Current Nanoscience

Author(s): Ridhu Varshini Murugan, Gokul Sridharan, Raji Atchudan, Sandeep Arya, Deepak Nallaswamy and Ashok K. Sundramoorthy*

DOI: 10.2174/0115734137281377240103062220

DownloadDownload PDF Flyer Cite As
A Facile Synthesis of Bimetallic Copper-Silver Nanocomposite and Their Application in Ascorbic Acid Detection

Page: [309 - 318] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: An important antioxidant, ascorbic acid, must be detected in several industrial samples collected from food, pharmaceuticals, and water treatment plants. Herein, we reported a method to produce a bimetallic copper-silver (Cu-Ag) nanocomposite and used it in the development of very sensitive and selective electrochemical sensor for the detection of ascorbic acid.

Methods: A simple chemistry concept was used during the synthesis process to reduce the cost while minimizing the use of dangerous chemicals and minimizing the environmental impact. The Strobilanthes kunthiana leaves extract effectively reduced the copper and silver ions, resulting in the creation of an extremely stable and evenly distributed Cu-Ag nanocomposite.

Results: As-prepared bimetallic Cu-Ag nanocomposite exhibited outstanding electrochemical activity against ascorbic acid oxidation. The nanocomposite was examined using field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), elemental mapping (EMap) and X-ray diffraction analysis (XRD) to ascertain its composition, structure, and stability. Using cyclic voltammetry (CV), the electrochemical performance of the nanocomposite and also the detection of ascorbic acid were carried out. The bimetallic Cu-Ag nanocomposite also exhibited better long-term stability and fouling resistance, making it appropriate for use in real-world applications and complex sample matrices.

Conclusion: The bimetallic Cu-Ag nanocomposite coated electrode was used to detect the concentration of ascorbic acid by amperometry. As a result, this study offered a simple chemical method for creating a bimetallic copper-silver nanocomposite with superior electrochemical qualities for the accurate detection of ascorbic acid.

Keywords: Bimetallic copper-silver nanocomposite, simple synthesis, nanotechnology, Strobilanthes kunthiana, electrochemistry, ascorbic acid.

Graphical Abstract

[1]
Doseděl, M.; Jirkovský, E.; Macáková, K.; Krčmová, L.; Javorská, L.; Pourová, J.; Mercolini, L.; Remião, F.; Nováková, L. Vitamin C-sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients, 2021, 13(2), 615.
[2]
Vitale, S.G.; Fiore, M.; La Rosa, V.L.; Rapisarda, A.M.C.; Mazza, G.; Paratore, M.; Commodari, E.; Caruso, S. Liposomal ferric pyrophosphate and ascorbic acid supplementation in pregnant women with iron deficiency anaemia: haematochemical, obstetric, neonatal and psychological outcomes in a prospective observational study. Int. J. Food Sci. Nutr., 2022, 73(2), 221-229.
[http://dx.doi.org/10.1080/09637486.2021.1950129] [PMID: 34238093]
[3]
Gurung, R.; Baral, S.; Parajuli, S.; Dhami, D.; Ghimire, S. A comparative study on ascorbic acid concentration, total phenol, and flavonoid content in citrus species grown in a different region of Western Nepal. Int. J. Food Sci., 2022, 2022, 1-7.
[http://dx.doi.org/10.1155/2022/3012623] [PMID: 36578433]
[4]
Lloréns, I.; Borrell, J.; Borrell, S. Effects of insulin, glucagon and adrenocorticotrophin on the levels of corticosteroids, noradrenaline, adrenaline and ascorbic acid in the adrenal glands of cats. Horm. Res., 1973, 4(6), 321-330.
[http://dx.doi.org/10.1159/000178320] [PMID: 4359684]
[5]
Bai, R.; Chang, Y.; Saleem, A.; Wu, F.; Tian, L.; Zhang, S.; Li, Y.; Ma, S.; Dong, T.; Guo, T.; Jiang, Y.; You, Y.; Lu, W.J.; Jiang, H.F.; Lan, F. Ascorbic acid can promote the generation and expansion of neuroepithelial-like stem cells derived from hiPS/ES cells under chemically defined conditions through promoting collagen synthesis. Stem Cell Res. Ther., 2021, 12(1), 48.
[http://dx.doi.org/10.1186/s13287-020-02115-6] [PMID: 33422132]
[6]
Lee; Cho, Y. Effect of ascorbic acid, silicon and iron on collagen synthesis in the human dermal fibroblast cell(HS27). FASEB J., 2008, 22(S2), 672-672.
[http://dx.doi.org/10.1096/fasebj.22.2_supplement.672]
[7]
Jin, W.; Jiang, L. Measurement of ascorbic acid in single human neutrophils by capillary zone electrophoresis with electrochemical detection. Electrophoresis, 2002, 23(15), 2471-2476.
[http://dx.doi.org/10.1002/1522-2683(200208)23:15<2471:AID-ELPS2471>3.0.CO;2-1] [PMID: 12210205]
[8]
Scioli, M.G.; Coniglione, F.; Greggi, C.; Evangelista, L.; Fiorelli, E.; Savino, L.; Ferlosio, A.; Piccirilli, E.; Gasbarra, E.; Iundusi, R.; Tarantino, U.; Orlandi, A. Ascorbic acid reduces Ropivacaine-induced myotoxicity in cultured human osteoporotic skeletal muscle cells. BMC Musculoskelet. Disord., 2023, 24(1), 576.
[http://dx.doi.org/10.1186/s12891-023-06702-5] [PMID: 37454045]
[9]
Fager Ferrari, M.; Zetterberg, E.; Rossing, M.; Manon-Jensen, T.; Pehrsson, M.; Karsdal, M.A.; Lykkesfeldt, J.; Leinoe, E. Collagen remodelling and plasma ascorbic acid levels in patients suspected of inherited bleeding disorders harbouring germline variants in collagen‐related genes. Haemophilia, 2021, 27(1), e69-e77.
[http://dx.doi.org/10.1111/hae.14195] [PMID: 33161638]
[10]
Gao, Q.; Wan, J.; Chen, X.; Mo, X.; Sun, Y.; Zou, J.; Nie, J.; Zhang, Y. A novel strategy for sensitive and rapid detection of ascorbic acid via the Tyndall effect of cobalt hydroxide nanoflakes. RSC Advances, 2021, 11(62), 39306-39310.
[http://dx.doi.org/10.1039/D1RA07702C] [PMID: 35492454]
[11]
Pirabbasi, E.; Shahar, S.; Manaf, Z.A.; Rajab, N.F.; Manap, R.A. Efficacy of ascorbic acid (vitamin C) and/N-Acetylcysteine (NAC) supplementation on nutritional and antioxidant status of male chronic obstructive pulmonary disease (COPD) patients. J. Nutr. Sci. Vitaminol. (Tokyo), 2016, 62(1), 54-61.
[http://dx.doi.org/10.3177/jnsv.62.54] [PMID: 27117852]
[12]
Yogeswaran, U.; Chen, S.M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors (Basel), 2008, 8(1), 290-313.
[http://dx.doi.org/10.3390/s8010290] [PMID: 27879709]
[13]
Erdoğdu, G. Voltammetric detection of Ascorbic Acid at organic conducting polymers electrodes and flow injection analysis Energy Environ. Focus, 2023, 7, 54-59.
[14]
Golomazova, T.A.; Shefer, E.P.; Prokhvatilova, S.S.; Antonova, N.P. Quantitative determination of ascorbic acid in herbal medicinal products by HPLC. Bull. Sci. Cent. Expert Eval. Med. Prod., 2023, 13(2), 184-194.
[15]
Behrens, W.A.; Madère, R. A highly sensitive high-performance liquid chromatography method for the estimation of ascorbic and dehydroascorbic acid in tissues, biological fluids, and foods. Anal. Biochem., 1987, 165(1), 102-107.
[http://dx.doi.org/10.1016/0003-2697(87)90206-5] [PMID: 3688424]
[16]
Pisoschi, A.M.; Pop, A.; Serban, A.I.; Fafaneata, C. Electrochemical methods for ascorbic acid determination. Electrochim. Acta, 2014, 121, 443-460.
[http://dx.doi.org/10.1016/j.electacta.2013.12.127]
[17]
Syafitri, N.; Munir, M.A.; Aprilia, V.; Emelda, E. Determination of ascorbic acid concentration in Myrtaceae using the iodometric titration method J. Jurnal Pena Sains, 2023, 10(1), 28-33.
[http://dx.doi.org/10.21107/jps.v10i1.19161]
[18]
Muslim, R.; Fazeli, F.; Amini, I.; Azizkhani, V. An overview of recent advances in the detection of ascorbic acid by electrochemical techniques. J. Electrochem. Sci. Eng., 2022, 12, 1081-1098.
[http://dx.doi.org/10.5599/jese.1561]
[19]
pichaimuthu, K.; Keerthi, M.; Chen, S.M.; Chen, T.W.; Su, C. Silver nanoparticles decorated on graphene oxide sheets for electrochemical detection of ascorbic acid(AA) in human urine sample. Int. J. Electrochem. Sci., 2018, 13(8), 7859-7869.
[http://dx.doi.org/10.20964/2018.08.16]
[20]
Chang, A.Y.; Dutta, G.; Siddiqui, S.; Arumugam, P.U. Surface fouling of ultrananocrystalline Diamond microelectrodes during dopamine detection: Improving lifetime via electrochemical cycling. ACS Chem. Neurosci., 2019, 10(1), 313-322.
[http://dx.doi.org/10.1021/acschemneuro.8b00257] [PMID: 30285418]
[21]
Dhara, K.; Debiprosad, R.M. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection. Anal. Biochem., 2019, 586, 113415.
[http://dx.doi.org/10.1016/j.ab.2019.113415] [PMID: 31479632]
[22]
Harish, V.; Tewari, D.; Gaur, M.; Yadav, A.B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and Agro-food applications. Nanomaterials (Basel), 2022, 12(3), 457.
[http://dx.doi.org/10.3390/nano12030457] [PMID: 35159802]
[23]
Gao, C.; Lyu, F.; Yin, Y. Encapsulated metal nanoparticles for catalysis. Chem. Rev., 2021, 121(2), 834-881.
[http://dx.doi.org/10.1021/acs.chemrev.0c00237] [PMID: 32585087]
[24]
Bhardwaj, B.; Singh, P.; Kumar, A.; Kumar, S.; Budhwar, V. Eco-friendly greener synthesis of nanoparticles. Adv. Pharm. Bull., 2020, 10(4), 566-576.
[http://dx.doi.org/10.34172/apb.2020.067] [PMID: 33072534]
[25]
Murugan, N.; Prakash, M.; Jayakumar, M.; Sundaramurthy, A.; Sundramoorthy, A.K. Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+. Appl. Surf. Sci., 2019, 476, 468-480.
[http://dx.doi.org/10.1016/j.apsusc.2019.01.090]
[26]
Sadak, O.; Sundramoorthy, A.K.; Gunasekaran, S. Facile and green synthesis of highly conducting graphene paper. Carbon, 2018, 138, 108-117.
[27]
Sridharan, G.; Babu, K.L.; Ganapathy, D.; Atchudan, R.; Arya, S.; Sundramoorthy, A.K. Determination of nicotine in human saliva using electrochemical sensor modified with green synthesized silver nanoparticles using phyllanthus reticulatus fruit extract. Crystals (Basel), 2023, 13(4), 589.
[http://dx.doi.org/10.3390/cryst13040589]
[28]
Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green synthesis of nanoparticles using plant extracts: a review. Environ. Chem. Lett., 2021, 19(1), 355-374.
[http://dx.doi.org/10.1007/s10311-020-01074-x]
[29]
Khan, F.; Shariq, M.; Asif, M.; Siddiqui, M.A.; Malan, P.; Ahmad, F. Green nanotechnology: Plant-mediated nanoparticle synthesis and application. Nanomaterials (Basel), 2022, 12(4), 673.
[http://dx.doi.org/10.3390/nano12040673] [PMID: 35215000]
[30]
Ramesh, A.V.; Devi, D.R.; Battu, G.; Basavaiah, K. A Facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of Ficus hispida Linn. f. for catalytic, antioxidant and antibacterial applications. S. Afr. J. Chem. Eng., 2018, 26, 25-34.
[http://dx.doi.org/10.1016/j.sajce.2018.07.001]
[31]
Mohammed, A.; Balaji, K.; Kalaichelvan, P.T.; Venkatesan, R. Fungal based synthesis of silver nanoparticles—An effect of temperature on the size of particles. Colloids Surf. B Biointerfaces, 2009, 74(1), 123-126.
[http://dx.doi.org/10.1016/j.colsurfb.2009.07.002] [PMID: 19674875]
[32]
Ghoreishi, S.M.; Behpour, M.; Khayatkashani, M. Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry. Physica E, 2011, 44(1), 97-104.
[http://dx.doi.org/10.1016/j.physe.2011.07.008]
[33]
Loza, K.; Heggen, M.; Epple, M. Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals. Adv. Funct. Mater., 2020, 30(21), 1909260.
[http://dx.doi.org/10.1002/adfm.201909260]
[34]
Shanmugaraj, K.; Mangalaraja, R.V.; Campos, C.H.; Udayabhaskar, R.; Singh, D.P.; Vivas, L.; Thirumurugan, A.; Al-Sehemi, A.G.; Díaz de León, J.N.; Ali, W. Cu-Ni bimetallic nanoparticles anchored on halloysite nanotubes for the environmental remediation. Surf. Interfaces, 2023, 41, 103257.
[http://dx.doi.org/10.1016/j.surfin.2023.103257]
[35]
Vivek, S.; Preethi, S.; Kumar, T.H.V.; Sundramoorthy, A.K.; Babu, K.S. Oxidation studies on mono (Cu, Ni) and bimetallic (Cu–Ni) nanoparticles and its impact on catalytic activity. J. Alloys Compd., 2020, 816, 152608.
[http://dx.doi.org/10.1016/j.jallcom.2019.152608]
[36]
Pu, Y.; Chen, S.; Yang, Y.; Mao, X. Copper-based biological alloys and nanocomposites for enzymatic catalysis and sensing applications. Nanoscale, 2023, 15(28), 11801-11812.
[http://dx.doi.org/10.1039/D3NR01638B] [PMID: 37417923]
[37]
Chen, J-J.; Tan, J-B.; Li, C-F.; Gu, L-F.; Lu, X-F.; Li, G-R. General synthesis of ultrafine cu-based alloy nanoparticles anchored on porous N-doped carbon nanofibers for enhanced electrocatalytic performance J. Phys. Chem. C Nanomater. Interfaces, 2020, 124, 13036-13044.
[38]
Xu, L.; Wang, Y.Y.; Huang, J.; Chen, C.Y.; Wang, Z.X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 2020, 10(20), 8996-9031.
[http://dx.doi.org/10.7150/thno.45413] [PMID: 32802176]
[39]
Xin Lee, K.; Shameli, K.; Miyake, M.; Kuwano, N.; Bt Ahmad Khairudin, N.B.; Bt Mohamad, S.E.; Yew, Y.P. Green synthesis of gold nanoparticles using aqueous extract of Garcinia mangostana fruit peels. J. Nanomater., 2016, 2016, 1-7.
[http://dx.doi.org/10.1155/2016/8489094]
[40]
Seethapathy, V.; Sudarsan, P.; Pandey, A.K.; Pandiyan, A.; Kumar, T.H.V.; Sanjeevi, K.; Sundramoorthy, A.K.; Krishna Moorthy, S.B. Synergistic effect of bimetallic Cu:Ni nanoparticles for the efficient catalytic conversion of 4-nitrophenol. New J. Chem., 2019, 43(7), 3180-3187.
[http://dx.doi.org/10.1039/C8NJ05649H]
[41]
Raval, N.; Maheshwari, R.; Kalyane, D.; Youngren-Ortiz, S.R.; Chougule, M.B.; Tekade, R.K. Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development Basic Fundamentals of Drug Delivery; Tekade, R.K., Ed.; Academic Press, 2019, pp. 369-400.
[42]
Magesh, V.; Sundramoorthy, A.K.; Ganapathy, D.; Atchudan, R.; Arya, S.; Alshgari, R.A.; Aljuwayid, A.M. Palladium hydroxide (Pearlman’s catalyst) doped MXene (Ti3C2Tx) composite modified electrode for selective detection of nicotine in human sweat. Biosensors (Basel), 2022, 13(1), 54.
[http://dx.doi.org/10.3390/bios13010054] [PMID: 36671889]
[43]
Debut, A.; Vizuete, K.; Pazmiño, K.; Calderón, J.; Gallegos, C.; Gaona, V. Effect of visual cognition on the measurement of particle size using ImageJ software Current. Mater. Sci., 2021, 14, 141-154.
[44]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[45]
Hayat, K.; Ali, S.; Ullah, S.; Fu, Y.; Hussain, M. Green synthesized silver and copper nanoparticles induced changes in biomass parameters, secondary metabolites production, and antioxidant activity in callus cultures of Artemisia absinthium L. Green Processing and Synthesis, 2021, 10(1), 61-72.
[http://dx.doi.org/10.1515/gps-2021-0010]
[46]
Ali, A.; AlSalhi, M.S.; Atif, M.; Ansari, A.A.; Israr, M.Q.; Sadaf, J.R.; Ahmed, E.; Nur, O.; Willander, M. Potentiometric urea biosensor utilizing nanobiocomposite of chitosan-iron oxide magnetic nanoparticles. J. Phys. Conf. Ser., 2013, 414, 012024.
[http://dx.doi.org/10.1088/1742-6596/414/1/012024]
[47]
Yang, H.; Ren, Y.; Wang, T.; Wang, C. Preparation and antibacterial activities of Ag/Ag +/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract. Results Phys., 2016, 6, 299-304.
[http://dx.doi.org/10.1016/j.rinp.2016.05.012]
[48]
Park, H.; Lee, S.; Jo, M.; Park, S.; Kwon, K.; Shobana, M.K.; Choe, H. Nanowire-like copper oxide grown on porous copper, a promising anode material for lithium-ion battery J. Journal of the Korean Ceramic Society, 2017, 54(5), 438-442.
[http://dx.doi.org/10.4191/kcers.2017.54.5.07]
[49]
Yang, K.; Yan, Z.; Ma, L.; Du, Y.; Peng, B.; Feng, J. A facile one-step synthesis of cuprous oxide/silver nanocomposites as efficient electrode-modifying materials for nonenzyme hydrogen peroxide sensor. Nanomaterials (Basel), 2019, 9(4), 523.
[http://dx.doi.org/10.3390/nano9040523] [PMID: 30987101]
[50]
Gokulkumar, K.; Sundramoorthy, A.K.; Wang, S-F.; Harikrishnan, A. High-performance electrochemical sensor based on yttrium sulfide nanoparticles decorated carbon nitride heterostructure for highly sensitive detection of antimicrobial drug in biological samples. J. Electrochem. Soc., 2021, 168, 077516.
[51]
Magesh, V.; Kothari, V.S.; Ganapathy, D.; Atchudan, R.; Arya, S.; Nallaswamy, D.; Sundramoorthy, A.K. Using Sparfloxacin-Capped Gold Nanoparticles to Modify a Screen-Printed Carbon Electrode Sensor for Ethanol Determination. Sensors (Basel), 2023, 23(19), 8201.
[http://dx.doi.org/10.3390/s23198201] [PMID: 37837031]
[52]
Gai, P.; Zhang, H.; Zhang, Y.; Liu, W.; Zhu, G.; Zhang, X.; Chen, J. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on nitrogen doped porous carbon nanopolyhedra. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(21), 2742-2749.
[http://dx.doi.org/10.1039/c3tb20215a] [PMID: 32260980]
[53]
Zhang, X.; Zhang, Y.C.; Ma, L.X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem., 2016, 227, 488-496.
[http://dx.doi.org/10.1016/j.snb.2015.12.073]
[54]
Yan, J.; Liu, S.; Zhang, Z.; He, G.; Zhou, P.; Liang, H.; Tian, L.; Zhou, X.; Jiang, H. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd–Pt nanoparticles. Colloids Surf. B Biointerfaces, 2013, 111, 392-397.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.030] [PMID: 23850748]
[55]
Li, Q.; Huo, C.; Yi, K.; Zhou, L.; Su, L.; Hou, X. Preparation of flake hexagonal BN and its application in electrochemical detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem., 2018, 260, 346-356.
[http://dx.doi.org/10.1016/j.snb.2017.12.208]
[56]
Manivel, P.; Dhakshnamoorthy, M.; Balamurugan, A.; Ponpandian, N.; Mangalaraj, D.; Viswanathan, C. Conducting polyaniline-graphene oxide fibrous nanocomposites: preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. RSC Advances, 2013, 3(34), 14428.
[http://dx.doi.org/10.1039/c3ra42322k]
[57]
Wang, C.; Du, J.; Wang, H.; Zou, C.; Jiang, F.; Yang, P.; Du, Y. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem., 2014, 204, 302-309.
[http://dx.doi.org/10.1016/j.snb.2014.07.077]
[58]
dos Santos, P.L.; Katic, V.; Toledo, K.C.F.; Bonacin, J.A. Photochemical one-pot synthesis of reduced graphene oxide/Prussian blue nanocomposite for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid. Sens. Actuators B Chem., 2018, 255, 2437-2447.
[http://dx.doi.org/10.1016/j.snb.2017.09.036]
[59]
Mazzara, F.; Patella, B.; Aiello, G.; O’Riordan, A.; Torino, C.; Vilasi, A.; Inguanta, R. Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors. Electrochim. Acta, 2021, 388, 138652.
[http://dx.doi.org/10.1016/j.electacta.2021.138652]
[60]
Prasad Aryal, K.; Kyung Jeong, H. Electrochemical detection of ascorbic acid with chemically functionalized carbon nanofiber/β-cyclodextrin composite. Chem. Phys. Lett., 2020, 757, 137881.
[http://dx.doi.org/10.1016/j.cplett.2020.137881]
[61]
Zhang, H.; Liu, S. Electrochemical sensors based on nitrogen-doped reduced graphene oxide for the simultaneous detection of ascorbic acid, dopamine and uric acid. J. Alloys Compd., 2020, 842, 155873.
[http://dx.doi.org/10.1016/j.jallcom.2020.155873]
[62]
Dodevska, T.; Hadzhiev, D.; Shterev, I. A review on electrochemical microsensors for ascorbic acid detection: Clinical, pharmaceutical, and food safety applications. Micromachines (Basel), 2022, 14(1), 41.
[http://dx.doi.org/10.3390/mi14010041] [PMID: 36677102]