Abstract
New drugs being established in the market every year produce specified structures for selective biological
targeting. With medicinal insights into molecular recognition, these begot molecules open new rooms for
designing potential new drug molecules. In this review, we report the compilation and analysis of a total of 56
drugs including 33 organic small molecules (Mobocertinib, Infigratinib, Sotorasib, Trilaciclib, Umbralisib, Tepotinib,
Relugolix, Pralsetinib, Decitabine, Ripretinib, Selpercatinib, Capmatinib, Pemigatinib, Tucatinib, Selumetinib,
Tazemetostat, Avapritinib, Zanubrutinib, Entrectinib, Pexidartinib, Darolutamide, Selinexor, Alpelisib,
Erdafitinib, Gilteritinib, Larotrectinib, Glasdegib, Lorlatinib, Talazoparib, Dacomitinib, Duvelisib, Ivosidenib,
Apalutamide), 6 metal complexes (Edotreotide Gallium Ga-68, fluoroestradiol F-18, Cu 64 dotatate, Gallium 68
PSMA-11, Piflufolastat F-18, 177Lu (lutetium)), 16 macromolecules as monoclonal antibody conjugates (Brentuximabvedotin,
Amivantamab-vmjw, Loncastuximabtesirine, Dostarlimab, Margetuximab, Naxitamab, Belantamabmafodotin,
Tafasitamab, Inebilizumab, SacituzumabGovitecan, Isatuximab, Trastuzumab, Enfortumabvedotin,
Polatuzumab, Cemiplimab, Mogamulizumab) and 1 peptide enzyme (Erwiniachrysanthemi-derived
asparaginase) approved by the U.S. FDA between 2018 to 2021. These drugs act as anticancer agents against
various cancer types, especially non-small cell lung, lymphoma, breast, prostate, multiple myeloma, neuroendocrine
tumor, cervical, bladder, cholangiocarcinoma, myeloid leukemia, gastrointestinal, neuroblastoma, thyroid,
epithelioid and cutaneous squamous cell carcinoma. The review comprises the key structural features, approval
times, target selectivity, mechanisms of action, therapeutic indication, formulations, and possible synthetic approaches
of these approved drugs. These crucial details will benefit the scientific community for futuristic new
developments in this arena.
Graphical Abstract
[3]
Gad, S.C.; Sullivan, D.W. Tissue, cell, and gene therapy. In: Drug Safety Evaluation; , 2023; pp. 789-800.
[26]
Kargbo, R. Synthesis of sotorasib. J. Am. Chem. Soc., 2021, 143, 10576-10581.
[27]
Lanman, B.A.; Chen, J.; Reed, A.B.; Cee, V.J.; Liu, L.; Kopecky, D.J.; Lopez, P.; Wurz, R.P.; Nguyen, T.T.; Booker, S. Kras G12c inhibitors and methods of using the same. WO Patent 2018217651, 2018.
[29]
Young, J.A. Trilaciclib: A first-in-class therapy to reduce chemotherapy-induced myelosuppression. Touch Rev. Oncol. Haematol., 2022, 18(2), 152-158.
[32]
Weiss, M.; Miskin, H.; Sportelli, P.; Vakkalanka, S.K.V.S. Combination of anti-Cd20 antibody and Pi3 kinase selective inhibitor. WO Patent 2014071125, 2014.
[37]
Ammirati, E.; Turchetta, S.; Zenoni, M.; Brandi, P.; Berardi, G.; Anibaldi, M.D.F.; De Ferra, L. Process for the synthesis of azacitidine and decitabine. US Patent 20110245485A1, 2011.
[38]
Smith, B.D.; Kaufman, M.D.; Lu, W.P.; Gupta, A.; Leary, C.B.; Wise, S.C.; Rutkoski, T.J.; Ahn, Y.M.; Al-Ani, G.; Bulfer, S.L. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer cell, 2019, 35(5), 738-751.e9.
[41]
Junqiang, W.; Xiaolong, Q.; Tao, X.; Zhiwei, Z.; Xiaobo, X.; Dong, W. Synthesis of serpatatinib. CN Patent 113321668A, 2021.
[46]
Kocienski, P. Synthesis of tucatinib. Synfacts, 2019, 15(09), 0965.
[50]
Wallace, E.L.; Lyssikatos, J.P.; Hurley, B.T.; Marlow, A.L. N3 alkylated benzimidazole derivatives as mek inhibitors. WO Patent 2003077914A1, 2003.
[52]
Kuntz, K.W. Salt form of a human histone methyltransferase EZH2 inhibitor. WO Patent 2013155317A1, 2013.
[55]
Guo, Y.; Liu, Y.; Hu, N.; Yu, D.; Zhou, C.; Shi, G.; Zhang, B.; Wei, M.; Liu, J.; Luo, L.; Tang, Z.; Song, H.; Guo, Y.; Liu, X.; Su, D.; Zhang, S.; Song, X.; Zhou, X.; Hong, Y.; Chen, S.; Cheng, Z.; Young, S.; Wei, Q.; Wang, H.; Wang, Q.; Lv, L.; Wang, F.; Xu, H.; Sun, H.; Xing, H.; Li, N.; Zhang, W.; Wang, Z.; Liu, G.; Sun, Z.; Zhou, D.; Li, W.; Liu, L.; Wang, L.; Wang, Z. Discovery of zanubrutinib (BGB-3111), a novel, potent, and selective covalent inhibitor of Bruton’s tyrosine kinase.
J. Med. Chem., 2019,
62(17), 7923-7940.
[
http://dx.doi.org/10.1021/acs.jmedchem.9b00687] [PMID:
31381333]
[58]
Kocienski, P. Synthesis of pexidartinib. Synfacts, 2019, 15(09), 0966.
[61]
Wang, L.; Li, R.; Song, C.; Chen, Y.; Long, H.; Yang, L. Smallmolecule anti-cancer drugs from 2016 to 2020: Synthesis and clinical application. Nat. Prod. Commun., 2021, 16(9), 1934578X211040326.
[71]
Qinglei, Y.; Zhiguo, Z.; Qiang, G.; Baofu, Z. Preparation of gilteritinib derivatives as inhibitors of FLT3-Axl. CN Patent 106083821, 2016.
[73]
Haidong, J.L.; Ruiwan, Z.L.; Wang, G.; Yang, D.; Wenyuan, S.Y.; Ying, Z.; Haiyan, H. A kind of preparation method and their intermediate of larotrectinib. CN Patent 107987082A, 2019.
[79]
Lin, G.M.K. Synthesis method of EGFR (Epidermal Growth Factor Receptor) inhibitor dacomitinib. CN Patent 103304492.A, 2013.
[81]
Ren, Y.L. Certain chemical entities, compositions and methods. WO Patent 2011008302A, 2009.
[83]
Kocienski, P. Synthesis of ivosidenib. Synfacts, 2018, 14(07), 0674.
[93]
Lin, C.C.; Zucali, P.; Carthon, B.; Bauer, T.M.; Tucci, M.; Italiano, A.; Iacovelli, R.; Su, W.C.; Massard, C.; Saleh, M. Abstract LB040: Targeting CD38 and PD-1 with isatuximab (Isa) plus cemiplimab (Cemi) in patients (PTS) with advanced malignancies: Results from a phase 1/2 open-label, multicenter study. Cancer Res., 2021, 81(S13), LB040-LB040.
[118]
De Araujo Bispo, A.C.; do Nascimento, L.T.C.; Castro, A.C.F.; Lima, L.A.R.; Ferreira, S.M.Z.M.D.; da Silva, J.B.; Mamede, M. Synthesis and characterization of the radiopharmaceutical [18F] fluoroestradiol. Braz. J. Radiat. Sci., 2021, 9(1A)