qin, C.; Chen, J.; Yao, L.; Zhang, R.; You, J.; Zheng, J.S.; Shen, E.; Wu, L. Early-life vitamin B12 orchestrates lipid peroxidation to ensure reproductive success via SBP-1/SREBP1 in Caenorhabditis elegans. Cell Rep., 2022, 40(12), 111381.
[http://dx.doi.org/10.1016/j.celrep.2022.111381] [PMID: 36130518]
[107]
Lagman, M.; Ly, J.; Saing, T.; Kaur Singh, M.; Vera Tudela, E.; Morris, D.; Chi, P.T.; Ochoa, C.; Sathananthan, A.; Venketaraman, V. Investigating the causes for decreased levels of glutathione in individuals with type II diabetes. PLoS One, 2015, 10(3), e0118436.
[http://dx.doi.org/10.1371/journal.pone.0118436] [PMID: 25790445]
[108]
Beaudoin-Chabot, C.; Wang, L.; Smarun, A.V. Vidović, D.; Shchepinov, M.S.; Thibault, G. Deuterated polyunsaturated fatty acids reduce oxidative stress and extend the lifespan of C. elegans. Front. Physiol., 2019, 10, 641.
[http://dx.doi.org/10.3389/fphys.2019.00641] [PMID: 31191345]
[109]
Fideles, S.O.M.; de Cássia Ortiz, A.; Buchaim, D.V.; de Souza Bastos Mazuqueli Pereira, E.; Parreira, M.J.B.M.; de Oliveira Rossi, J.; da Cunha, M.R.; de Souza, A.T.; Soares, W.C.; Buchaim, R.L. Influence of the neuroprotective properties of quercetin on regeneration and functional recovery of the nervous system. Antioxidants, 2023, 12(1), 149.
[http://dx.doi.org/10.3390/antiox12010149] [PMID: 36671011]
[110]
Ayuda-Durán, B.; González-Manzano, S.; Miranda-Vizuete, A.; Sánchez-Hernández, E.R.; Romero, M.; Dueñas, M.; Santos-Buelga, C.; González-Paramás, A.M. Exploring target genes involved in the effect of quercetin on the response to oxidative stress in caenorhabditis elegans. Antioxidants, 2019, 8(12), 585.
[http://dx.doi.org/10.3390/antiox8120585] [PMID: 31775265]
[111]
Kampkötter, A.; Timpel, C.; Zurawski, R.F.; Ruhl, S.; Chovolou, Y.; Proksch, P.; Wätjen, W. Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2008, 149(2), 314-323.
[http://dx.doi.org/10.1016/j.cbpb.2007.10.004] [PMID: 18024103]
[112]
Saul, N.; Pietsch, K.; Menzel, R.; Steinberg, C.E.W. Quercetin-mediated longevity in caenorhabditis elegans: Is DAF-16 involved? Mech. Ageing Dev., 2008, 129(10), 611-613.
[http://dx.doi.org/10.1016/j.mad.2008.07.001] [PMID: 18692520]
[113]
Surco-Laos, F.; Cabello, J.; Gómez-Orte, E.; González-Manzano, S.; González-Paramás, A.M.; Santos-Buelga, C.; Dueñas, M. Effects of O-methylated metabolites of quercetin on oxidative stress, thermotolerance, lifespan and bioavailability on Caenorhabditis elegans. Food Funct., 2011, 2(8), 445-456.
[http://dx.doi.org/10.1039/c1fo10049a] [PMID: 21776484]
[114]
Grünz, G.; Haas, K.; Soukup, S.; Klingenspor, M.; Kulling, S.E.; Daniel, H.; Spanier, B. Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech. Ageing Dev., 2012, 133(1), 1-10.
[http://dx.doi.org/10.1016/j.mad.2011.11.005] [PMID: 22155175]
[115]
Gil-Sánchez, I.; Cueva, C.; Tamargo, A.; Quintela, J.C.; de la Fuente, E.; Walker, A.W.; Moreno-Arribas, M.V.; Bartolomé, B. Application of the dynamic gastrointestinal simulator (simgi®) to assess the impact of probiotic supplementation in the metabolism of grape polyphenols. Food Res. Int., 2020, 129, 108790.
[http://dx.doi.org/10.1016/j.foodres.2019.108790] [PMID: 32036893]
[116]
Ayuda-Durán, B.; Sánchez-Hernández, E.; González-Manzano, S.; Santos-Buelga, C.; González-Paramás, A.M. The effects of polyphenols against oxidative stress in Caenorhabditis elegans are determined by coexisting bacteria. Front. Nutr., 2022, 9, 989427.
[http://dx.doi.org/10.3389/fnut.2022.989427] [PMID: 36532522]
[117]
Ungurianu, A. Margină D.; Grădinaru, D.; Băcanu, C.; Ilie, M.; Tsitsimpikou, C.; Tsarouhas, K.; Spandidos, D.A.; Tsatsakis, A.M. Lipoprotein redox status evaluation as a marker of cardiovascular disease risk in patients with inflammatory disease. Mol. Med. Rep., 2017, 15(1), 256-262.
[http://dx.doi.org/10.3892/mmr.2016.5972] [PMID: 27909725]
[118]
Geng, L.; Liu, Z.; Wang, S.; Sun, S.; Ma, S.; Liu, X.; Chan, P.; Sun, L.; Song, M.; Zhang, W.; Liu, G.H.; Qu, J. Low-dose quercetin positively regulates mouse healthspan. Protein Cell, 2019, 10(10), 770-775.
[http://dx.doi.org/10.1007/s13238-019-0646-8] [PMID: 31325157]
[119]
Pietsch, K.; Saul, N.; Menzel, R.; Stürzenbaum, S.R.; Steinberg, C.E.W. Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology, 2009, 10(5), 565-578.
[http://dx.doi.org/10.1007/s10522-008-9199-6] [PMID: 19043800]
[120]
Gerstbrein, B.; Stamatas, G.; Kollias, N.; Driscoll, M. In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell, 2005, 4(3), 127-137.
[http://dx.doi.org/10.1111/j.1474-9726.2005.00153.x] [PMID: 15924569]
[121]
Kampkötter, A.; Nkwonkam, C.G.; Zurawski, R.F.; Timpel, C.; Chovolou, Y.; Wätjen, W.; Kahl, R. Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicology, 2007, 234(1-2), 113-123.
[http://dx.doi.org/10.1016/j.tox.2007.02.006] [PMID: 17376580]
[122]
Caldwell, K.A.; Willicott, C.W.; Caldwell, G.A. Modeling neurodegeneration in Caenorhabditis elegans. Dis. Model. Mech., 2020, 13(10), dmm046110.
[http://dx.doi.org/10.1242/dmm.046110] [PMID: 33106318]
[123]
Alvarez, J.; Alvarez-Illera, P.; Santo-Domingo, J.; Fonteriz, R.I.; Montero, M. Modeling alzheimer’s disease in caenorhabditis elegans. Biomedicines, 2022, 10(2), 288.
[http://dx.doi.org/10.3390/biomedicines10020288] [PMID: 35203497]
[124]
Palikaras, K.; Lionaki, E.; Tavernarakis, N. Mitophagy dynamics in caenorhabditis elegans. Methods Mol. Biol., 2019, 1880, 655-668.
[http://dx.doi.org/10.1007/978-1-4939-8873-0_43]
[125]
Tullet, J.M.A.; Hertweck, M.; An, J.H.; Baker, J.; Hwang, J.Y.; Liu, S.; Oliveira, R.P.; Baumeister, R.; Blackwell, T.K. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell, 2008, 132(6), 1025-1038.
[http://dx.doi.org/10.1016/j.cell.2008.01.030] [PMID: 18358814]
[126]
Kell, A.; Ventura, N.; Kahn, N.; Johnson, T.E. Activation of SKN-1 by novel kinases in Caenorhabditis elegans. Free Radic. Biol. Med., 2007, 43(11), 1560-1566.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.08.025] [PMID: 17964427]
[127]
Acunzo, J.; Katsogiannou, M.; Rocchi, P. Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int. J. Biochem. Cell Biol., 2012, 44(10), 1622-1631.
[http://dx.doi.org/10.1016/j.biocel.2012.04.002] [PMID: 22521623]
[128]
Leiers, B.; Kampkötter, A.; Grevelding, C.G.; Link, C.D.; Johnson, T.E.; Henkle-Dührsen, K. A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radic. Biol. Med., 2003, 34(11), 1405-1415.
[http://dx.doi.org/10.1016/S0891-5849(03)00102-3] [PMID: 12757851]
[129]
Zhou, M.; Xiao, K.; Zhang, L.; Liu, M.; Li, L.; Zhu, H.; Wang, W.; Yi, C.; Yu, F.; Li, Q.; Wang, C. The use of Caenorhabditis elegans model to screen lactobacilli for the control of patulin. Food Control, 2022, 137, 108963.
[http://dx.doi.org/10.1016/j.foodcont.2022.108963]