Coronaviruses

Author(s): Anand Kumar Pandey*, Jayanti Awasthi, Kislay Chaturvedi, Ayush Mishra, Shivangi Yadav, Soumya Rathore and Preeti Birwal

DOI: 10.2174/0126667975280881240102111455

DownloadDownload PDF Flyer Cite As
In silico Evaluation of Anacyclus pyrethrum Composition for Inhibition of Spike RBD-ACE-2 Interaction to Treat COVID-19

Article ID: e260124226233 Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: The spike glycoprotein of SARS-CoV-2, via its S1-subunit, binds with host angiotensin-converting enzyme 2 (ACE-2) receptors, and its S2-subunit mediates the fusion of the virus to the host cell. The entry of SARS-CoV-2 inside the host cell can be prevented by inhibition of the receptor binding domain (RBD) of S1-subunit of the spike. Anacyclus pyrethrum, a native herb of Algeria, Spain and Morocco has antidepressant, analgesic, antimicrobial, anesthetic, antioxidant, anti-inflammatory, aphrodisiac, antidiabetic and immunostimulant effects. But, its antiviral effect has not been established yet.

Methodology: The present study deals with ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity), molecular docking and molecular dynamic simulation based investigation to evaluate the potential of Anacyclus pyrethrum constituents for effective spike RBD inhibition.

Results: ADMET analysis revealed that 10 out of 12 significant constituents belongs to toxicity class 4 to 6 proving least toxicity of the plant extract with high LD50 values. Molecular docking analysis of 10 considered compounds revealed that morphinan-6-one, 4,5.alpha.-epoxy-3-hydroxy-17-methyl, a derivative of morphine (well-known analgesic and anti-inflammatory compound) gave the maximum negative binding energy of -6.9 kcal/mol in best-docked conformation with spike RBD having 2 hydrogen bonds. Molecular dynamic simulation disclosed effective RMSD, RMSF, and Rg values over the simulation trajectory with significant hydrogen bonding proving stable interaction of the compound with that of the spike RBD.

Conclusion: Hence, all these outcomes revealed the outstanding potential of the Anacyclus pyrethrum extract to inhibit the spike RBD of SARS-CoV-2. Therefore, further in vitro investigation can develop natural and effective treatments against COVID-19 disease.

Keywords: Anacyclus pyrethrum, spike glycoprotein, SARS-CoV-2, molecular docking, molecular dynamic simulation, receptor binding domain.

Graphical Abstract

[1]
Navabshan, I.; Sakthivel, B.; Pandiyan, R. Computational lock and key and dynamic trajectory analysis of natural biophors against COVID-19 spike protein to identify effective lead molecules. Mol. Biotechnol., 2021, 63(10), 898-908.
[http://dx.doi.org/10.1007/s12033-021-00358-z] [PMID: 34159564]
[2]
Vandelli, A.; Monti, M.; Milanetti, E. Structural analysis of SARS-CoV-2 genome and predictions of the human interactome. Nucleic Acids Res., 2020, 48(20), 11270-11283.
[http://dx.doi.org/10.1093/nar/gkaa864] [PMID: 33068416]
[3]
Huang, Y.; Yang, C.; Xu, X.; Xü, W.; Liu, S. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin., 2020, 41(9), 1141-1149.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[4]
Zhang, G.; Cong, Y.; Liu, F.L. A nanomaterial targeting the spike protein captures SARS-CoV-2 variants and promotes viral elimination. Nat. Nanotechnol., 2022, 17(9), 993-1003.
[http://dx.doi.org/10.1038/s41565-022-01177-2] [PMID: 35995853]
[5]
Pandey, A.K.; Verma, S. In silico structural inhibition of ACE-2 binding site of SARS-CoV-2 and SARS-CoV-2 omicron spike protein by lectin antiviral dyad system to treat COVID-19. Drug Dev. Ind. Pharm., 2022, 48(10), 539-551.
[http://dx.doi.org/10.1080/03639045.2022.2137196] [PMID: 36250723]
[6]
Sang, P.; Tian, S.H.; Meng, Z.H.; Yang, L.Q. Anti-HIV drug repurposing against SARS-CoV-2. RSC Advances, 2020, 10(27), 15775-15783.
[http://dx.doi.org/10.1039/D0RA01899F] [PMID: 35493667]
[7]
Ameen, F.; Mamidala, E.; Davella, R.; Vallala, S. Rilpivirine inhibits SARS-CoV-2 protein targets: A potential multi-target drug. J. Infect. Public Health, 2021, 14(10), 1454-1460.
[http://dx.doi.org/10.1016/j.jiph.2021.07.012] [PMID: 34326009]
[8]
Kalantari, S.; Fard, S.R.; Maleki, D. Comparing the effectiveness of atazanavir/ritonavir/dolutegravir/hydroxychloroquine and lopinavir/ritonavir/hydroxychloroquine treatment regimens in COVID‐19 patients. J. Med. Virol., 2021, 93(12), 6557-6565.
[http://dx.doi.org/10.1002/jmv.27195] [PMID: 34255369]
[9]
Hashemian, S.M.R.; Sheida, A.; Taghizadieh, M. Paxlovid (Nirmatrelvir/Ritonavir): A new approach to COVID-19 therapy? Biomed. Pharmacother., 2023, 162, 114367.
[http://dx.doi.org/10.1016/j.biopha.2023.114367]
[10]
Fu, L.; Shao, S.; Feng, Y. Mechanism of microbial metabolite leupeptin in the treatment of COVID-19 by traditional Chinese medicine herbs. MBio, 2021, 12(5), e02220-21.
[http://dx.doi.org/10.1128/mBio.02220-21] [PMID: 34579576]
[11]
Ghildiyal, R.; Prakash, V.; Chaudhary, V.K.; Gupta, V.; Gabrani, R. Phytochemicals as antiviral agents: Recent updates. Plant-derived Bioactives, 2020, 279-295.
[http://dx.doi.org/10.1007/978-981-15-1761-7_12]
[12]
Olukitibi, T.A.; Ao, Z.; Warner, B.; Unat, R.; Kobasa, D.; Yao, X. Significance of conserved regions in coronavirus spike protein for developing a novel vaccine against SARS-CoV-2 infection. Vaccines, 2023, 11(3), 545.
[http://dx.doi.org/10.3390/vaccines11030545] [PMID: 36992129]
[13]
Jawhari, F.Z.; El Moussaoui, A.; Bourhia, M. Anacyclus pyrethrum (L): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties. Molecules, 2020, 25(22), 5469.
[http://dx.doi.org/10.3390/molecules25225469] [PMID: 33238392]
[14]
Annalakshmi, R.; Uma, R.; Chandran, G.S. A treasure of medicinal herb - Anacyclus Pyrethrum a review. Indian J Drugs Dis, 2012, 1, 56-67.
[15]
Boonen, J.; Bronselaer, A.; Nielandt, J.; Veryser, L.; De Tré, G.; De Spiegeleer, B. Alkamid database: Chemistry, occurrence and functionality of plant N-alkylamides. J. Ethnopharmacol., 2012, 142(3), 563-590.
[http://dx.doi.org/10.1016/j.jep.2012.05.038] [PMID: 22659196]
[16]
Elufioye, T.O.; Habtemariam, S.; Adejare, A. Chemistry and pharmacology of alkylamides from natural origin. Rev. Bras. Farmacogn., 2020, 30(5), 622-640.
[http://dx.doi.org/10.1007/s43450-020-00095-5] [PMID: 33071385]
[17]
Rajendran, R.; Narashimman, B.S.; Trivedi, V.; Chaturvedi, R. Isolation and quantification of antimalarial N -alkylamides from flower-head derived in vitro callus cultures of Spilanthes paniculata. J. Biosci. Bioeng., 2017, 124(1), 99-107.
[http://dx.doi.org/10.1016/j.jbiosc.2017.02.001] [PMID: 28373031]
[18]
Adeleye, A.T.; Louis, H.; Akakuru, O.U.; Joseph, I.; Enudi, O.C.; Michael, D.P. A review on the conversion of levulinic acid and its esters to various useful chemicals. AIMS Energy, 2019, 7, 165-185.
[http://dx.doi.org/10.3934/energy.2019.2.165]
[19]
Aggarwal, N.; Mishra, P. Synthesis and evaluation of 4-substituted semicarbazones of levulinic acid for anticonvulsant activity. J. Zhejiang Univ. Sci., 2005, 6B(7), 617-621.
[http://dx.doi.org/10.1631/jzus.2005.B0617] [PMID: 15973761]
[20]
Licursi, D.; Antonetti, C.; Mattonai, M. Multi-valorisation of giant reed (Arundo Donax L.) to give levulinic acid and valuable phenolic antioxidants. Ind. Crops Prod., 2018, 112, 6-17.
[http://dx.doi.org/10.1016/j.indcrop.2017.11.007]
[21]
Rackemann, D.W.; Doherty, W.O.S. The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod. Biorefin., 2011, 5(2), 198-214.
[http://dx.doi.org/10.1002/bbb.267]
[22]
Katariya, D.; Ashid, M.; Sharma, B.K.; Joshi, A. Synthesis, characterization and biological activity of some indole substituted propanoic acid. J Chem Chem Sci, 2019, 9(7), 206-213.
[http://dx.doi.org/10.29055/jccs/714]
[23]
Mollazadeh, H.; Hosseinzadeh, H. Cinnamon effects on metabolic syndrome: A review based on its mechanisms. Iran. J. Basic Med. Sci., 2016, 19(12), 1258-1270.
[http://dx.doi.org/10.22038/ijbms.2016.7906] [PMID: 28096957]
[24]
Rao, P.V.; Gan, S.H. Cinnamon: A multifaceted medicinal plant. In: In: Evidence-based Complementary and Alternative Medicine; , 2014.
[http://dx.doi.org/10.1155/2014/642942]
[25]
Sahib, A. Anti-diabetic and antioxidant effect of cinnamon in poorly controlled type-2 diabetic Iraqi patients: A randomized, placebo-controlled clinical trial. J. Intercult. Ethnopharmacol., 2016, 5(2), 108-113.
[http://dx.doi.org/10.5455/jice.20160217044511] [PMID: 27104030]
[26]
Ee, G.C.L.; Lim, C.M.; Rahmani, M.; Shaari, K.; Bong, C.F.J. Pellitorine, a potential anti-cancer lead compound against HL6 and MCT-7 cell lines and microbial transformation of piperine from Piper Nigrum. Molecules, 2010, 15(4), 2398-2404.
[http://dx.doi.org/10.3390/molecules15042398] [PMID: 20428051]
[27]
Ku, S.K.; Lee, I.C.; Kim, J.A.; Bae, J.S. Antithrombotic activities of pellitorine in vitro and in vivo. Fitoterapia, 2013, 91, 1-8.
[http://dx.doi.org/10.1016/j.fitote.2013.08.004] [PMID: 23973654]
[28]
Lee, W.; Ku, S.K.; Min, B.W. Vascular barrier protective effects of pellitorine in LPS-induced inflammation in vitro and in vivo. Fitoterapia, 2014, 92, 177-187.
[http://dx.doi.org/10.1016/j.fitote.2013.11.006] [PMID: 24262867]
[29]
Haddou, TB; Malfacini, D; Calo, G Exploring pharmacological activities and signaling of morphinans substituted in position 6 as potent agonists interacting with the μ opioid receptor. Mol Pain , 2014, 10, 1744-8069-10-48.
[http://dx.doi.org/10.1186/1744-8069-10-48] [PMID: 25059282]
[30]
Eadie, M.J. Could valerian have been the first anticonvulsant? Epilepsia, 2004, 45(11), 1338-1343.
[http://dx.doi.org/10.1111/j.0013-9580.2004.27904.x] [PMID: 15509234]
[31]
Verpoorte, R. Pharmacognosy in the new millennium: Leadfinding and biotechnology. J. Pharm. Pharmacol., 2010, 52(3), 253-262.
[http://dx.doi.org/10.1211/0022357001773931] [PMID: 10757412]
[32]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-63.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[33]
Hudzik, B.; Nowak, J.; Zubelewicz-Szkodzinska, B. Consideration of immunomodulatory actions of morphine in COVID-19 - Short report. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(24), 13062-13064.
[http://dx.doi.org/10.26355/eurrev_202012_24213] [PMID: 33378059]
[34]
Pushkaran, A.C.; Nath, E.N.P.; Melge, A.R.; Puthiyedath, R.; Mohan, C.G. A phytochemical-based medication search for the SARS-CoV-2 infection by molecular docking models towards spike glycoproteins and main proteases. RSC Advances, 2021, 11(20), 12003-12014.
[http://dx.doi.org/10.1039/D0RA10458B] [PMID: 35423778]
[35]
Xing, J.; Li, R.; Li, N. Anti-inflammatory effect of procyanidin B1 on LPS-treated THP1 cells via interaction with the TLR4–MD-2 heterodimer and p38 MAPK and NF-κB signaling. Mol. Cell. Biochem., 2015, 407(1-2), 89-95.
[http://dx.doi.org/10.1007/s11010-015-2457-4] [PMID: 26037075]
[36]
Zhuang, M.; Jiang, H.; Suzuki, Y. Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection. Antiviral Res., 2009, 82(1), 73-81.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.001] [PMID: 19428598]
[37]
Li, S.; Kodama, E.N.; Inoue, Y. Procyanidin B1 purified from Cinnamomi cortex suppresses hepatitis C virus replication. Antivir. Chem. Chemother., 2010, 20(6), 239-248.
[http://dx.doi.org/10.3851/IMP1597] [PMID: 20710064]
[38]
Basu, A.; Sarkar, A.; Maulik, U. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci. Rep., 2020, 10(1), 17699.
[http://dx.doi.org/10.1038/s41598-020-74715-4] [PMID: 33077836]
[39]
Zargar, B.A.; Masoodi, M.H.; Ahmed, B.; Ganie, S.A. Phytoconstituents and therapeutic uses of Rheum emodi wall. ex Meissn. Food Chem., 2011, 128(3), 585-589.
[http://dx.doi.org/10.1016/j.foodchem.2011.03.083]
[40]
Li, Q.; Gao, J.; Pang, X.; Chen, A.; Wang, Y. Molecular mechanisms of action of emodin: As an anti-cardiovascular disease drug. Front. Pharmacol., 2020, 11, 559607.
[http://dx.doi.org/10.3389/fphar.2020.559607] [PMID: 32973538]
[41]
Chen, X.; Ren, S.; Zhu, G.; Wang, Z.; Wen, X. Emodin suppresses cadmium-induced osteoporosis by inhibiting osteoclast formation. Environ. Toxicol. Pharmacol., 2017, 54, 162-168.
[http://dx.doi.org/10.1016/j.etap.2017.07.007] [PMID: 28738286]
[42]
Li, S.W.; Yang, T.C.; Lai, C.C. Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation. Eur. J. Pharmacol., 2014, 738, 125-132.
[http://dx.doi.org/10.1016/j.ejphar.2014.05.028] [PMID: 24877694]
[43]
Liu, Z.; Ma, N.; Zhong, Y.; Yang, Z. Antiviral effect of emodin from Rheum palmatum against coxsakievirus B5 and human respiratory syncytial virus in vitro. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2015, 35(6), 916-922.
[http://dx.doi.org/10.1007/s11596-015-1528-9] [PMID: 26670446]
[44]
Tallei, T.E.; Tumilaar, S.G.; Niode, N.J. Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: A molecular docking study. Scientifica, 2020, 2020, 1-18.
[http://dx.doi.org/10.1155/2020/6307457] [PMID: 33425427]
[45]
Zhang, M.; Zhao, R.; Wang, D. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother. Res., 2021, 35(2), 711-742.
[http://dx.doi.org/10.1002/ptr.6858] [PMID: 32954562]
[46]
Ficker, C.; Smith, M.L.; Akpagana, K. Bioassay‐guided isolation and identification of antifungal compounds from ginger. Phytother. Res., 2003, 17(8), 897-902.
[http://dx.doi.org/10.1002/ptr.1335] [PMID: 13680820]
[47]
Tjendraputra, E.; Tran, V.H.; Liu-Brennan, D.; Roufogalis, B.D.; Duke, C.C. Effect of ginger constituents and synthetic analogues on cyclooxygenase-2 enzyme in intact cells. Bioorg. Chem., 2001, 29(3), 156-163.
[http://dx.doi.org/10.1006/bioo.2001.1208] [PMID: 11437391]
[48]
Wei, Q.Y.; Ma, J.P.; Cai, Y.J.; Yang, L.; Liu, Z.L. Cytotoxic and apoptotic activities of diarylheptanoids and gingerol-related compounds from the rhizome of Chinese ginger. J. Ethnopharmacol., 2005, 102(2), 177-184.
[http://dx.doi.org/10.1016/j.jep.2005.05.043] [PMID: 16024193]
[49]
Bischoff-Kont, I.; Fürst, R. Benefits of ginger and its constituent 6-shogaol in inhibiting inflammatory processes. Pharmaceuticals, 2021, 14(6), 571.
[http://dx.doi.org/10.3390/ph14060571] [PMID: 34203813]
[50]
Kim, H.R.; Eom, Y.B. Antifungal and anti‐biofilm effects of 6‐shogaol against Candida auris. J. Appl. Microbiol., 2021, 130(4), 1142-1153.
[http://dx.doi.org/10.1111/jam.14870] [PMID: 32981148]
[51]
Tegen, D.; Dessie, K.; Damtie, D. Candidate anti-COVID-19 medicinal plants from ethiopia: A review of plants traditionally used to treat viral diseases. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-20.
[http://dx.doi.org/10.1155/2021/6622410] [PMID: 34221083]
[52]
Singh, D.K.; Jaiswal, D.P.; Kumar, D.P.; Singh, D.V.K. <b>Biological effects of myristica fragrans</b>. Annu Rev Biomed Sci, 2009, 11(0), 21-29.
[http://dx.doi.org/10.5016/1806-8774.2009v11p21]
[53]
Lee, J.Y.; Park, W. Anti-inflammatory effect of myristicin on RAW 264.7 macrophages stimulated with polyinosinic-polycytidylic acid. Molecules, 2011, 16(8), 7132-7142.
[http://dx.doi.org/10.3390/molecules16087132] [PMID: 21991618]
[54]
Bao, H.; Muge, Q. Anticancer effect of myristicin on hepatic carcinoma and related molecular mechanism. Pharm. Biol., 2021, 59(1), 1124-1130.
[http://dx.doi.org/10.1080/13880209.2021.1961825] [PMID: 34410900]
[55]
Sailah, I.; Tumilaar, S.G.; Lombogia, L.T.; Celik, I.; Tallei, T.E. Molecular docking and dynamics simulations study of selected phytoconstituents of “pangi” (Pangium edule reinw) leaf as anti-SARS-COV-2. Philipp. J. Sci., 2021, 150(5), 925-937.
[http://dx.doi.org/10.56899/150.05.06]
[56]
Babatunde, O. GC-MS analysis of leaf, stem-bark and root extracts of Alstonia boonei. Afr. J. Pharm. Pharmacol., 2017, 11(46), 577-581.
[http://dx.doi.org/10.5897/AJPP2017.4864]
[57]
Imam, A.; Ezema, M.; Muhammad, I. In vivo antimalarial activity of solvents extracts of Alstonia boonei stem bark and partial characterization of most active extract(s). Annu. Res. Rev. Biol., 2017, 17(5), 1-11.
[http://dx.doi.org/10.9734/ARRB/2017/36235]
[58]
Sefren, G.T.; Fatimawali, F.; Nurdjannah, J.N. The potential of leaf extract of Pangium edule reinw as HIV-1 protease inhibitor: A computational biology approach. J. Appl. Pharm. Sci., 2020, 11, 101-110.
[http://dx.doi.org/10.7324/JAPS.2021.110112]
[59]
El-Saber Batiha, G.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum l. (myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules, 2020, 10(2), 202.
[http://dx.doi.org/10.3390/biom10020202] [PMID: 32019140]
[60]
Marchese, A.; Barbieri, R.; Coppo, E. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol., 2017, 43(6), 668-689.
[http://dx.doi.org/10.1080/1040841X.2017.1295225] [PMID: 28346030]
[61]
Pramod, K; Ansari, SH; Ali, J Eugenol: A natural compound with versatile pharmacological actions. Nat Prod Commun, 2010, 5(12), 1934578X1000501.
[http://dx.doi.org/10.1177/1934578X1000501236] [PMID: 21299140]
[62]
Ulanowska, M.; Olas, B. Biological properties and prospects for the application of eugenol—a review. Int. J. Mol. Sci., 2021, 22(7), 3671.
[http://dx.doi.org/10.3390/ijms22073671] [PMID: 33916044]
[63]
Pichika, M.R.; Mak, K-K.; Kamal, M.B. A comprehensive review on eugenol’s antimicrobial properties and industry applications: A transformation from ethnomedicine to industry. Pharmacogn. Rev., 2019, 13(25), 1-9.
[http://dx.doi.org/10.4103/phrev.phrev_46_18]
[64]
van de Sand, L.; Bormann, M.; Alt, M. Glycyrrhizin effectively inhibits sars-cov-2 replication by inhibiting the viral main protease. Viruses, 2021, 13(4), 609.
[http://dx.doi.org/10.3390/v13040609] [PMID: 33918301]
[65]
Bailly, C.; Vergoten, G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol. Ther., 2020, 214, 107618.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107618] [PMID: 32592716]
[66]
Cinatl, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 2003, 361(9374), 2045-2046.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[67]
Mathew, S.M.; Benslimane, F.; Althani, A.A.; Yassine, H.M. Identification of potential natural inhibitors of the receptor-binding domain of the SARS-CoV-2 spike protein using a computational docking approach. Qatar Med. J., 2021, 2021(1), 12.
[http://dx.doi.org/10.5339/qmj.2021.12] [PMID: 34604010]
[68]
Bartosikova, L.; Necas, J. Epigallocatechin gallate: A review. Vet Med, 2018, 63(10), 443-467.
[http://dx.doi.org/10.17221/31/2018-VETMED]
[69]
Allam, L.; Ghrifi, F.; Mohammed, H. Targeting the grp78-dependant sars-cov-2 cell entry by peptides and small molecules. Bioinform. Biol. Insights, 2020, 14.
[http://dx.doi.org/10.1177/1177932220965505] [PMID: 33149560]
[70]
Venusova, E.; Kolesarova, A.; Horky, P.; Slama, P. Physiological and immune functions of punicalagin. Nutrients, 2021, 13(7), 2150.
[http://dx.doi.org/10.3390/nu13072150] [PMID: 34201484]
[71]
Suručić, R.; Tubić, B.; Stojiljković, M.P. Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization. Mol. Cell. Biochem., 2021, 476(2), 1179-1193.
[http://dx.doi.org/10.1007/s11010-020-03981-7] [PMID: 33200379]
[72]
Cao, Y.; Chen, J.; Ren, G.; Zhang, Y.; Tan, X.; Yang, L. Punicalagin prevents inflammation in lps-induced raw264.7 macrophages by inhibiting foxo3a/autophagy signaling pathway. Nutrients, 2019, 11(11), 2794.
[http://dx.doi.org/10.3390/nu11112794] [PMID: 31731808]
[73]
BenSaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement. Altern. Med., 2017, 17(1), 47.
[http://dx.doi.org/10.1186/s12906-017-1555-0] [PMID: 28088220]
[74]
Maiti, S.; Banerjee, A. Epigallocatechin gallate and theaflavin gallate interaction in SARS‐CoV ‐2 spike‐protein central channel with reference to the hydroxychloroquine interaction: Bioinformatics and molecular docking study. Drug Dev. Res., 2021, 82(1), 86-96.
[http://dx.doi.org/10.1002/ddr.21730] [PMID: 32770567]
[75]
Sameri, S.; Mohammadi, C.; Mehrabani, M.; Najafi, R. Targeting the hallmarks of cancer: The effects of silibinin on proliferation, cell death, angiogenesis, and migration in colorectal cancer. BMC Complementary Medicine and Therapies, 2021, 21(1), 160.
[http://dx.doi.org/10.1186/s12906-021-03330-1] [PMID: 34059044]
[76]
Speciale, A.; Muscarà, C.; Molonia, M.S.; Cimino, F.; Saija, A.; Giofrè, S.V. Silibinin as potential tool against SARS‐Cov ‐2: In silico spike receptor‐binding domain and main protease molecular docking analysis, and in vitro endothelial protective effects. Phytother. Res., 2021, 35(8), 4616-4625.
[http://dx.doi.org/10.1002/ptr.7107] [PMID: 33822421]
[77]
Singh, S.; Semwal, B.C.; Sharma, H.; Sharma, D. Impact of phytomolecules with nanotechnology on the treatment of inflammation. Curr. Bioact. Compd., 2023, 19(10), e070823219471.
[http://dx.doi.org/10.2174/1573407219666230807150030]