Pharmaceutical Nanotechnology

Author(s): Prakash N. Kendre*, Dhiraj R. Kayande, Ajinkya K. Pote, Sanagmeshwar B. Kanthale, Bhupendra G. Prajapati, Yuvraj Kendre and Shirish Jain

DOI: 10.2174/0122117385268268231204061938

DownloadDownload PDF Flyer Cite As
Emerging Lipid-based Carriers for Systematic Utilization in the Pharmaceutical and Biomedical Sciences: A Review

Page: [2 - 21] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Emerging lipid-based carriers are revolutionizing drug delivery in the pharmaceutical and biomedical sciences. These innovative carriers harness the unique properties of lipids to improve the solubility, stability, and targeted delivery of therapeutic agents, ushering in a new era of precision medicine. Lipid- based carriers, such as liposomes, lipid nanoparticles, and solid lipid nanoparticles, offer several advantages. They can encapsulate both hydrophilic and hydrophobic drugs, enabling the delivery of a wide range of compounds. Additionally, lipids are biocompatible and biodegradable, minimizing the risk of toxicity. Their ability to mimic cell membranes allows for enhanced cellular uptake and controlled release, optimizing drug efficacy while minimizing side effects. Furthermore, lipid-based carriers are ideal for delivering drugs to specific sites within the body. By modifying the lipid composition, surface charge, and size, researchers can tailor these carriers to target tumours, inflamed tissues, or specific cells, improving therapeutic outcomes and reducing systemic toxicity. In summary, emerging lipid-based carriers are poised to transform pharmaceutical and biomedical sciences by addressing critical challenges in drug delivery. These carriers enhance drug stability, bioavailability, and targeted delivery, offering the potential to revolutionize the treatment of various diseases and improve patient outcomes. As research in this field continues to advance, we can expect even more sophisticated lipid-based carrier systems to emerge, further expanding the possibilities for precision medicine. This review focuses on the contribution of lipid carriers in the pharmaceutical and biomedical sciences.

Keywords: Solid lipid nanoparticles, lipid-based carriers, nano-lipid carriers, biomedical sciences, pharmaceutical sciences, drug stability.

Graphical Abstract

[1]
Roger E, Lagarce F, Benoit JP. Development and characterization of a novel lipid nanocapsule formulation of Sn38 for oral administration. Eur J Pharm Biopharm 2011; 79(1): 181-8.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.021] [PMID: 21303693]
[2]
Prabhu S, Ortega M, Ma C. Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam. Int J Pharm 2005; 301(1-2): 209-16.
[http://dx.doi.org/10.1016/j.ijpharm.2005.05.032] [PMID: 16046087]
[3]
Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995; 12(3): 413-20.
[http://dx.doi.org/10.1023/A:1016212804288] [PMID: 7617530]
[4]
Porter CJH, Charman WN. In vitro assessment of oral lipid based formulations. Adv Drug Deliv Rev 2001; 50(Suppl. 1): S127-47.
[http://dx.doi.org/10.1016/S0169-409X(01)00182-X] [PMID: 11576699]
[5]
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002; 54(5): 631-51.
[http://dx.doi.org/10.1016/S0169-409X(02)00044-3] [PMID: 12204596]
[6]
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3): 329-47.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[7]
Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002; 54(Suppl. 1): S131-55.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[8]
Hauss DJ. Oral lipid-based formulations : Enhancing the bioavailability of poorly water-soluable drugs. CRC Press 2007.
[http://dx.doi.org/10.3109/9781420017267]
[9]
Chakraborty S, Shukla D, Mishra B, Singh S. Lipid - An emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm 2009; 73(1): 1-15.
[http://dx.doi.org/10.1016/j.ejpb.2009.06.001] [PMID: 19505572]
[10]
Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur J Pharm Sci 2000; 11(Suppl. 2): S93-8.
[http://dx.doi.org/10.1016/S0928-0987(00)00167-6] [PMID: 11033431]
[11]
Porter CJH, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev 2008; 60(6): 673-91.
[http://dx.doi.org/10.1016/j.addr.2007.10.014] [PMID: 18155801]
[12]
Strickley RG. Currently marketed oral lipid-based dosage forms: Drug products and excipients. Oral Lipid-Based Formulat 2007; 23-54.
[http://dx.doi.org/10.3109/9781420017267-4]
[13]
Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int J Pharm 2011; 420(1): 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.032] [PMID: 21884771]
[14]
Balakrishnan P, Lee BJ, Oh DH, et al. Enhanced oral bioavailability of dexibuprofen by a novel solid Self-emulsifying drug delivery system (SEDDS). Eur J Pharm Biopharm 2009; 72(3): 539-45.
[http://dx.doi.org/10.1016/j.ejpb.2009.03.001] [PMID: 19298857]
[15]
Tan A, Rao S, Prestidge CA. Transforming lipid-based oral drug delivery systems into solid dosage forms: An overview of solid carriers, physicochemical properties, and biopharmaceutical performance. Pharm Res 2013; 30(12): 2993-3017.
[http://dx.doi.org/10.1007/s11095-013-1107-3] [PMID: 23775443]
[16]
Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Adv Drug Deliv Rev 2008; 60(6): 625-37.
[http://dx.doi.org/10.1016/j.addr.2007.10.010] [PMID: 18068260]
[17]
Stuchlík M, Žák S. Lipid-based vehicle for oral drug delivery. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2001; 145(2): 17-26.
[http://dx.doi.org/10.5507/bp.2001.008] [PMID: 12426768]
[18]
Rowe RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical excipients. 2006; p. 918.
[19]
Westesen K, Siekmann B, Koch MHJ. Characterization of submicron-sized drug carrier systems based on solid lipids by synchrotron radiation x-ray diffraction. Prog Colloid Polym Sci 1993; 93: 356.
[http://dx.doi.org/10.1007/BFB0118612/COVER]
[20]
Shrestha H, Bala R, Arora S. Lipid-based drug delivery systems. J Pharm 2014; 2014: 1-10.
[http://dx.doi.org/10.1155/2014/801820] [PMID: 26556202]
[21]
Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems - An overview. Acta Pharm Sin B 2013; 3(6): 361-72.
[http://dx.doi.org/10.1016/j.apsb.2013.10.001]
[22]
Zubair A-HA, Sheshe SM, Bashir MR, Sade SM. Lipid based drug delivery system: A review. J Appl Life Sci Int 2021; 33-46.
[http://dx.doi.org/10.9734/jalsi/2021/v24i330228]
[23]
Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin Ther Pat 2020; 30(3): 179-94.
[http://dx.doi.org/10.1080/13543776.2020.1720649] [PMID: 32003260]
[24]
Attama AA, Nkemnele MO. In vitro evaluation of drug release from self micro-emulsifying drug delivery systems using a biodegradable homolipid from Capra hircus. Int J Pharm 2005; 304(1-2): 4-10.
[http://dx.doi.org/10.1016/j.ijpharm.2005.08.018] [PMID: 16198521]
[25]
Schwarz C, Mehnert W, Lucks JS, Müller RH. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release 1994; 30(1): 83-96.
[http://dx.doi.org/10.1016/0168-3659(94)90047-7]
[26]
Lippacher A, Müller RH, Mäder K. Semisolid SLN™ dispersions for topical application: Influence of formulation and production parameters on viscoelastic properties. Eur J Pharm Biopharm 2002; 53(2): 155-60.
[http://dx.doi.org/10.1016/S0939-6411(01)00233-8] [PMID: 11879997]
[27]
Salvi VR, Pawar P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J Drug Deliv Sci Technol 2019; 51: 255-67.
[http://dx.doi.org/10.1016/j.jddst.2019.02.017]
[28]
Olbrich C, Gessner A, Kayser O, Müller RH. Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. J Drug Target 2002; 10(5): 387-96.
[http://dx.doi.org/10.1080/1061186021000001832] [PMID: 12442809]
[29]
Onuigbo EB, Okore VC, Ngene AA, Esimone CO, Attama AA. Preliminary studies of a stearylamine-based cationic liposome. J Pharm Res 2011; 10: 25-9.
[30]
Onuigbo EB, Okore VC, Ofokansi KC, et al. Preliminary evaluation of the immunoenhancement potential of Newcastle disease vaccine formulated as a cationic liposome. Avian Pathol 2012; 41(4): 355-60.
[http://dx.doi.org/10.1080/03079457.2012.691154] [PMID: 22834549]
[31]
Guo C, Wang J, Cao F, Lee RJ, Zhai G. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today 2010; 15(23-24): 1032-40.
[http://dx.doi.org/10.1016/j.drudis.2010.09.006] [PMID: 20934534]
[32]
Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 1998; 172(1-2): 33-70.
[http://dx.doi.org/10.1016/S0378-5173(98)00169-0]
[33]
Conacher M, Alexander J, Brewer JM. Niosomes as immunological adjuvants. 2000; 182-205.
[34]
Lakshmi PK, Devi G, Bhaskaran S, Sacchidanand S. Niosomal methotrexate gel in the treatment of localized psoriasis: Phase I and phase II studies. Indian J Dermatol Venereol Leprol 2007; 73(3): 157-61.
[http://dx.doi.org/10.4103/0378-6323.32709] [PMID: 17558046]
[35]
Cevc G, Gebauer D, Stieber J, Schätzlein A, Blume G. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim Biophys Acta Biomembr 1998; 1368(2): 201-15.
[http://dx.doi.org/10.1016/S0005-2736(97)00177-6] [PMID: 9459598]
[36]
Cevc G, Schätzlein A, Richardsen H. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim Biophys Acta Biomembr 2002; 1564(1): 21-30.
[http://dx.doi.org/10.1016/S0005-2736(02)00401-7] [PMID: 12100992]
[37]
Lovelyn C, Attama AA, Lovelyn C, Attama AA. Current state of nanoemulsions in drug delivery. J Biomater Nanobiotechnol 2011; 2(5): 626-39.
[http://dx.doi.org/10.4236/jbnb.2011.225075]
[38]
Kotta S, Khan AW, Pramod K, Ansari SH, Sharma RK, Ali J. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv 2012; 9(5): 585-98.
[http://dx.doi.org/10.1517/17425247.2012.668523] [PMID: 22512597]
[39]
Cannon JB, Long MA. Emulsions, microemulsions, and lipid-based drug delivery systems for drug solubilization and delivery, Part II: Oral applications. In: Boca Raton, FL: CRC Press 2008.
[40]
Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: Physical and biopharmaceutical aspects. Pharm Res 1995; 12(11): 1561-72.
[http://dx.doi.org/10.1023/A:1016268311867] [PMID: 8592652]
[41]
Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res 2004; 21(2): 201-30.
[http://dx.doi.org/10.1023/B:PHAM.0000016235.32639.23] [PMID: 15032302]
[42]
Cannon B. Chemical and physical stability considerations for lipid-based drug formulations. Am Pharm Rev 2007; 10: 132-8.
[43]
Christie WW. High-performance liquid chromatography and lipids: A practical guide. Elsevier 1987.
[44]
Rehage H. M. J. Schick (Ed.): Nonionic Surfactants: Physical Chemistry, Vol. 23 aus: Surfactant Science Series, Marcel Dekker Inc., New York 1987. 1160 Seiten, Preis: $ 195.00 (U.S. und Canada), $ 234.00 (alle anderen Länder). Ber Bunsenges Phys Chem 1988; 92(1): 103A-4.
[http://dx.doi.org/10.1002/bbpc.198800024]
[45]
Pouton CW. Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev 1997; 25(1): 47-58.
[http://dx.doi.org/10.1016/S0169-409X(96)00490-5]
[46]
Cao Y, Marra M, Anderson BD. Predictive relationships for the effects of triglyceride ester concentration and water uptake on solubility and partitioning of small molecules into lipid vehicles. J Pharm Sci 2004; 93(11): 2768-79.
[http://dx.doi.org/10.1002/jps.20126] [PMID: 15389678]
[47]
Kaukonen AM, Boyd BJ, Porter CJH, Charman WN. Drug solubilization behavior during in vitro digestion of simple triglyceride lipid solution formulations. Pharm Res 2004; 21(2): 245-53.
[http://dx.doi.org/10.1023/B:PHAM.0000016282.77887.1f] [PMID: 15032305]
[48]
Collnot EM, Baldes C, Wempe MF, et al. Influence of vitamin E TPGS poly(ethylene glycol) chain length on apical efflux transporters in Caco-2 cell monolayers. J Control Release 2006; 111(1-2): 35-40.
[http://dx.doi.org/10.1016/j.jconrel.2005.11.005] [PMID: 16410030]
[49]
Li X, Yang L, Chen X, Shi S. Green synthesis of silver nanoparticles incorporated in lipid nanocarriers for improving stability and drug-loading capacity. J Control Release 2020; 324: 471-82.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.049]
[50]
Cortesi R, Esposjto E, Luca G, Nastruzzi C. Production of lipospheres as carriers for bioactive compounds. Biomaterials 2002; 23(11): 2283-94.
[http://dx.doi.org/10.1016/S0142-9612(01)00362-3] [PMID: 12013175]
[51]
Sorita GD, Santamaria-Echart A, Gozzo AM, et al. Lipid composition optimization in spray congealing technique and testing with curcumin-loaded microparticles. Adv Powder Technol 2021; 32(5): 1710-22.
[http://dx.doi.org/10.1016/j.apt.2021.03.028]
[52]
(a) Li, X., Yang, L., Chen, X., & Shi, S. (2020) Green synthesis of silver nanoparticles incorporated in lipid nanocarriers for improving stability and drug-loading capacity. Journal of Controlled Release, 324 471-82.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.049];
(b) Sanchez-Vazquez B, Lee JB, Strimaite M, et al. Solid lipid nanoparticles self-assembled from spray dried microparticles. Int J Pharm 2019; 572: 118784.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118784] [PMID: 31676339]
[53]
Venkatesan N, Yoshimitsu J, Ohashi Y, et al. Pharmacokinetic and pharmacodynamic studies following oral administration of erythropoietin mucoadhesive tablets to beagle dogs. Int J Pharm 2006; 310(1-2): 46-52.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.014] [PMID: 16439074]
[54]
Ito Y, Kusawake T, Ishida M, Tawa R, Shibata N, Takada K. Oral solid gentamicin preparation using emulsifier and adsorbent. J Control Release 2005; 105(1-2): 23-31.
[http://dx.doi.org/10.1016/j.jconrel.2005.03.017] [PMID: 15908031]
[55]
Krstic M, Djuris J, Petrovic O, Lazarevic N, Cvijic S, Ibric S. Application of the melt granulation technique in development of lipid matrix tablets with immediate release of carbamazepine. J Drug Deliv Sci Technol 2017; 39: 467-74.
[http://dx.doi.org/10.1016/j.jddst.2017.04.024]
[56]
Santo IE, Pedro AS, Fialho R, Cabral-Albuquerque E. Characteristics of lipid micro- and nanoparticles based on supercritical formation for potential pharmaceutical application. Nanoscale Res Lett 2013; 8(1): 386.
[http://dx.doi.org/10.1186/1556-276X-8-386] [PMID: 24034341]
[57]
(a) Ito Y, Kusawake T, Ishida M, Tawa R, Shibata N, Takada K. Oral solid gentamicin preparation using emulsifier and adsorbent. J Control Release 2005; 105: 23-31.
[http://dx.doi.org/10.1016/J.JCONREL.2005.03.017];
(b) Attama AA. SLN, NLC, LDC: State of the art in drug and active delivery. Recent Pat Drug Deliv Formul 2011; 5(3): 178-87.
[http://dx.doi.org/10.2174/187221111797200524] [PMID: 21834777]
[58]
Westesen K, Bunjes H, Koch MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release 1997; 48(2-3): 223-36.
[http://dx.doi.org/10.1016/S0168-3659(97)00046-1]
[59]
Wei L, Sun P, Nie S, Pan W. Preparation and evaluation of SEDDS and SMEDDS containing carvedilol. Drug Dev Ind Pharm 2005; 31(8): 785-94.
[http://dx.doi.org/10.1080/03639040500216428] [PMID: 16221613]
[60]
Edwards G, Porter CJ, Caliph SM, Charman WN. Animal models for the study of intestinal lymphatic drug transport. Adv Drug Deliv Rev 2001; 50(1-2): 45-60.
[http://dx.doi.org/10.1016/S0169-409X(01)00148-X] [PMID: 11489333]
[61]
Seeballuck F, Ashford MB, O’Driscoll CM. The effects of pluronics block copolymers and Cremophor EL on intestinal lipoprotein processing and the potential link with P-glycoprotein in Caco-2 cells. Pharm Res 2003; 20(7): 1085-92.
[http://dx.doi.org/10.1023/A:1024422625596] [PMID: 12880295]
[62]
Khattak MIK, Ahmed N, Umer MF, Riaz A, Ahmad NM, Khan GM. Chloroform-Injection (CI) and Spontaneous-Phase-Transition (SPT) are novel methods, simplifying the fabrication of liposomes with versatile solution to cholesterol content and size distribution. Pharmaceutics 2020; 12(11): 1065.
[http://dx.doi.org/10.3390/pharmaceutics12111065] [PMID: 33182248]
[63]
Roces CB, Port EC, Daskalakis NN, et al. Rapid scale-up and production of active-loaded PEGylated liposomes. Int J Pharm 2020; 586: 119566.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119566] [PMID: 32622812]
[64]
Yanar F, Mosayyebi A, Nastruzzi C, Carugo D, Zhang X. Continuous-flow production of liposomes with a millireactor under varying fluidic conditions. Pharmaceutics 2020; 12(11): 1001.
[http://dx.doi.org/10.3390/pharmaceutics12111001] [PMID: 33105650]
[65]
Ogawa K, Fuchigami Y, Hagimori M, Fumoto S, Miura Y, Kawakami S. Efficient gene transfection to the brain with ultrasound irradiation in mice using stabilized bubble lipopolyplexes prepared by the surface charge regulation method. Int J Nanomedicine 2018; 13: 2309-20.
[http://dx.doi.org/10.2147/IJN.S157375] [PMID: 29713163]
[66]
Peng JQ, Fumoto S, Suga T, et al. Targeted co-delivery of protein and drug to a tumor in vivo by sophisticated RGD-modified lipid-calcium carbonate nanoparticles. J Control Release 2019; 302: 42-53.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.021] [PMID: 30926479]
[67]
Tanaka H, Takahashi T, Konishi M, et al. Self‐degradable lipid‐like materials based on “hydrolysis accelerated by the intra‐particle enrichment of reactant (HyPER)” for messenger RNA delivery. Adv Funct Mater 2020; 30(34): 1910575.
[http://dx.doi.org/10.1002/adfm.201910575]
[68]
Garcia-Pinel B, Jabalera Y, Ortiz R, et al. Biomimetic magnetoliposomes as oxaliplatin nanocarriers: In vitro study for potential application in colon cancer. Pharmaceutics 2020; 12(6): 589.
[http://dx.doi.org/10.3390/pharmaceutics12060589] [PMID: 32599905]
[69]
Lara P, Chan AB, Cruz LJ, Quest AFG, Kogan MJ. Exploiting the natural properties of extracellular vesicles in targeted delivery towards specific cells and tissues. Pharmaceutics 2020; 12(11): 1022.
[http://dx.doi.org/10.3390/pharmaceutics12111022] [PMID: 33114492]
[70]
Ledezma-Gallegos F, Jurado R, Mir R, Medina LA, Mondragon-Fuentes L, Garcia-Lopez P. Liposomes co-encapsulating cisplatin/mifepristone improve the effect on cervical cancer: In vitro and in vivo assessment. Pharmaceutics 2020; 12(9): 897.
[http://dx.doi.org/10.3390/pharmaceutics12090897] [PMID: 32971785]
[71]
Fumoto S, Kinoshita E, Ohta K, Nakamura KI, Hirayama T, Nagasawa H, et al. A pH-adjustable tissue clearing solution that preserves lipid ultrastructures: Suitable tissue clearing method for DDS evaluation. Pharmaceutics 2020; 12: 1070.
[http://dx.doi.org/10.3390/pharmaceutics12111070]
[72]
Hua S, Cabot PJ. Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: A potential novel treatment of acute and chronic pain condition. Pain Physician 2013; 3(16): E199-216.
[http://dx.doi.org/10.36076/ppj.2013/16/E199] [PMID: 23703419]
[73]
Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface 2014; 11(101): 20140459.
[http://dx.doi.org/10.1098/rsif.2014.0459] [PMID: 25401172]
[74]
Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit Rev Ther Drug Carrier Syst 2009; 26(6): 523-80.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10] [PMID: 20402623]
[75]
Semple SC, Chonn A, Cullis PR. Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo. Adv Drug Deliv Rev 1998; 32(1-2): 3-17.
[http://dx.doi.org/10.1016/S0169-409X(97)00128-2] [PMID: 10837632]
[76]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[77]
Torchilin VP. Immunoliposomes and PEGylated immunoliposomes: Possible use for targeted delivery of imaging agents. ImmunoMethods 1994; 4(3): 244-58.
[http://dx.doi.org/10.1006/immu.1994.1027] [PMID: 7820455]
[78]
Vingerhoeds MH, Storm G, Crommelin DJA. Immunoliposomes in vivo. ImmunoMethods 1994; 4(3): 259-72.
[http://dx.doi.org/10.1006/immu.1994.1028] [PMID: 7820456]
[79]
Forssen E, Willis M. Ligand-targeted liposomes. Adv Drug Deliv Rev 1998; 29(3): 249-71.
[http://dx.doi.org/10.1016/S0169-409X(97)00083-5] [PMID: 10837594]
[80]
Ferrari M. Nanovector therapeutics. Curr Opin Chem Biol 2005; 9(4): 343-6.
[http://dx.doi.org/10.1016/j.cbpa.2005.06.001] [PMID: 15967706]
[81]
Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine--challenge and perspectives. Angew Chem Int Ed 2009; 48(5): 872-97.
[http://dx.doi.org/10.1002/anie.200802585] [PMID: 19142939]
[82]
Gabizon A, Horowitz AT, Goren D, Tzemach D, Shmeeda H, Zalipsky S. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res 2003; 9(17): 6551-9.
[PMID: 14695160]
[83]
Kirpotin DB, Drummond DC, Shao Y, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 2006; 66(13): 6732-40.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4199] [PMID: 16818648]
[84]
Park JW, Hong K, Kirpotin DB, et al. Anti-HER2 immunoliposomes: Enhanced efficacy attributable to targeted delivery. Clin Cancer Res 2002; 8(4): 1172-81.
[PMID: 11948130]
[85]
Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. AAPS J 2012; 14(2): 303-15.
[http://dx.doi.org/10.1208/s12248-012-9330-0] [PMID: 22415612]
[86]
Kraft JC, Freeling JP, Wang Z, Ho RJY. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014; 103(1): 29-52.
[http://dx.doi.org/10.1002/jps.23773] [PMID: 24338748]
[87]
Hua S, Marks E, Schneider JJ, Keely S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine 2015; 11(5): 1117-32.
[http://dx.doi.org/10.1016/j.nano.2015.02.018] [PMID: 25784453]
[88]
Coco R, Plapied L, Pourcelle V, et al. Drug delivery to inflamed colon by nanoparticles: Comparison of different strategies. Int J Pharm 2013; 440(1): 3-12.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.017] [PMID: 22820482]
[89]
Holmén Larsson JM, Karlsson H, Sjövall H, Hansson GC. A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology 2009; 19(7): 756-66.
[http://dx.doi.org/10.1093/glycob/cwp048] [PMID: 19321523]
[90]
Antoni L, Nuding S, Wehkamp J, Stange EF. Intestinal barrier in inflammatory bowel disease. World J Gastroenterol 2014; 20(5): 1165-79.
[http://dx.doi.org/10.3748/wjg.v20.i5.1165] [PMID: 24574793]
[91]
Carlson M, Raab Y, Peterson C, Hällgren R, Venge P. Increased intraluminal release of eosinophil granule proteins EPO, ECP, EPX, and cytokines in ulcerative colitis and proctitis in segmental perfusion. Am J Gastroenterol 1999; 94(7): 1876-83.
[http://dx.doi.org/10.1111/j.1572-0241.1999.01223.x] [PMID: 10406252]
[92]
Peterson CGB, Eklund E, Taha Y, Raab Y, Carlson M. A new method for the quantification of neutrophil and eosinophil cationic proteins in feces: Establishment of normal levels and clinical application in patients with inflammatory bowel disease. Am J Gastroenterol 2002; 97(7): 1755-62.
[http://dx.doi.org/10.1111/j.1572-0241.2002.05837.x] [PMID: 12135031]
[93]
Felgner PL, Gadek TR, Holm M, et al. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci 1987; 84(21): 7413-7.
[http://dx.doi.org/10.1073/pnas.84.21.7413] [PMID: 2823261]
[94]
Campbell RB, Fukumura D, Brown EB, et al. Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res 2002; 62(23): 6831-6.
[PMID: 12460895]
[95]
Ran S, Downes A, Thorpe PE. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 2002; 62(21): 6132-40.
[PMID: 12414638]
[96]
Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 2006; 114(1): 100-9.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.014] [PMID: 16831482]
[97]
Shrestha H, Bala R, Arora S. Lipid-Based Drug Delivery Systems. J Pharm (Cairo) 2014; 2014: 1-10.
[http://dx.doi.org/10.1155/2014/801820] [PMID: 26556202]
[98]
Maincent P. The regulatory environment: The challenges for lipid-based formulations. Bulletin Technique Gattefosse 2007; 100: 47-9.
[99]
Chen ML. Lipid excipients and delivery systems for pharmaceutical development: A regulatory perspective. Adv Drug Deliv Rev 2008; 60(6): 768-77.
[http://dx.doi.org/10.1016/j.addr.2007.09.010] [PMID: 18077051]