Determination of Ketamine, Fluoroketamine, Norketamine, and 2-Norfluoro-ketamine in Urine using Ultra-performance Liquid Chromatography-tandem Mass Spectrometry

Page: [22 - 28] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Objective: This study aimed to establish a simple, reliable, and sensitive method for detecting ketamine, fluoroketamine, and their metabolites in urine using UPLC-MS/MS.

Methods: The chromatographic separation was performed on UPLC BEH C18 (50 mm × 2.1 mm, 1.7 μm) at a column temperature of 40°C. The mobile phase consisted of 0.1% formic acid aqueous solution and acetonitrile, with a flow rate set at 0.4 mL/min, following a specific elution procedure. A urine sample was treated with acetonitrile, and midazolam was used as an internal standard. Multiple reaction monitoring was used for quantitative analysis.

Results: Ketamine, fluoroketamine, norketamine, and 2-norfluoro-ketamine exhibited linearity in urine (r>0.99) within the concentration range of 5-2000 ng/mL. Intra-day and inter-day precisions were 9% or less and 12% or less, respectively. The accuracy ranged from 92 to 107%. Mean recoveries were above 76%. The measured matrix effect was between 85 and 104%.

Conclusion: This simple, reliable, and sensitive PLC-MS/MS method was successfully developed to determine ketamine, fluoroketamine, and their metabolite in rat urine.

Graphical Abstract

[1]
Henningfield, J.E.; Coe, M.A.; Griffiths, R.R.; Belouin, S.J.; Berger, A.; Coker, A.R.; Comer, S.D.; Heal, D.J.; Hendricks, P.S.; Nichols, C.D.; Sapienza, F.; Vocci, F.J.; Zia, F.Z. Psychedelic drug abuse potential assessment research for new drug applications and Controlled Substances Act scheduling. Neuropharmacology, 2022, 218, 109220.
[http://dx.doi.org/10.1016/j.neuropharm.2022.109220]
[2]
Johnson, K.; Pinchuk, I.; Melgar, M.I.E.; Agwogie, M.O.; Salazar Silva, F. The global movement towards a public health approach to substance use disorders. Ann. Med., 2022, 54(1), 1797-1808.
[http://dx.doi.org/10.1080/07853890.2022.2079150]
[3]
Tsujikawa, K.; Okada, Y.; Segawa, H.; Yamamuro, T.; Kuwayama, K.; Kanamori, T.; Iwata, Y.T. Evaluation of decarboxylation efficiency of Δ9-tetrahydrocannabinolic acid and cannabidiolic acid by UNODC method. Forensic Toxicol., 2023, 41(1), 105-113.
[http://dx.doi.org/10.1007/s11419-022-00645-7]
[4]
Bokor, G.; Anderson, P.D. Ketamine. J. Pharm. Pract., 2014, 27(6), 582-586.
[http://dx.doi.org/10.1177/0897190014525754]
[5]
Ceceli, A.O.; Huang, Y.; Kronberg, G.; Malaker, P.; Miller, P.; King, S.; Gaudreault, P.O.; McClain, N.; Gabay, L.; Vasa, D.; Newcorn, J.H.; Ekin, D.; Alia-Klein, N.; Goldstein, R.Z. Common and distinct fronto-striatal volumetric changes in heroin and cocaine use disorders. Brain, 2022.
[6]
Gaudreault, P.O.; King, S.G.; Malaker, P.; Alia-Klein, N.; Goldstein, R.Z. Whole-brain white matter abnormalities in human cocaine and heroin use disorders: Association with craving, recency, and cumulative use. Mol. Psychiatry, 2023, 28(2), 780-791.
[http://dx.doi.org/10.1038/s41380-022-01833-y]
[7]
Luo, X.; Zhang, D.; Zhang, F.; Luo, Q.; Huang, K.; Liu, X.; Yang, N.; Li, J.; Qiao, W.; Yang, L. Comparative analysis and structure identification of oxidative metabolites and hydrogenation metabolite enantiomers for 2-fluorodeschloroketamine. J. Anal. Toxicol., 2023, 47(5), 436-447.
[http://dx.doi.org/10.1093/jat/bkad021]
[8]
Shiyu, WANG Synthesis of anaesthetic compound 2-(o-Fluorophenyl)-2-methylamino-cyclohex- anone hydrochloride(F-Ketamine). Acta. Scient. Natural. Univers. Pekinen., 1987, 2(4)
[9]
Syrjanen, R.; Greene, S.L.; Castle, J.W.; Di Rago, M.; Hodgson, S.E.; Abouchedid, R.; Graudins, A.; Schumann, J.L. Non-fatal intoxications involving the novel benzodiazepine clonazolam: case series from the Emerging Drugs Network of Australia - Victoria project. Clin. Toxicol., 2023, 61(4), 290-293.
[http://dx.doi.org/10.1080/15563650.2023.2183105]
[10]
Du, H.; Lai, M.; Zhuang, D.; Fu, D.; Zhou, Y.; Chen, S.; Wang, F.; Xu, Z.; Liu, H.; Wang, Y.; Xu, P.; Zhou, W. A comparison of reinforcing effectiveness and drug-seeking reinstatement of 2-fluorodeschloroketamine and ketamine in self-administered rats. Front. Mol. Neurosci., 2022, 15, 972798.
[11]
Wang, P.; Liu, X.Y.; Liu, Y.; Luo, Y.F.; Wang, Z. Qualitative and quantitative analysis of cathinones in human urine by SPE-GC-MS. Fa Yi Xue Za Zhi, 2018, 34(6), 606-610.
[12]
Luo, X.; Zhang, D.; Luo, Q.; Huang, K.; Liu, X.; Yang, N.; Qin, Z.; Feng, C.; Li, J. Structure identification and analysis of the suspected chemical precursor of 2-fluorodeschloroketamine and its decomposition products. Drug Test. Anal., 2022, 14(6), 1065-1078.
[http://dx.doi.org/10.1002/dta.3229]
[13]
Davidsen, A.B.; Mardal, M.; Holm, N.B.; Andreasen, A.K.; Johansen, S.S.; Noble, C.; Dalsgaard, P.; Linnet, K. Ketamine analogues: Comparative toxicokinetic in vitro-in vivo extrapolation and quantification of 2-fluorodeschloroketamine in forensic blood and hair samples. J. Pharm. Biomed. Anal., 2020, 180, 113049.
[14]
Tang, M.H.Y.; Li, T.C.; Lai, C.K.; Chong, Y.K.; Ching, C.K.; Mak, T.W.L. Emergence of new psychoactive substance 2-fluorodeschloroketamine: Toxicology and urinary analysis in a cluster of patients exposed to ketamine and multiple analogues. Forensic. Sci. Int., 2020, 312, 110327.
[15]
Shao, X.T.; Yu, H.; Lin, J.G.; Kong, X.P.; Wang, Z.; Wang, D.G. Presence of the ketamine analog of 2-fluorodeschloroketamine residues in wastewater. Drug Test. Anal., 2021, 13(9), 1650-1657.
[http://dx.doi.org/10.1002/dta.3098]
[16]
Lijun, Y. Analysis of the situation of new psychoactive substances in China. J. Yunnan Police Coll., 2020, 2(7)
[17]
Yugang, C. Distribution and metabolic pathway of F-ketamine and its metabolite F-norketamine in rats. Foren. Sci. Technol., 2022, 47(4), 7.
[18]
Shun, Z.H.A.U.N.G. Identification of F-ketamine in suspected drugs by GC/MS. Chin. J. Forensic Med., 2020, 35(5), 2.
[19]
Xiao-peng, D.J-L.D.Y.X-Z. Study of colloida gold-immunochromatography assay for rapid detection ketamine in urine. Chinese J. Drug Abuse Prevent. Treat., 2009, 15(5), 4.
[20]
Krotulski, A.J.; Varnum, S.J.; Logan, B.K. Sample mining and data mining: Combined real-time and retrospective approaches for the identification of emerging novel psychoactive substances. J. Forensic Sci., 2020, 65(2), 550-562.
[http://dx.doi.org/10.1111/1556-4029.14184]
[21]
Hagele, J.S.; Basrak, M.; Schmid, M.G. Enantioselective separation of Novel Psychoactive Substances using a Lux(R) AMP 3 mum column and HPLC-UV. J. Pharm. Biomed. Anal., 2020, 179, 112967.
[22]
Yuan, S.; Wang, X.; Wang, R.; Luo, R.; Shi, Y.; Shen, B.; Liu, W.; Yu, Z.; Xiang, P. Simultaneous determination of 11 illicit drugs and metabolites in wastewater by UPLC-MS/MS. Water Sci. Technol., 2020, 82(9), 1771-1780.
[http://dx.doi.org/10.2166/wst.2020.445]
[23]
Li, G.; Wang, X.; Luo, L.; Zhang, H.; Song, X.; Zhang, J.; Liu, D. Identification of chemical constituents of Qingjin Yiqi granules and comparative study on pharmacokinetics of 23 main bioactive components in normal and Lung-Qi deficiency rats by UPLC-MS/MS method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2023, 1226, 123802.
[24]
Qi, M.; He, P.; Hu, H.; Zhang, T.; Li, T.; Zhang, X.; Qin, Y.; Zhu, Y.; Guo, Y. An automated solid-phase extraction–UPLC–MS/MS method for simultaneous determination of sulfonamide antimicrobials in environmental water. Molecules, 2023, 28(12), 4694.
[http://dx.doi.org/10.3390/molecules28124694]
[25]
Cabrera, R. Validation and application of UPLC-MS/MS method to analysis of glyphosate and its metabolites in water. J. Chromatogr. Sci., 2023.
[26]
Guo, X.; Chen, F.; Zhang, W. Analysis of 16 mycotoxins in genuine traditional Chinese medicine for five medicinal parts: Classification of analytical method based on PANI@CS extraction-UPLC-MS/MS. Heliyon, 2023, 9(6), e17027.
[http://dx.doi.org/10.1016/j.heliyon.2023.e17027]
[27]
Cai, Q.; Song, Q.; Jiang, K.; Lin, Y.; Zhang, Y.; Zhang, J.; Lin, S.; Huang, L.; Xue, Q.; Huang, Z.; Xu, W.; Xu, W.; Yam, M.F. Quality evaluation of compounds in leaves of six Taxus species based on UPLC-MS/MS and chemometrics. Front. Chem., 2023, 11, 1193188.
[28]
FDA. Bioanalytical Method Validation Guidance for Industry. 2018. Available from:https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry
[29]
Ma, J.; Zhang, Q.; Wang, X. Liquid chromatography mass spectrometry determination of mocetinostat (MGCD0103) in rat plasma and its application to a pharmacokinetic study. Xenobiotica, 2014, 44(9), 849-854.
[http://dx.doi.org/10.3109/00498254.2014.897012]
[30]
Itigimath, N.; Ashoka, H.; Yallur, B.C.; Hadagali, M.D. LC-MS/MS method development and validation for determination of favipiravir pure and tablet dosage forms. Turk. J. Pharmaceut. Sci., 2023, 20(4), 226-233.
[http://dx.doi.org/10.4274/tjps.galenos.2022.75470]