An Expedition on Synthetic Methodology of FDA-approved Anticancer Drugs (2018-2021)

Page: [590 - 626] Pages: 37

  • * (Excluding Mailing and Handling)

Abstract

New drugs being established in the market every year produce specified structures for selective biological targeting. With medicinal insights into molecular recognition, these begot molecules open new rooms for designing potential new drug molecules. In this review, we report the compilation and analysis of a total of 56 drugs including 33 organic small molecules (Mobocertinib, Infigratinib, Sotorasib, Trilaciclib, Umbralisib, Tepotinib, Relugolix, Pralsetinib, Decitabine, Ripretinib, Selpercatinib, Capmatinib, Pemigatinib, Tucatinib, Selumetinib, Tazemetostat, Avapritinib, Zanubrutinib, Entrectinib, Pexidartinib, Darolutamide, Selinexor, Alpelisib, Erdafitinib, Gilteritinib, Larotrectinib, Glasdegib, Lorlatinib, Talazoparib, Dacomitinib, Duvelisib, Ivosidenib, Apalutamide), 6 metal complexes (Edotreotide Gallium Ga-68, fluoroestradiol F-18, Cu 64 dotatate, Gallium 68 PSMA-11, Piflufolastat F-18, 177Lu (lutetium)), 16 macromolecules as monoclonal antibody conjugates (Brentuximabvedotin, Amivantamab-vmjw, Loncastuximabtesirine, Dostarlimab, Margetuximab, Naxitamab, Belantamabmafodotin, Tafasitamab, Inebilizumab, SacituzumabGovitecan, Isatuximab, Trastuzumab, Enfortumabvedotin, Polatuzumab, Cemiplimab, Mogamulizumab) and 1 peptide enzyme (Erwiniachrysanthemi-derived asparaginase) approved by the U.S. FDA between 2018 to 2021. These drugs act as anticancer agents against various cancer types, especially non-small cell lung, lymphoma, breast, prostate, multiple myeloma, neuroendocrine tumor, cervical, bladder, cholangiocarcinoma, myeloid leukemia, gastrointestinal, neuroblastoma, thyroid, epithelioid and cutaneous squamous cell carcinoma. The review comprises the key structural features, approval times, target selectivity, mechanisms of action, therapeutic indication, formulations, and possible synthetic approaches of these approved drugs. These crucial details will benefit the scientific community for futuristic new developments in this arena.

Graphical Abstract

[1]
Mullard, A. 2014 FDA drug approvals. Nat. Rev. Drug Discov., 2015, 14(2), 77-81.
[http://dx.doi.org/10.1038/nrd4545] [PMID: 25633781]
[2]
Kalra, B.S.; Batta, A.; Khirasaria, R. Trends in FDA drug approvals over last 2 decades: An observational study. J. Family Med. Prim. Care, 2020, 9(1), 105-114.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_578_19] [PMID: 32110574]
[3]
Gad, S.C.; Sullivan, D.W. Tissue, cell, and gene therapy. In: Drug Safety Evaluation; , 2023; pp. 789-800.
[4]
Ramezankhani, R.; Torabi, S.; Minaei, N.; Madani, H.; Rezaeiani, S.; Hassani, S.N.; Gee, A.P.; Dominici, M.; Silva, D.N.; Baharvand, H.; Hajizadeh-Saffar, E. Two decades of global progress in authorized advanced therapy medicinal products: An emerging revolution in therapeutic strategies. Front. Cell Dev. Biol., 2020, 8, 547653.
[http://dx.doi.org/10.3389/fcell.2020.547653] [PMID: 33392179]
[5]
Punia, A.; Malhotra, H. International regulatory processes and policies for innovator biologics, biosimilars, and biobetters. In: Biologics, Biosimilars, and Biobetters: An Introduction for Pharmacists; Physicians, and Other Health Practitioners, 2020; pp. 159-176.
[http://dx.doi.org/10.1002/9781119564690.ch10]
[6]
Pinnow, E.; Amr, S.; Bentzen, S.M.; Brajovic, S.; Hungerford, L.; St George, D.M.; Dal Pan, G. Postmarket safety outcomes for new molecular entity (NME) drugs approved by the Food and Drug Administration between 2002 and 2014. Clin. Pharmacol. Ther., 2018, 104(2), 390-400.
[http://dx.doi.org/10.1002/cpt.944] [PMID: 29266187]
[7]
Sacks, L.V.; Shamsuddin, H.H.; Yasinskaya, Y.I.; Bouri, K.; Lanthier, M.L.; Sherman, R.E. Scientific and regulatory reasons for delay and denial of FDA approval of initial applications for new drugs, 2000-2012. JAMA, 2014, 311(4), 378-384.
[http://dx.doi.org/10.1001/jama.2013.282542] [PMID: 24449316]
[8]
Zhong, H.; Chan, G.; Hu, Y.; Hu, H.; Ouyang, D. A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics, 2018, 10(4), 263.
[http://dx.doi.org/10.3390/pharmaceutics10040263] [PMID: 30563197]
[9]
Hussaarts, L.; Mühlebach, S.; Shah, V.P.; McNeil, S.; Borchard, G.; Flühmann, B.; Weinstein, V.; Neervannan, S.; Griffiths, E.; Jiang, W.; Wolff-Holz, E.; Crommelin, D.J.A.; de Vlieger, J.S.B. Equivalence of complex drug products: Advances in and challenges for current regulatory frameworks. Ann. N. Y. Acad. Sci., 2017, 1407(1), 39-49.
[http://dx.doi.org/10.1111/nyas.13347] [PMID: 28445611]
[10]
Huang, R.; Southall, N.; Wang, Y.; Yasgar, A.; Shinn, P.; Jadhav, A.; Nguyen, D.T.; Austin, C.P. The NCGC pharmaceutical collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci. Transl. Med., 2011, 3(80), 80ps16.
[http://dx.doi.org/10.1126/scitranslmed.3001862] [PMID: 21525397]
[11]
Böhm, M.; Frey, N.; Giannitsis, E.; Sliwa, K.; Zeiher, A.M. Coronavirus Disease 2019 (COVID-19) and its implications for cardiovascular care: Expert document from the German Cardiac Society and the World Heart Federation. Clin. Res. Cardiol., 2020, 109(12), 1446-1459.
[http://dx.doi.org/10.1007/s00392-020-01656-3] [PMID: 32462267]
[12]
Zhang, H.; Wang, L.; Chen, Y.; Wu, Q.; Chen, G.; Shen, X.; Wang, Q.; Yan, Y.; Yu, Y.; Zhong, Y.; Wang, X.; Chua, M.L.K.; Xie, C. Outcomes of novel coronavirus disease 2019 (COVID‐19) infection in 107 patients with cancer from Wuhan, China. Cancer, 2020, 126(17), 4023-4031.
[http://dx.doi.org/10.1002/cncr.33042] [PMID: 32573776]
[13]
Tiwari, D.; Bhati, B.S.; Al-Turjman, F.; Nagpal, B. Pandemic coronavirus disease (COVID‐19): World effects analysis and prediction using machine‐learning techniques. Expert Syst., 2022, 39(3), e12714.
[http://dx.doi.org/10.1111/exsy.12714] [PMID: 34177035]
[14]
Zheng, W.; Xiang, L.; Fadare, O.; Kong, B. A proposed model for endometrial serous carcinogenesis. Am. J. Surg. Pathol., 2011, 35(1), e1-e14.
[http://dx.doi.org/10.1097/PAS.0b013e318202772e] [PMID: 21164282]
[15]
Darian-Smith, E. Dying for the economy: Disposable people and economies of death in the Global North. State Crime, 2021, 10(1), 61.
[http://dx.doi.org/10.13169/statecrime.10.1.0061]
[16]
Hebbar, P.B.; Sudha, A.; Dsouza, V.; Chilgod, L.; Amin, A. Healthcare delivery in India amid the COVID-19 pandemic: Challenges and opportunities. Indian J. Med. Ethics, 2020, 5(3), 215-218.
[http://dx.doi.org/10.20529/IJME.2020.064] [PMID: 32546453]
[17]
Chang, A.Y.; Cullen, M.R.; Harrington, R.A.; Barry, M. The impact of novel coronavirus COVID‐19 on noncommunicable disease patients and health systems: A review. J. Intern. Med., 2021, 289(4), 450-462.
[http://dx.doi.org/10.1111/joim.13184] [PMID: 33020988]
[18]
Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv., 2010, 7(9), 1063-1077.
[http://dx.doi.org/10.1517/17425247.2010.502560] [PMID: 20716019]
[19]
Riely, G.J.; Neal, J.W.; Camidge, D.R.; Spira, A.I.; Piotrowska, Z.; Costa, D.B.; Tsao, A.S.; Patel, J.D.; Gadgeel, S.M.; Bazhenova, L.; Zhu, V.W.; West, H.L.; Mekhail, T.; Gentzler, R.D.; Nguyen, D.; Vincent, S.; Zhang, S.; Lin, J.; Bunn, V.; Jin, S.; Li, S.; Jänne, P.A. Activity and safety of mobocertinib (TAK-788) in previously treated non–small cell lung cancer with EGFR exon 20 insertion mutations from a phase I/II trial. Cancer Discov., 2021, 11(7), 1688-1699.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1598] [PMID: 33632775]
[20]
Imran, M.; Khan, S.A.; Alshammari, M.K.; Alreshidi, M.A.; Alreshidi, A.A.; Alghonaim, R.S.; Alanazi, F.A.; Alshehri, S.; Ghoneim, M.M.; Shakeel, F. Discovery, development, inventions, and patent trends on Mobocertinib succinate: The first-in-class oral treatment for NSCLC with EGFR Exon 20 insertions. Biomedicines, 2021, 9(12), 1938.
[http://dx.doi.org/10.3390/biomedicines9121938] [PMID: 34944754]
[21]
Gonzalvez, F.; Vincent, S.; Baker, T.E.; Gould, A.E. Mobocertinib (TAK-788): A targeted inhibitor of EGFR exon 20 insertion mutants in non-small cell lung cancer. Cancer Discov., 2021, 11, 1672-1687.
[http://dx.doi.org/10.1016/j.bmcl.2022.129084]
[22]
Ardizzone, A.; Scuderi, S.A.; Giuffrida, D.; Colarossi, C.; Puglisi, C.; Campolo, M.; Cuzzocrea, S.; Esposito, E.; Paterniti, I. Role of fibroblast growth factors receptors (FGFRs) in brain tumors, focus on astrocytoma and glioblastoma. Cancers, 2020, 12(12), 3825.
[http://dx.doi.org/10.3390/cancers12123825] [PMID: 33352931]
[23]
Benedetto Tiz, D.; Bagnoli, L.; Rosati, O.; Marini, F.; Sancineto, L.; Santi, C. New halogen-containing drugs approved by FDA in 2021: An overview on their syntheses and pharmaceutical use. Molecules, 2022, 27(5), 1643.
[http://dx.doi.org/10.3390/molecules27051643] [PMID: 35268744]
[24]
Guagnano, V.; Furet, P.; Spanka, C.; Bordas, V.; Le Douget, M.; Stamm, C.; Brueggen, J.; Jensen, M.R.; Schnell, C.; Schmid, H. Discovery of 3-(2,6-Dichloro-3,5-Dimethoxy-Phenyl)-1-{6-[4-(4-Ethyl-Piperazin-1-Yl)-Phenylamino]-Pyrimidin-4-Yl} 1-Methyl-Urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J. Med. Chem., 2011, 54, 7066-7083.
[http://dx.doi.org/10.1021/jm2006222] [PMID: 21936542]
[25]
Sebastian, M.; Eberhardt, W.E.E.; Hoffknecht, P.; Metzenmacher, M.; Wehler, T.; Kokowski, K.; Alt, J.; Schütte, W.; Büttner, R.; Heukamp, L.C.; Stenzinger, A.; Jänicke, M.; Fleitz, A.; Zacharias, S.; Dille, S.; Hipper, A.; Sandberg, M.; Weichert, W.; Groschek, M.; von der Heyde, E.; Rauh, J.; Dechow, T.; Thomas, M.; Griesinger, F. KRAS G12C-mutated advanced non-small cell lung cancer: A real-world cohort from the German prospective, observational, nation-wide CRISP Registry (AIO-TRK-0315). Lung Cancer, 2021, 154, 51-61.
[http://dx.doi.org/10.1016/j.lungcan.2021.02.005] [PMID: 33611226]
[26]
Kargbo, R. Synthesis of sotorasib. J. Am. Chem. Soc., 2021, 143, 10576-10581.
[27]
Lanman, B.A.; Chen, J.; Reed, A.B.; Cee, V.J.; Liu, L.; Kopecky, D.J.; Lopez, P.; Wurz, R.P.; Nguyen, T.T.; Booker, S. Kras G12c inhibitors and methods of using the same. WO Patent 2018217651, 2018.
[28]
Tan, A.R.; Wright, G.S.; Thummala, A.R.; Danso, M.A.; Popovic, L.; Pluard, T.J.; Han, H.S.; Vojnović, Ž.; Vasev, N.; Ma, L.; Richards, D.A.; Wilks, S.T.; Milenković, D.; Xiao, J.; Sorrentino, J.; Horton, J.; O’Shaughnessy, J. Trilaciclib prior to chemotherapy in patients with metastatic triple-negative breast cancer: Final efficacy and subgroup analysis from a randomized phase II study. Clin. Cancer Res., 2022, 28(4), 629-636.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-2272] [PMID: 34887261]
[29]
Young, J.A. Trilaciclib: A first-in-class therapy to reduce chemotherapy-induced myelosuppression. Touch Rev. Oncol. Haematol., 2022, 18(2), 152-158.
[30]
Yuan, S.; Wang, D.S.; Liu, H.; Zhang, S.N.; Yang, W.G.; Lv, M.; Zhou, Y.X.; Zhang, S.Y.; Song, J.; Liu, H.M. New drug approvals for 2021: Synthesis and clinical applications. Eur. J. Med. Chem., 2023, 245(Pt 1), 114898.
[http://dx.doi.org/10.1016/j.ejmech.2022.114898] [PMID: 36370552]
[31]
Ma, Y.; Gao, Q.; Zhou, L.; Liu, S.; Cheng, H.G.; Zhou, Q. Diversity‐oriented synthesis of flavones and isoflavones via palladium/norbornene cooperative catalysis. Chin. J. Chem., 2022, 40(6), 675-680.
[http://dx.doi.org/10.1002/cjoc.202100693]
[32]
Weiss, M.; Miskin, H.; Sportelli, P.; Vakkalanka, S.K.V.S. Combination of anti-Cd20 antibody and Pi3 kinase selective inhibitor. WO Patent 2014071125, 2014.
[33]
Zhang, N.; An, B.; Zhou, Y.; Li, X.; Yan, M. Synthesis, evaluation, and mechanism study of new tepotinib derivatives as antiproliferative agents. Molecules, 2019, 24(6), 1173.
[http://dx.doi.org/10.3390/molecules24061173] [PMID: 30934578]
[34]
Yu, Y.; Liu, A.; Dhawan, G.; Mei, H.; Zhang, W.; Izawa, K.; Soloshonok, V.A.; Han, J. Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. Chin. Chem. Lett., 2021, 32(11), 3342-3354.
[http://dx.doi.org/10.1016/j.cclet.2021.05.042]
[35]
Krawczyk, H. The stilbene derivatives, nucleosides, and nucleosides modified by stilbene derivatives. Bioorg. Chem., 2019, 90, 103073.
[http://dx.doi.org/10.1016/j.bioorg.2019.103073] [PMID: 31234131]
[36]
Dhillon, S. Decitabine/cedazuridine: First approval. Drugs, 2020, 80(13), 1373-1378.
[http://dx.doi.org/10.1007/s40265-020-01389-7] [PMID: 32860582]
[37]
Ammirati, E.; Turchetta, S.; Zenoni, M.; Brandi, P.; Berardi, G.; Anibaldi, M.D.F.; De Ferra, L. Process for the synthesis of azacitidine and decitabine. US Patent 20110245485A1, 2011.
[38]
Smith, B.D.; Kaufman, M.D.; Lu, W.P.; Gupta, A.; Leary, C.B.; Wise, S.C.; Rutkoski, T.J.; Ahn, Y.M.; Al-Ani, G.; Bulfer, S.L. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants. Cancer cell, 2019, 35(5), 738-751.e9.
[39]
Liang, X.; Yang, Q.; Wu, P.; He, C.; Yin, L.; Xu, F.; Yin, Z.; Yue, G.; Zou, Y.; Li, L.; Song, X.; Lv, C.; Zhang, W.; Jing, B. The synthesis review of the approved tyrosine kinase inhibitors for anticancer therapy in 2015–2020. Bioorg. Chem., 2021, 113, 105011.
[http://dx.doi.org/10.1016/j.bioorg.2021.105011] [PMID: 34091289]
[40]
Al-Zaqri, N.; Pooventhiran, T.; Alharthi, F.A.; Bhattacharyya, U.; Thomas, R. Structural investigations, quantum mechanical studies on proton and metal affinity and biological activity predictions of selpercatinib. J. Mol. Liq., 2021, 325, 114765.
[http://dx.doi.org/10.1016/j.molliq.2020.114765] [PMID: 33746318]
[41]
Junqiang, W.; Xiaolong, Q.; Tao, X.; Zhiwei, Z.; Xiaobo, X.; Dong, W. Synthesis of serpatatinib. CN Patent 113321668A, 2021.
[42]
Hughes, D.L. Review of synthetic routes and crystalline forms of the oncology drugs capmatinib, selpercatinib, and pralsetinib. Org. Process Res. Dev., 2021, 25(10), 2192-2204.
[http://dx.doi.org/10.1021/acs.oprd.1c00282]
[43]
Kocienski, P. Synthesis of pemigatinib. Synfacts, 2021, 17(10), 1076.
[http://dx.doi.org/10.1055/s-0040-1720180]
[44]
García-Alonso, S.; Ocaña, A.; Pandiella, A. Trastuzumab emtansine: Mechanisms of action and resistance, clinical progress, and beyond. Trends Cancer, 2020, 6(2), 130-146.
[http://dx.doi.org/10.1016/j.trecan.2019.12.010] [PMID: 32061303]
[45]
Upton, R.; Banuelos, A.; Feng, D.; Biswas, T.; Kao, K.; McKenna, K.; Willingham, S.; Ho, P.Y.; Rosental, B.; Tal, M.C.; Raveh, T.; Volkmer, J.P.; Pegram, M.D.; Weissman, I.L. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance. Proc. Natl. Acad. Sci., 2021, 118(29), e2026849118.
[http://dx.doi.org/10.1073/pnas.2026849118] [PMID: 34257155]
[46]
Kocienski, P. Synthesis of tucatinib. Synfacts, 2019, 15(09), 0965.
[47]
O’Neil, B.H.; Goff, L.W.; Kauh, J.S.W.; Strosberg, J.R.; Bekaii-Saab, T.S.; Lee, R.; Kazi, A.; Moore, D.T.; Learoyd, M.; Lush, R.M.; Sebti, S.M.; Sullivan, D.M. Phase II study of the mitogen-activated protein kinase 1/2 inhibitor selumetinib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol., 2011, 29(17), 2350-2356.
[http://dx.doi.org/10.1200/JCO.2010.33.9432] [PMID: 21519015]
[48]
Mukhopadhyay, S.; Maitra, A.; Choudhury, S. Selumetinib: The first ever approved drug for neurofibromatosis-1 related inoperable plexiform neurofibroma. Curr. Med. Res. Opin., 2021, 37(5), 789-794.
[http://dx.doi.org/10.1080/03007995.2021.1900089] [PMID: 33683166]
[49]
Chen, W.; Yu, D.; Sun, S.Y.; Li, F. Nanoparticles for co-delivery of osimertinib and selumetinib to overcome osimertinib-acquired resistance in non-small cell lung cancer. Acta Biomater., 2021, 129, 258-268.
[http://dx.doi.org/10.1016/j.actbio.2021.05.018] [PMID: 34048974]
[50]
Wallace, E.L.; Lyssikatos, J.P.; Hurley, B.T.; Marlow, A.L. N3 alkylated benzimidazole derivatives as mek inhibitors. WO Patent 2003077914A1, 2003.
[51]
Liu, A.; Han, J.; Nakano, A.; Konno, H.; Moriwaki, H.; Abe, H.; Izawa, K.; Soloshonok, V.A. New pharmaceuticals approved by FDA in 2020: Small‐molecule drugs derived from amino acids and related compounds. Chirality, 2022, 34(1), 86-103.
[http://dx.doi.org/10.1002/chir.23376] [PMID: 34713503]
[52]
Kuntz, K.W. Salt form of a human histone methyltransferase EZH2 inhibitor. WO Patent 2013155317A1, 2013.
[53]
Alsalme, A.; Pooventhiran, T.; Al-Zaqri, N.; Rao, D.J.; Thomas, R. Structural, physico-chemical landscapes, ground state and excited state properties in different solvent atmosphere of Avapritinib and its ultrasensitive detection using SERS/GERS on self-assembly formation with graphene quantum dots. J. Mol. Liq., 2021, 322, 114555.
[http://dx.doi.org/10.1016/j.molliq.2020.114555]
[54]
Ayala-Aguilera, C.C.; Valero, T.; Lorente-Macías, Á.; Baillache, D.J.; Croke, S.; Unciti-Broceta, A. Small molecule kinase inhibitor drugs (1995–2021): Medical indication, pharmacology, and synthesis. J. Med. Chem., 2022, 65(2), 1047-1131.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00963] [PMID: 34624192]
[55]
Guo, Y.; Liu, Y.; Hu, N.; Yu, D.; Zhou, C.; Shi, G.; Zhang, B.; Wei, M.; Liu, J.; Luo, L.; Tang, Z.; Song, H.; Guo, Y.; Liu, X.; Su, D.; Zhang, S.; Song, X.; Zhou, X.; Hong, Y.; Chen, S.; Cheng, Z.; Young, S.; Wei, Q.; Wang, H.; Wang, Q.; Lv, L.; Wang, F.; Xu, H.; Sun, H.; Xing, H.; Li, N.; Zhang, W.; Wang, Z.; Liu, G.; Sun, Z.; Zhou, D.; Li, W.; Liu, L.; Wang, L.; Wang, Z. Discovery of zanubrutinib (BGB-3111), a novel, potent, and selective covalent inhibitor of Bruton’s tyrosine kinase. J. Med. Chem., 2019, 62(17), 7923-7940.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00687] [PMID: 31381333]
[56]
Osman, H.M.; Tuncbilek, M. Entrectinib: A new selective tyrosine kinase inhibitor approved for the treatment of pediatric and adult patients with NTRK fusionpositive, recurrent or advanced solid tumors. Curr. Med. Chem., 2022, 29(15), 2602-2616.
[http://dx.doi.org/10.2174/0929867328666210914121324] [PMID: 34521321]
[57]
Menichincheri, M.; Ardini, E.; Magnaghi, P.; Avanzi, N.; Banfi, P.; Bossi, R.; Buffa, L.; Canevari, G.; Ceriani, L.; Colombo, M.; Corti, L.; Donati, D.; Fasolini, M.; Felder, E.; Fiorelli, C.; Fiorentini, F.; Galvani, A.; Isacchi, A.; Borgia, A.L.; Marchionni, C.; Nesi, M.; Orrenius, C.; Panzeri, A.; Pesenti, E.; Rusconi, L.; Saccardo, M.B.; Vanotti, E.; Perrone, E.; Orsini, P. Discovery of entrectinib: A new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-Ros oncogene 1 kinase (ROS1), and Pan-tropomyosin receptor kinases (Pan-TRKs) inhibitor. J. Med. Chem., 2016, 59(7), 3392-3408.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00064] [PMID: 27003761]
[58]
Kocienski, P. Synthesis of pexidartinib. Synfacts, 2019, 15(09), 0966.
[59]
Chen, D.; Zhang, Y.; Li, J.; Liu, Y. Exploratory process development of pexidartinib through the tandem Tsuji–Trost reaction and Heck coupling. Synthesis, 2019, 51(12), 2564-2571.
[http://dx.doi.org/10.1055/s-0037-1612421]
[60]
Sugawara, T.; Baumgart, S.J.; Nevedomskaya, E.; Reichert, K.; Steuber, H.; Lejeune, P.; Mumberg, D.; Haendler, B. Darolutamide is a potent androgen receptor antagonist with strong efficacy in prostate cancer models. Int. J. Cancer, 2019, 145(5), 1382-1394.
[http://dx.doi.org/10.1002/ijc.32242] [PMID: 30828788]
[61]
Wang, L.; Li, R.; Song, C.; Chen, Y.; Long, H.; Yang, L. Smallmolecule anti-cancer drugs from 2016 to 2020: Synthesis and clinical application. Nat. Prod. Commun., 2021, 16(9), 1934578X211040326.
[62]
Mancuso, J. Selinexor (Xpovio), An XPO1 inhibitor and a new class of therapeutics for treating multiple myeloma. Current Drug Syn., 2022, 530, 2286-2303.
[http://dx.doi.org/10.1002/9781119847281.ch13]
[63]
Nair, A.S.; Singh, A.K.; Kumar, A.; Kumar, S.; Sukumaran, S.; Koyiparambath, V.P.; Pappachen, L.K.; Rangarajan, T.M.; Kim, H.; Mathew, B. FDA-approved trifluoromethyl group-containing drugs: A review of 20 years. Processes, 2022, 10(10), 2054.
[http://dx.doi.org/10.3390/pr10102054]
[64]
André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; Yamashita, T.; Lu, Y.S.; Inoue, K.; Takahashi, M.; Pápai, Z.; Longin, A.S.; Mills, D.; Wilke, C.; Hirawat, S.; Juric, D. Alpelisib for PIK3CA-mutated, hormone receptor–positive advanced breast cancer. N. Engl. J. Med., 2019, 380(20), 1929-1940.
[http://dx.doi.org/10.1056/NEJMoa1813904] [PMID: 31091374]
[65]
Sun, X.; Feng, L.; Sun, C.; Kang, C. Synthesis of quinoxaline derivatives as intermediates to obtain erdafitinib. Pharm. Chem. J., 2021, 55(9), 951-953.
[http://dx.doi.org/10.1007/s11094-021-02521-x]
[66]
Sheikhi, N.; Bahraminejad, M.; Saeedi, M.; Mirfazli, S.S. A review: FDA-approved fluorine-containing small molecules from 2015 to 2022. Eur. J. Med. Chem., 2023, 260, 115758.
[http://dx.doi.org/10.1016/j.ejmech.2023.115758] [PMID: 37657268]
[67]
Gorcea, C.M.; Burthem, J.; Tholouli, E. ASP2215 in the treatment of relapsed/refractory acute myeloid leukemia with FLT3 mutation: Background and design of the ADMIRAL trial. Future Oncol., 2018, 14(20), 1995-2004.
[http://dx.doi.org/10.2217/fon-2017-0582] [PMID: 29498296]
[68]
Flick, A.C.; Leverett, C.A.; Ding, H.X.; McInturff, E.; Fink, S.J.; Mahapatra, S.; Carney, D.W.; Lindsey, E.A.; DeForest, J.C.; France, S.P.; Berritt, S.; Bigi-Botterill, S.V.; Gibson, T.S.; Liu, Y.; O’Donnell, C.J. Synthetic approaches to the new drugs approved during 2019. J. Med. Chem., 2021, 64(7), 3604-3657.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00208] [PMID: 33783211]
[69]
Mori, M.; Kaneko, N.; Ueno, Y.; Yamada, M.; Tanaka, R.; Saito, R.; Shimada, I.; Mori, K.; Kuromitsu, S. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Invest. New Drugs, 2017, 35(5), 556-565.
[http://dx.doi.org/10.1007/s10637-017-0470-z] [PMID: 28516360]
[70]
Xu, H.; Chen, L.; Chen, Y.; Fu, Y.; Xu, F.; Chen, G. Study on the synthesis technology of anticancer drug Gilteritinib fumarate. Russ. Chem. Bull., 2023, 72(8), 1921-1928.
[http://dx.doi.org/10.1007/s11172-023-3977-9]
[71]
Qinglei, Y.; Zhiguo, Z.; Qiang, G.; Baofu, Z. Preparation of gilteritinib derivatives as inhibitors of FLT3-Axl. CN Patent 106083821, 2016.
[72]
Attia, M.H.; Elrazaz, E.Z.; El-Emam, S.Z.; Taher, A.T.; Abdel-Aziz, H.A.; Abouzid, K.A.M. Synthesis and in-vitro anti-proliferative evaluation of some pyrazolo[1,5-a]pyrimidines as novel larotrectinib analogs. Bioorg. Chem., 2020, 94, 103458.
[http://dx.doi.org/10.1016/j.bioorg.2019.103458] [PMID: 31785854]
[73]
Haidong, J.L.; Ruiwan, Z.L.; Wang, G.; Yang, D.; Wenyuan, S.Y.; Ying, Z.; Haiyan, H. A kind of preparation method and their intermediate of larotrectinib. CN Patent 107987082A, 2019.
[74]
Peklar, B.; Perdih, F.; Makuc, D.; Plavec, J.; Cluzeau, J.; Kitanovski, Z.; Časar, Z. Glasdegib dimaleate: Synthesis, characterization and comparison of its properties with monomaleate analogue. Pharmaceutics, 2022, 14(8), 1641.
[http://dx.doi.org/10.3390/pharmaceutics14081641] [PMID: 36015269]
[75]
Munchhof, M.J.; Li, Q.; Shavnya, A.; Borzillo, G.V.; Boyden, T.L.; Jones, C.S.; LaGreca, S.D.; Martinez-Alsina, L.; Patel, N.; Pelletier, K.; Reiter, L.A.; Robbins, M.D.; Tkalcevic, G.T. Discovery of PF-04449913, a potent and orally bioavailable inhibitor of smoothened. ACS Med. Chem. Lett., 2012, 3(2), 106-111.
[http://dx.doi.org/10.1021/ml2002423] [PMID: 24900436]
[76]
Kocienski, P. Synthesis of lorlatinib. Synfacts, 2018, 14(12), 1227.
[http://dx.doi.org/10.1055/s-0037-1611138]
[77]
Wang, B.; Chu, D.; Feng, Y.; Shen, Y.; Aoyagi-Scharber, M.; Post, L.E. Discovery and characterization of (8 S, 9 R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one (BMN 673, Talazoparib), a novel, highly potent, and orally efficacious poly(ADP-ribose) polymerase-1/2 inhibitor, as an anticancer agent. J. Med. Chem., 2016, 59(1), 335-357.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01498] [PMID: 26652717]
[78]
Wang, S.; Yuan, X.H.; Wang, S.Q.; Zhao, W.; Chen, X.B.; Yu, B. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application. Eur. J. Med. Chem., 2021, 214, 113218.
[http://dx.doi.org/10.1016/j.ejmech.2021.113218] [PMID: 33540357]
[79]
Lin, G.M.K. Synthesis method of EGFR (Epidermal Growth Factor Receptor) inhibitor dacomitinib. CN Patent 103304492.A, 2013.
[80]
Rodrigues, D.A.; Sagrillo, F.S.; Fraga, C.A.M.; Duvelisib, A. 2018 novel FDA-approved small molecule inhibiting phosphoinositide 3-kinases. Pharmaceuticals, 2019, 12(2), 69.
[http://dx.doi.org/10.3390/ph12020069] [PMID: 31064155]
[81]
Ren, Y.L. Certain chemical entities, compositions and methods. WO Patent 2011008302A, 2009.
[82]
Megías-Vericat, J.E.; Solana-Altabella, A.; Ballesta-López, O.; Martínez-Cuadrón, D.; Montesinos, P. Drug-drug interactions of newly approved small molecule inhibitors for acute myeloid leukemia. Ann. Hematol., 2020, 99(9), 1989-2007.
[http://dx.doi.org/10.1007/s00277-020-04186-0] [PMID: 32683457]
[83]
Kocienski, P. Synthesis of ivosidenib. Synfacts, 2018, 14(07), 0674.
[84]
Saad, F.; Bögemann, M.; Suzuki, K.; Shore, N. Treatment of nonmetastatic castration-resistant prostate cancer: Focus on second-generation androgen receptor inhibitors. Prostate Cancer Prostatic Dis., 2021, 24(2), 323-334.
[http://dx.doi.org/10.1038/s41391-020-00310-3] [PMID: 33558665]
[85]
Saladi, V.N.; Kammari, B.R.; Mandad, P.R.; Krishna, G.R.; Sajja, E.; Thirumali, R.S.; Marutapilli, A.; Mathad, V.T. Novel pharmaceutical cocrystal of apalutamide, a nonsteroidal antiandrogen drug: Synthesis, crystal structure, dissolution, stress, and excipient compatibility. Cryst. Growth Des., 2022, 22(2), 1130-1142.
[http://dx.doi.org/10.1021/acs.cgd.1c01087]
[86]
Seligson, J.M.; Patron, A.M.; Berger, M.J.; Harvey, R.D.; Seligson, N.D. Sacituzumab govitecan-hziy: An antibody-drug conjugate for the treatment of refractory, metastatic, triple-negative breast cancer. Ann. Pharmacother., 2021, 55(7), 921-931.
[http://dx.doi.org/10.1177/1060028020966548] [PMID: 33070624]
[87]
Akhtar, S.; Ali, T.A.; Faiyaz, A.; Khan, O.S.; Raza, S.S.; Kulinski, M.; Omri, H.E.; Bhat, A.A.; Uddin, S. Cytokine-mediated dysregulation of signaling pathways in the pathogenesis of multiple myeloma. Int. J. Mol. Sci., 2020, 21(14), 5002.
[http://dx.doi.org/10.3390/ijms21145002] [PMID: 32679860]
[88]
El-Shershaby, H.M.; Farrag, N.S.; Ebeid, N.H.; Moustafa, K.A. Radiolabeling and cytotoxicity of monoclonal antibody Isatuximab functionalized silver nanoparticles on the growth of multiple myeloma. Int. J. Pharm., 2022, 624, 122019.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122019] [PMID: 35842081]
[89]
Matos, M.J.; Labão-Almeida, C.; Sayers, C.; Dada, O.; Tacke, M.; Bernardes, G.J.L. Synthesis and biological evaluation of homogeneous thiol‐linked NHC*‐au‐albumin and ‐trastuzumab bioconjugates. Chemistry, 2018, 24(47), 12250-12253.
[http://dx.doi.org/10.1002/chem.201800872] [PMID: 29729206]
[90]
Halford, Z.; Anderson, M.K.; Clark, M.D. Enfortumab vedotin-ejfv: A first-in-class anti–nectin-4 antibody-drug conjugate for the management of urothelial carcinoma. Ann. Pharmacother., 2021, 55(6), 772-782.
[http://dx.doi.org/10.1177/1060028020960402] [PMID: 32945172]
[91]
Chang, E.; Weinstock, C.; Zhang, L.; Charlab, R.; Dorff, S.E.; Gong, Y.; Hsu, V.; Li, F.; Ricks, T.K.; Song, P.; Tang, S.; Waldron, P.E.; Yu, J.; Zahalka, E.; Goldberg, K.B.; Pazdur, R.; Theoret, M.R.; Ibrahim, A.; Beaver, J.A. FDA approval summary: Enfortumab vedotin for locally advanced or metastatic urothelial carcinoma. Clin. Cancer Res., 2021, 27(4), 922-927.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2275] [PMID: 32962979]
[92]
Burke, J.M.; Morschhauser, F.; Andorsky, D.; Lee, C.; Sharman, J.P. Antibody–drug conjugates for previously treated aggressive lymphomas: Focus on polatuzumab vedotin. Expert Rev. Clin. Pharmacol., 2020, 13(10), 1073-1083.
[http://dx.doi.org/10.1080/17512433.2020.1826303] [PMID: 32985934]
[93]
Lin, C.C.; Zucali, P.; Carthon, B.; Bauer, T.M.; Tucci, M.; Italiano, A.; Iacovelli, R.; Su, W.C.; Massard, C.; Saleh, M. Abstract LB040: Targeting CD38 and PD-1 with isatuximab (Isa) plus cemiplimab (Cemi) in patients (PTS) with advanced malignancies: Results from a phase 1/2 open-label, multicenter study. Cancer Res., 2021, 81(S13), LB040-LB040.
[94]
Flanagan, E.P.; Levy, M.; Katz, E.; Cimbora, D.; Drappa, J.; Mealy, M.A.; She, D.; Cree, B.A.C. Inebilizumab for treatment of neuromyelitis optica spectrum disorder in patients with prior rituximab use from the N-MOmentum Study. Mult. Scler. Relat. Disord., 2022, 57, 103352.
[http://dx.doi.org/10.1016/j.msard.2021.103352] [PMID: 35158461]
[95]
Frampton, J.E. Inebilizumab: First approval. Drugs, 2020, 80(12), 1259-1264.
[http://dx.doi.org/10.1007/s40265-020-01370-4] [PMID: 32729016]
[96]
Ohmachi, K.; Ogura, M.; Suehiro, Y.; Ando, K.; Uchida, T.; Choi, I.; Ogawa, Y.; Kobayashi, M.; Fukino, K.; Yokoi, Y.; Okamura, J. A multicenter phase I study of inebilizumab, a humanized anti-CD19 monoclonal antibody, in Japanese patients with relapsed or refractory B-cell lymphoma and multiple myeloma. Int. J. Hematol., 2019, 109(6), 657-664.
[http://dx.doi.org/10.1007/s12185-019-02635-9] [PMID: 30915717]
[97]
Hoy, S.M. Tafasitamab: First approval. Drugs, 2020, 80(16), 1731-1737.
[http://dx.doi.org/10.1007/s40265-020-01405-w] [PMID: 32946059]
[98]
Baines, A.C.; Ershler, R.; Kanapuru, B.; Xu, Q.; Shen, G.; Li, L.; Ma, L.; Okusanya, O.O.; Simpson, N.E.; Nguyen, W.; Theoret, M.R.; Pazdur, R.; Gormley, N.J. FDA approval summary: Belantamab mafodotin for patients with relapsed or refractory multiple myeloma. Clin. Cancer Res., 2022, 28(21), 4629-4633.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-0618] [PMID: 35736811]
[99]
Rajpal, M.; Shenoy, A.K.; Malhotra, A. Rising from the Ashes: The curious case of the development of biologics for the treatment of neuroblastoma. In: Biologics and Biosimilars; CRC Press, 2022; pp. 239-256.
[http://dx.doi.org/10.1201/9780429485626-16]
[100]
Khakinahad, Y.; Sohrabi, S.; Razi, S.; Narmani, A.; Khaleghi, S.; Asadiyun, M.; Jafari, H.; Mohammadnejad, J. Margetuximab conjugated-PEG-PAMAM G4 nano-complex: A smart nano-device for suppression of breast cancer. Biomed. Eng. Lett., 2022, 12(3), 317-329.
[http://dx.doi.org/10.1007/s13534-022-00225-z] [PMID: 35892030]
[101]
Oaknin, A.; Tinker, A.V.; Gilbert, L.; Samouëlian, V.; Mathews, C.; Brown, J.; Barretina-Ginesta, M.P.; Moreno, V.; Gravina, A.; Abdeddaim, C.; Banerjee, S.; Guo, W.; Danaee, H.; Im, E.; Sabatier, R. Clinical activity and safety of the anti-PD-1 monoclonal antibody dostarlimab for patients with recurrent or advanced dMMR endometrial cancer. Future Oncol., 2021, 17(29), 3781-3785.
[http://dx.doi.org/10.2217/fon-2021-0598] [PMID: 34427115]
[102]
Park, U.B.; Jeong, T.J.; Gu, N.; Lee, H.T.; Heo, Y.S. Molecular basis of PD-1 blockade by dostarlimab, the FDA-approved antibody for cancer immunotherapy. Biochem. Biophys. Res. Commun., 2022, 599, 31-37.
[http://dx.doi.org/10.1016/j.bbrc.2022.02.026] [PMID: 35168061]
[103]
Hartley, J.A. Antibody-drug conjugates (ADCs) delivering pyrrolobenzodiazepine (PBD) dimers for cancer therapy. Expert Opin. Biol. Ther., 2021, 21(7), 931-943.
[http://dx.doi.org/10.1080/14712598.2020.1776255] [PMID: 32543981]
[104]
Syed, Y.Y. Amivantamab: First approval. Drugs, 2021, 81(11), 1349-1353.
[http://dx.doi.org/10.1007/s40265-021-01561-7] [PMID: 34292533]
[105]
Olivier, T.; Prasad, V. Amivantamab and mobocertinib in exon 20 insertions EGFR mutant lung cancer, challenge to the current guidelines. Transl. Oncol., 2022, 23, 101475.
[http://dx.doi.org/10.1016/j.tranon.2022.101475] [PMID: 35785671]
[106]
Criscitiello, C.; Morganti, S.; Curigliano, G. Antibody–drug conjugates in solid tumors: A look into novel targets. J. Hematol. Oncol., 2021, 14(1), 20.
[http://dx.doi.org/10.1186/s13045-021-01035-z] [PMID: 33509252]
[107]
Khongorzul, P.; Ling, C.J.; Khan, F.U.; Ihsan, A.U.; Zhang, J. Antibody–drug conjugates: A comprehensive review. Mol. Cancer Res., 2020, 18(1), 3-19.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0582] [PMID: 31659006]
[108]
Yap, T.A.; Parkes, E.E.; Peng, W.; Moyers, J.T.; Curran, M.A.; Tawbi, H.A. Development of immunotherapy combination strategies in cancer. Cancer Discov., 2021, 11(6), 1368-1397.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1209] [PMID: 33811048]
[109]
Senter, P.D.; Sievers, E.L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat. Biotechnol., 2012, 30(7), 631-637.
[http://dx.doi.org/10.1038/nbt.2289] [PMID: 22781692]
[110]
Kasamon, Y.L.; Chen, H.; de Claro, R.A.; Nie, L.; Ye, J.; Blumenthal, G.M.; Farrell, A.T.; Pazdur, R. FDA approval summary: Mogamulizumab-kpkc for mycosis fungoides and sézary syndrome. Clin. Cancer Res., 2019, 25(24), 7275-7280.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2030] [PMID: 31366601]
[111]
Moore, D.C.; Elmes, J.B.; Shibu, P.A.; Larck, C.; Park, S.I. Mogamulizumab: An anti-CC chemokine receptor 4 antibody for T-cell lymphomas. Ann. Pharmacother., 2020, 54(4), 371-379.
[http://dx.doi.org/10.1177/1060028019884863] [PMID: 31648540]
[112]
Keam, S.J. Piflufolastat F 18: Diagnostic first approval. Mol. Diagn. Ther., 2021, 25(5), 647-656.
[http://dx.doi.org/10.1007/s40291-021-00548-0] [PMID: 34292532]
[113]
Carlucci, G.; Ippisch, R.; Slavik, R.; Mishoe, A.; Blecha, J.; Zhu, S. 68 Ga-PSMA-11 NDA approval: A novel and successful academic partnership. J. Nucl. Med., 2021, 62(2), 149-155.
[http://dx.doi.org/10.2967/jnumed.120.260455] [PMID: 33443068]
[114]
Dearling, J.L.J.; van Dam, E.M.; Harris, M.J.; Packard, A.B. Detection and therapy of neuroblastoma minimal residual disease using [64/67Cu]Cu-SARTATE in a preclinical model of hepatic metastases. EJNMMI Res., 2021, 11(1), 20.
[http://dx.doi.org/10.1186/s13550-021-00763-0] [PMID: 33394212]
[115]
Gutfilen, B.; Souza, S.; Valentini, G. Copper-64: A real theranostic agent. Drug Des. Devel. Ther., 2018, 12, 3235-3245.
[http://dx.doi.org/10.2147/DDDT.S170879] [PMID: 30323557]
[116]
Katzenellenbogen, J.A. The quest for improving the management of breast cancer by functional imaging: The discovery and development of 16α-[18F]fluoroestradiol (FES), a PET radiotracer for the estrogen receptor, a historical review. Nucl. Med. Biol., 2021, 92, 24-37.
[http://dx.doi.org/10.1016/j.nucmedbio.2020.02.007] [PMID: 32229068]
[117]
Yoo, J.; Dence, C.S.; Sharp, T.L.; Katzenellenbogen, J.A.; Welch, M.J. Synthesis of an estrogen receptor β-selective radioligand: 5-[18F]fluoro-(2R,3S)-2,3-bis(4-hydroxyphenyl)pentanenitrile and comparison of in vivo distribution with 16α-[18F]fluoro-17β-estradiol. J. Med. Chem., 2005, 48(20), 6366-6378.
[http://dx.doi.org/10.1021/jm050121f] [PMID: 16190762]
[118]
De Araujo Bispo, A.C.; do Nascimento, L.T.C.; Castro, A.C.F.; Lima, L.A.R.; Ferreira, S.M.Z.M.D.; da Silva, J.B.; Mamede, M. Synthesis and characterization of the radiopharmaceutical [18F] fluoroestradiol. Braz. J. Radiat. Sci., 2021, 9(1A)
[119]
Sammartano, A.; Migliari, S.; Scarlattei, M.; Baldari, G.; Ruffini, L. Validation of quality control parameters of cassette-based gallium-68-DOTA-Tyr3-octreotate synthesis. Indian J. Nucl. Med., 2020, 35(4), 291-298.
[http://dx.doi.org/10.4103/ijnm.IJNM_66_20] [PMID: 33642752]
[120]
Hromadik, L.K.; Sturges, L. Caring for patients receiving 177Lu-DOTATATE, Lutathera®: A treatment of hope for patients with gastroenteropancreatic neuroendocrine tumors. J. Radiol. Nurs., 2019, 38(1), 28-32.
[http://dx.doi.org/10.1016/j.jradnu.2018.11.003]
[121]
Hennrich, U.; Kopka, K. Lutathera®: The first FDA-and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals, 2019, 12(3), 114.
[http://dx.doi.org/10.3390/ph12030114] [PMID: 31362406]
[122]
Pallem, C. Solid-state fermentation of corn husk for the synthesis of Asparaginase by Fusarium oxysporum. Asian J. Pharm. Pharmacol., 2019, 5(4), 678-681.
[http://dx.doi.org/10.31024/ajpp.2019.5.4.5]
[123]
Salzer, W.L.; Asselin, B.L.; Plourde, P.V.; Corn, T.; Hunger, S.P. Development of asparaginase Erwinia chrysanthemi for the treatment of acute lymphoblastic leukemia. Ann. N. Y. Acad. Sci., 2014, 1329(1), 81-92.
[http://dx.doi.org/10.1111/nyas.12496] [PMID: 25098829]