Phenolic Bisabolane Sesquiterpene Derivatives from an Arctic Marine-derived Fungus Aspergillus sydowii MNP-2

Article ID: e260124226350 Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: Filamentous fungi in the genus Aspergillus are well known for their important roles in production of bioactive secondary metabolites with diversely chemical structures and potential application in pharmaceutical industry.

Objective: The present study aimed to investigate the phenolic bisabolane sesquiterpene (PBS) derivatives from an Arctic marine-derived fungus Aspergillus sydowii MNP-2.

Methods: In this study, antimicrobial activities were carried out according to the broth microdilution assay, nitric oxide (NO) production in mouse macrophages (RAW264.7) and BV2 microglial cells was used to detect the inhibitory effect of compounds in inflammatory reactions, and in vitro inhibitory cell proliferation activity was determined by the cell counting kit-8 (CCK-8) assay.

Results: In this work, chemical investigation of an Arctic marine-derived strain A. sydowii MNP-2 led to the isolation of 11 PBSs (1-11) using various chromatographic methods. Their chemical structures were unambiguously determined by 1H NMR spectroscopy and mass spectrometry analyses as well as comparison with literature data. It is noteworthy that compounds 1, 7 and 11 were firstly obtained from A. sydowii. Antimicrobial assay showed that these chemicals had no potent inhibitory effect on Staphylococcus aureus, Escherichia coli, and Candida albicans with MIC values > 16 μg/mL. Additionally, the inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)- induced inflammation in mouse macrophages (RAW264.7) and BV2 microglial cells were all below 10% for compounds 4-6 and 8, indicating almost negligible anti-inflammatory efficacy. Among the tested compounds 4-6 and 8 for tumor-cell proliferation inhibition activities, compound 5 demonstrated the strongest inhibitory effect against human acute promyelocytic leukemia cells (HL-6) with a 44.76% inhibition rate.

Conclusion: In the present study, 11 PBS derivatives were purified and characterized from the solidand liquid-state fermentations of the Arctic marine-derived fungus A. sydowii MNP-2. Unfortunately, none of these metabolites had significant antimicrobial, anti-inflammatory, or tumor-cell proliferation inhibition activities.

Graphical Abstract

[1]
Sanchez, J.F.; Somoza, A.D.; Keller, N.P.; Wang, C.C.C. Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat. Prod. Rep., 2012, 29(3), 351-371.
[http://dx.doi.org/10.1039/c2np00084a] [PMID: 22228366]
[2]
He, F.; Sun, Y.L.; Liu, K.S.; Zhang, X.Y.; Qian, P.Y.; Wang, Y.F.; Qi, S.H. Indole alkaloids from marine-derived fungus Aspergillus sydowii SCSIO 00305. J. Antibiot., 2012, 65(2), 109-111.
[http://dx.doi.org/10.1038/ja.2011.117] [PMID: 22186592]
[3]
Xu, X.; Zhao, S.; Yin, L.; Yu, Y.; Chen, Z.; Shen, H.; Zhou, L. A new sydonic acid derivative From a marine derived-fungus Aspergillus sydowii. Chem. Nat. Compd., 2017, 53(6), 1056-1058.
[http://dx.doi.org/10.1007/s10600-017-2200-3]
[4]
Wang, Y.N.; Mou, Y.H.; Dong, Y.; Wu, Y.; Liu, B.Y.; Bai, J.; Yan, D.J.; Zhang, L.; Feng, D.Q.; Pei, Y.H.; Hu, Y.C. Diphenyl ethers from a marine-derived Aspergillus sydowii. Mar. Drugs, 2018, 16(11), 451.
[http://dx.doi.org/10.3390/md16110451] [PMID: 30453472]
[5]
Liu, X.; Song, F.; Ma, L.; Chen, C.; Xiao, X.; Ren, B.; Liu, X.; Dai, H.; Piggott, A.M.; Av-Gay, Y.; Zhang, L.; Capon, R.J. Sydowiols A–C: Mycobacterium tuberculosis protein tyrosine phosphatase inhibitors from an east china sea marine-derived fungus, aspergillus sydowii. Tetrahedron Lett., 2013, 54(45), 6081-6083.
[http://dx.doi.org/10.1016/j.tetlet.2013.08.137]
[6]
Gao, T.; Cao, F.; Yu, H.; Zhu, H.J. Secondary metabolites from the marine fungus Aspergillus sydowii. Chem. Nat. Compd., 2017, 53(6), 1204-1207.
[http://dx.doi.org/10.1007/s10600-017-2241-7]
[7]
Amin, M.; Liang, X.; Ma, X.; Dong, J.D.; Qi, S.H. New pyrone and cyclopentenone derivatives from marine-derived fungus Aspergillus sydowii SCSIO 00305. Nat. Prod. Res., 2021, 35(2), 318-326.
[http://dx.doi.org/10.1080/14786419.2019.1629919] [PMID: 31204847]
[8]
Orfali, R.; Aboseada, M.A.; Abdel-Wahab, N.M.; Hassan, H.M.; Perveen, S.; Ameen, F.; Alturki, E.; Abdelmohsen, U.R. Recent updates on the bioactive compounds of the marine-derived genus Aspergillus. RSC Advances, 2021, 11(28), 17116-17150.
[http://dx.doi.org/10.1039/D1RA01359A] [PMID: 35479707]
[9]
D’Armas, H.T.; Mootoo, B.S.; Reynolds, W.F. An unusual sesquiterpene derivative from the Caribbean gorgonian Pseudopterogorgia rigida. J. Nat. Prod., 2000, 63(11), 1593-1595.
[http://dx.doi.org/10.1021/np000229s] [PMID: 11087620]
[10]
Peng, J.; Franzblau, S.G.; Zhang, F.; Hamann, M.T. Novel sesquiterpenes and a lactone from the jamaican sponge myrmekioderma styx. ChemInform, 2003, 34(12), 200312165.
[http://dx.doi.org/10.1002/chin.200312165]
[11]
Chen, Y.; Zhu, H.Y.; Xu, L.C.; Wang, S.P.; Liu, S.; Liu, G.D.; Luo, W.H.; Cao, G.Y.; Zhang, Z.X. Antimicrobial and cytotoxic phenolic bisabolane sesquiterpenoids from the fungus Aspergillus flavipes 297. Fitoterapia, 2021, 155, 105038.
[http://dx.doi.org/10.1016/j.fitote.2021.105038] [PMID: 34600094]
[12]
Wang, P.; Yu, J.H.; Zhu, K.; Wang, Y.; Cheng, Z.Q.; Jiang, C.S.; Dai, J.G.; Wu, J.; Zhang, H. Phenolic bisabolane sesquiterpenoids from a Thai mangrove endophytic fungus, Aspergillus sp. xy02. Fitoterapia, 2018, 127, 322-327.
[http://dx.doi.org/10.1016/j.fitote.2018.02.031] [PMID: 29544761]
[13]
Ohta, S.; Yuasa, Y.; Aoki, N.; Ohta, E.; Nehira, T.; Ômura, H.; Uy, M.M. Norbisabolane and bisabolane sesquiterpenoids from the seeds of Angelica keiskei. Phytochem. Lett., 2019, 33, 94-101.
[http://dx.doi.org/10.1016/j.phytol.2019.08.006]
[14]
Wu, P.Q.; Li, B.; Yu, Y.F.; Su, P.J.; Liu, X.; Zhang, Z.P.; Zhi, D.J.; Qi, F.M.; Fei, D.Q.; Zhang, Z.X. Isolation, characterization, and possible anti-alzheimer’s disease activities of bisabolane-type sesquiterpenoid derivatives and phenolics from the rhizomes of curcuma longa. Chem. Biodivers., 2020, 17(5), e2000067.
[http://dx.doi.org/10.1002/cbdv.202000067] [PMID: 32154990]
[15]
Zhao, W.Y.; Yi, J.; Chang, Y.B.; Sun, C.P.; Ma, X.C. Recent studies on terpenoids in Aspergillus fungi: Chemical diversity, biosynthesis, and bioactivity. Phytochemistry, 2022, 193, 113011.
[http://dx.doi.org/10.1016/j.phytochem.2021.113011] [PMID: 34775270]
[16]
Niu, S.; Yang, L.; Zhang, G.; Chen, T.; Hong, B.; Pei, S.; Shao, Z. Phenolic bisabolane and cuparene sesquiterpenoids with anti-inflammatory activities from the deep-sea-derived Aspergillus sydowii MCCC 3A00324 fungus. Bioorg. Chem., 2020, 105, 104420.
[http://dx.doi.org/10.1016/j.bioorg.2020.104420] [PMID: 33152648]
[17]
Qu, H.R.; Yang, W.W.; Zhang, X.Q.; Lu, Z.H.; Deng, Z.S.; Guo, Z.Y.; Cao, F.; Zou, K.; Proksch, P. Antibacterial bisabolane sesquiterpenoids and isocoumarin derivatives from the endophytic fungus Phomopsis prunorum. Phytochem. Lett., 2020, 37, 1-4.
[http://dx.doi.org/10.1016/j.phytol.2020.03.003]
[18]
Hu, S.; Ma, Y.L.; Guo, J.M.; Wen, Q.; Yan, G.; Yang, S.; Fu, Y.H.; Liu, Y.P. Bisabolane sesquiterpenes from Clausena sanki with their potential anti-inflammatory activities. Nat. Prod. Res., 2020, 34(24), 3499-3505.
[http://dx.doi.org/10.1080/14786419.2019.1582042] [PMID: 30931625]
[19]
Liu, L.; Liu, R.; Basnet, B.B.; Bao, L.; Han, J.; Wang, L.; Liu, H. New phenolic bisabolane sesquiterpenoid derivatives with cytotoxicity from Aspergillus tennesseensis. J. Antibiot., 2018, 71(5), 538-542.
[http://dx.doi.org/10.1038/s41429-018-0025-3] [PMID: 29416122]
[20]
Fujiwara, M.; Marumoto, S.; Yagi, N.; Miyazawa, M. Biotransformation of turmerones by Aspergillus niger. J. Nat. Prod., 2011, 74(1), 86-89.
[http://dx.doi.org/10.1021/np100416v] [PMID: 21189039]
[21]
Shu, H.Z.; Peng, C.; Bu, L.; Guo, L.; Liu, F.; Xiong, L. Bisabolane-type sesquiterpenoids: Structural diversity and biological activity. Phytochemistry, 2021, 192, 112927.
[http://dx.doi.org/10.1016/j.phytochem.2021.112927] [PMID: 34492546]
[22]
Fu, Z.; Liu, Y.; Xu, M.; Yao, X.; Wang, H.; Zhang, H. Absolute configuration determina-tion of two diastereomeric neovasifuranones A and B from Fusarium oxysporum R1 by a combination of mosher’s method and chiroptical approach. J. Fungi, 2021, 8(1), 40.
[http://dx.doi.org/10.3390/jof8010040] [PMID: 35049980]
[23]
Liu, J.; Yu, R.; Jia, J.; Gu, W.; Zhang, H. Assignment of absolute configurations of two promising anti-helicobacter pylori agents from the marine sponge-derived fungus Aspergillus niger L14. Molecules, 2021, 26(16), 5061.
[http://dx.doi.org/10.3390/molecules26165061] [PMID: 34443650]
[24]
Xiao, H.X.; Yan, Q.X.; He, Z.H.; Zou, Z.B.; Le, Q.Q.; Chen, T.T.; Cai, B.; Yang, X.W.; Luo, S.L. Total synthesis and anti-inflammatory bioactivity of (-)-majusculoic acid and its derivatives. Mar. Drugs, 2021, 19(6), 288.
[http://dx.doi.org/10.3390/md19060288] [PMID: 34063984]
[25]
Brady, A.J.; Kearney, P.; Tunney, M.M. Comparative evaluation of 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) and 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8) rapid colorimetric assays for antimicrobial susceptibility testing of staphylococci and ESBL-producing clinical isolates. J. Microbiol. Methods, 2007, 71(3), 305-311.
[http://dx.doi.org/10.1016/j.mimet.2007.09.014] [PMID: 17963904]
[26]
Liu, H.; Liao, W.; Fan, L.; Zheng, Z.; Liu, F. Ethanol extract of ophiorrhiza pumila suppresses liver cancer cell proliferation and migration. Chin. Med., 2020, 15, 11.
[27]
Lan, W.J.; Liu, W.; Liang, W.L.; Xu, Z.; Le, X.; Xu, J.; Lam, C.K.; Yang, D.P.; Li, H.J.; Wang, L.Y. Pseudaboydins A and B: novel isobenzofuranone derivatives from marine fungus Pseudallescheria boydii associated with starfish Acanthaster planci. Mar. Drugs, 2014, 12(7), 4188-4199.
[http://dx.doi.org/10.3390/md12074188] [PMID: 25026266]
[28]
Sumarah, M.W.; Kesting, J.R.; Sørensen, D.; Miller, J.D. Antifungal metabolites from fungal endophytes of Pinus strobus. Phytochemistry, 2011, 72(14-15), 1833-1837.
[http://dx.doi.org/10.1016/j.phytochem.2011.05.003] [PMID: 21632082]
[29]
Wang, W.; Gao, M.; Luo, Z.; Liao, Y.; Zhang, B.; Ke, W.; Shao, Z.; Li, F.; Chen, J. Secondary metabolites isolated from the deep sea-derived fungus Aspergillus sydowii C1-S01-A7. Nat. Prod. Res., 2019, 33(21), 3077-3082.
[http://dx.doi.org/10.1080/14786419.2018.1519561] [PMID: 30251547]
[30]
Bunbamrung, N.; Intaraudom, C.; Supothina, S.; Komwijit, S.; Pittayakhajonwut, P. Antibacterial and anti-phytopathogenic substances from the insect pathogenic fungus Gibellula sp. BCC36964. Phytochem. Lett., 2015, 12, 142-147.
[http://dx.doi.org/10.1016/j.phytol.2015.03.011]
[31]
Li, W.; Luo, D.; Huang, J.; Wang, L.; Zhang, F.; Xi, T.; Liao, J.; Lu, Y. Antibacterial constituents from Antarctic fungus, Aspergillus sydowii SP-1. Nat. Prod. Res., 2018, 32(6), 662-667.
[http://dx.doi.org/10.1080/14786419.2017.1335730] [PMID: 28602098]
[32]
Li, X.D.; Li, X.M.; Yin, X.L.; Li, X.; Wang, B.G. Antimicrobial sesquiterpenoid derivatives and monoterpenoids from the deep-sea sediment-derived fungus Aspergillus versicolor SD-330. Mar. Drugs, 2019, 17(10), 563.
[http://dx.doi.org/10.3390/md17100563] [PMID: 31569593]
[33]
Hamasaki, T.; Sato, Y.; Hatsuda, Y.; Tanabe, M.; Cary, L.W. Sydowic acid, a new metabolite from aspergillus sydowi. Tetrahedron Lett., 1975, 16(9), 659-660.
[http://dx.doi.org/10.1016/S0040-4039(00)71947-2]
[34]
Wang, J.F.; Lin, X.P.; Qin, C.; Liao, S.R.; Wan, J.T.; Zhang, T.Y.; Liu, J.; Fredimoses, M.; Chen, H.; Yang, B.; Zhou, X.F.; Yang, X.W.; Tu, Z.C.; Liu, Y.H. Antimicrobial and antiviral sesquiterpenoids from sponge-associated fungus, Aspergillus sydowii ZSDS1-F6. J. Antibiot., 2014, 67(8), 581-583.
[http://dx.doi.org/10.1038/ja.2014.39] [PMID: 24736857]
[35]
Wei, M.Y.; Wang, C.Y.; Liu, Q.A.; Shao, C.L.; She, Z.G.; Lin, Y.C. Five sesquiterpenoids from a marine-derived fungus Aspergillus sp. isolated from a gorgonian Dichotella gemmacea. Mar. Drugs, 2010, 8(4), 941-949.
[http://dx.doi.org/10.3390/md8040941] [PMID: 20479961]