Chitosan-grafted Cyclodextrin via Click Chemistry as an Encapsulating Agent to Enhance the Antibacterial Activity of Thymol

Article ID: e250124226175 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Introduction: This paper aimed to investigate, for the first time, the possibility of increasing the antibacterial activities of thymol (TH) by developing an encapsulating agent based on chitosan-grafted cyclodextrin. For this purpose, β-cyclodextrin was monosubstituted at position 6 via propargyl bromide, and chitosan’s amine groups were converted to azide functions. After alkylation and diazotization reactions, the grafting of β-cyclodextrin onto the chitosan (CS- βCD) was realized via click chemistry alkyne–azide cycloaddition.

Methods: The incorporation of TH into chitosan-grafted β-cyclodextrin (TH/CS-βCD) was performed by the freeze-drying method, and the encapsulation efficiency was investigated based on various mass ratios (TH:CS-βCD). The optimized inclusion complex was then thoroughly examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC).

Results: The antibacterial activity was assessed against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis using broth-microdilution assay. Fourier transform infrared spectroscopy analysis demonstrated the successful grafting of β-cyclodextrin onto chitosan since the optimum mass ratio between TH and CS-βCD was 1:8 (w:w), corresponding to 78 ± 3.42% of encapsulation efficiency, while SEM, XRD, TGA and DSC confirmed the establishment of TH/CS-βCD inclusion complexes.

Conclusion: The in vitro investigation showed that TH/CS-βCD exhibited higher antibacterial properties compared to TH in free form.

Graphical Abstract

[1]
Sheorain, J.; Mehra, M.; Thakur, R.; Grewal, S.; Kumari, S. In vitro anti-inflammatory and antioxidant potential of thymol loaded bipolymeric (tragacanth gum/chitosan) nanocarrier. Int. J. Biol. Macromol., 2019, 125, 1069-1074.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.095] [PMID: 30552929]
[2]
Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem., 2016, 210, 402-414.
[http://dx.doi.org/10.1016/j.foodchem.2016.04.111] [PMID: 27211664]
[3]
Yildiz, S.; Turan, S.; Kiralan, M.; Ramadan, M.F. Antioxidant properties of thymol, carvacrol, and thymoquinone and its efficiencies on the stabilization of refined and stripped corn oils. J. Food Meas. Charact., 2021, 15(1), 621-632.
[http://dx.doi.org/10.1007/s11694-020-00665-0]
[4]
Islam, M.T.; Khalipha, A.B.R.; Bagchi, R.; Mondal, M.; Smrity, S.Z.; Uddin, S.J.; Shilpi, J.A.; Rouf, R. Anticancer activity of thymol: A literature‐based review and docking study with Emphasis on its anticancer mechanisms. IUBMB Life, 2019, 71(1), 9-19.
[http://dx.doi.org/10.1002/iub.1935] [PMID: 30308112]
[5]
Braga, P.C.; Dal Sasso, M.; Culici, M.; Bianchi, T.; Bordoni, L.; Marabini, L. Anti-inflammatory activity of thymol: Inhibitory effect on the release of human neutrophil elastase. Pharmacology, 2006, 77(3), 130-136.
[http://dx.doi.org/10.1159/000093790] [PMID: 16763380]
[6]
Rathod, N.B.; Kulawik, P.; Ozogul, F.; Regenstein, J.M.; Ozogul, Y. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends Food Sci. Technol., 2021, 116, 733-748.
[http://dx.doi.org/10.1016/j.tifs.2021.08.023]
[7]
Wankar, J.; Kotla, N.G.; Gera, S.; Rasala, S.; Pandit, A.; Rochev, Y.A. Recent advances in host–guest self-assembled cyclodextrin carriers: Implications for responsive drug delivery and biomedical engineering. Adv. Funct. Mater., 2020, 30(44), 1909049.
[http://dx.doi.org/10.1002/adfm.201909049]
[8]
Rakmai, J.; Cheirsilp, B.; Mejuto, J.C.; Simal-Gándara, J.; Torrado-Agrasar, A. Antioxidant and antimicrobial properties of encapsulated guava leaf oil in hydroxypropyl-beta-cyclodextrin. Ind. Crops Prod., 2018, 111, 219-225.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.027]
[9]
Tao, F.; Hill, L.E.; Peng, Y.; Gomes, C.L. Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. Lebensm. Wiss. Technol., 2014, 59(1), 247-255.
[http://dx.doi.org/10.1016/j.lwt.2014.05.037]
[10]
Chen, Y.; Mensah, A.; Wang, Q.; Li, D.; Qiu, Y.; Wei, Q. Hierarchical porous nanofibers containing thymol/beta-cyclodextrin: Physico-chemical characterization and potential biomedical applications. Mater. Sci. Eng. C, 2020, 115, 111155.
[http://dx.doi.org/10.1016/j.msec.2020.111155] [PMID: 32600736]
[11]
Erceg, T.; Šovljanski, O.; Stupar, A.; Ugarković, J.; Aćimović, M.; Pezo, L.; Tomić, A.; Todosijević, M. A comprehensive approach to chitosan-gelatine edible coating with β-cyclodextrin/lemongrass essential oil inclusion complex — Characterization and food application. Int. J. Biol. Macromol., 2023, 228, 400-410.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.12.132] [PMID: 36572079]
[12]
Sreelatha, S.; Kumar, N.; Yin, T.S.; Rajani, S. Evaluating the antibacterial activity and mode of action of thymol-loaded chitosan nanoparticles against plant bacterial pathogen Xanthomonas campestris pv. campestris. Front. Microbiol., 2022, 12, 792737.
[http://dx.doi.org/10.3389/fmicb.2021.792737] [PMID: 35095804]
[13]
Alizadeh, N.; Nazari, F. Thymol essential oil/β-cyclodextrin inclusion complex into chitosan nanoparticles: Improvement of thymol properties in vitro studies. J. Mol. Liq., 2022, 346, 118250.
[http://dx.doi.org/10.1016/j.molliq.2021.118250]
[14]
Norouzi, Z.; Abdouss, M. Electrospun nanofibers using β-cyclodextrin grafted chitosan macromolecules loaded with indomethacin as an innovative drug delivery system. Int. J. Biol. Macromol., 2023, 233, 123518.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123518] [PMID: 36773879]
[15]
Yang, Z.; Miao, H.; Rui, Z.; Ji, H. Enhanced formaldehyde removal from air using fully biodegradable chitosan grafted β-Cyclodextrin adsorbent with weak chemical interaction. Polymers, 2019, 11(2), 276.
[http://dx.doi.org/10.3390/polym11020276] [PMID: 30960259]
[16]
Zhao, F.; Repo, E.; Yin, D.; Chen, L.; Kalliola, S.; Tang, J.; Iakovleva, E.; Tam, K.C.; Sillanpää, M. One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants. Sci. Rep., 2017, 7(1), 15811.
[http://dx.doi.org/10.1038/s41598-017-16222-7] [PMID: 29150635]
[17]
Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
[18]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[19]
Chen, Y.; Ye, Y.; Li, R.; Guo, Y.; Tan, H. Synthesis of chitosan 6-OH immobilized cyclodextrin derivates via click chemistry. Fibers Polym., 2013, 14(7), 1058-1065.
[http://dx.doi.org/10.1007/s12221-013-1058-7]
[20]
Kulbokaite, R.; Ciuta, G.; Netopilik, M.; Makuska, R. N-PEG’ylation of chitosan via “click chemistry” reactions. React. Funct. Polym., 2009, 69(10), 771-778.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2009.06.010]
[21]
Liang, L.; Astruc, D. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev., 2011, 255(23-24), 2933-2945.
[http://dx.doi.org/10.1016/j.ccr.2011.06.028]
[22]
Ez-Zoubi, A.; Ez Zoubi, Y.; Bentata, F.; El-Mrabet, A.; Ben Tahir, C.; Labhilili, M.; Farah, A. Preparation and characterization of a biopesticide based on artemisia herba-alba essential oil encapsulated with succinic acid-modified beta-cyclodextrin. J. Chem., 2023, 2023, 1-8.
[http://dx.doi.org/10.1155/2023/3830819]
[23]
Ez-zoubi, A. Ez zoubi, Y.; Ramzi, A.; Fadil, M.; El Ouali Lalami, A.; Farah, A. Ethanol and glycerol green emulsifying solvent for the formation of a Lavandula stoechas essential oil/β-cyclodextrin inclusion complex: mixture design and adulticidal activity against Culex pipiens. Heliyon, 2022, 8(8), e10204.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10204] [PMID: 36033293]
[24]
Pfaller, M.A.; Messer, S.A.; Hollis, R.J.; Jones, R.N.; Doern, G.V.; Brandt, M.E.; Hajjeh, R.A. Trends in species distribution and susceptibility to fluconazole among blood stream isolates of Candida species in the United States. Diagn. Microbiol. Infect. Dis., 1999, 33(4), 217-222.
[http://dx.doi.org/10.1016/S0732-8893(98)00160-6] [PMID: 10212747]
[25]
El Hachlafi, N.; Benkhaira, N.; Al-Mijalli, S.H.; Mrabti, H.N.; Abdnim, R.; Abdallah, E.M.; Jeddi, M.; Bnouham, M.; Lee, L.H.; Ardianto, C.; Ming, L.C.; Bouyahya, A.; Fikri-Benbrahim, K. Phytochemical analysis and evaluation of antimicrobial, antioxidant, and antidiabetic activities of essential oils from Moroccan medicinal plants: Mentha suaveolens, Lavandula stoechas, and Ammi visnaga. Biomed. Pharmacother., 2023, 164, 114937.
[http://dx.doi.org/10.1016/j.biopha.2023.114937] [PMID: 37267633]
[26]
Ez-zoubi, A.; Annemer, S.; El Amrani, S.; Ez zoubi, Y.; Farah, A. Encapsulation of origanum compactum essential oil in beta-cyclodextrin metal organic frameworks: Characterization, optimization, and antioxidant activity. J. Food Process. Preserv., 2023, 2023, 1-10.
[http://dx.doi.org/10.1155/2023/5973846]
[27]
Dou, S.; Ouyang, Q.; You, K.; Qian, J.; Tao, N. An inclusion complex of thymol into β-cyclodextrin and its antifungal activity against Geotrichum citri-aurantii. Postharvest Biol. Technol., 2018, 138, 31-36.
[http://dx.doi.org/10.1016/j.postharvbio.2017.12.011]
[28]
Ez-zoubi, A; zoubi, YE; Moustaid, W Pelargonium graveolens Essential Oil Nanoencapsulated into Beta-Cyclodextrin Loaded in Chitosan: A Way to Enhance Storage Stability and Control Release. BioNanoSci, 2023.
[http://dx.doi.org/10.1007/s12668-023-01135-9]
[29]
Hadidi, M.; Pouramin, S.; Adinepour, F.; Haghani, S.; Jafari, S.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr. Polym., 2020, 236, 116075.
[http://dx.doi.org/10.1016/j.carbpol.2020.116075] [PMID: 32172888]
[30]
Herrera, A.; Rodríguez, F.J.; Bruna, J.E.; Abarca, R.L.; Galotto, M.J.; Guarda, A.; Mascayano, C.; Sandoval-Yáñez, C.; Padula, M.; Felipe, F.R.S. Antifungal and physicochemical properties of inclusion complexes based on β-cyclodextrin and essential oil derivatives. Food Res. Int., 2019, 121, 127-135.
[http://dx.doi.org/10.1016/j.foodres.2019.03.026] [PMID: 31108733]
[31]
Soltanzadeh, M.; Peighambardoust, S.H.; Ghanbarzadeh, B.; Mohammadi, M.; Lorenzo, J.M. Chitosan nanoparticles encapsulating lemongrass (Cymbopogon commutatus) essential oil: Physicochemical, structural, antimicrobial and in-vitro release properties. Int. J. Biol. Macromol., 2021, 192, 1084-1097.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.10.070] [PMID: 34673101]
[32]
Garcia-Sotelo, D.; Silva-Espinoza, B.; Perez-Tello, M.; Olivas, I.; Alvarez-Parrilla, E.; González-Aguilar, G.A.; Ayala-Zavala, J.F. Antimicrobial activity and thermal stability of rosemary essential oil:β−cyclodextrin capsules applied in tomato juice. Lebensm. Wiss. Technol., 2019, 111, 837-845.
[http://dx.doi.org/10.1016/j.lwt.2019.05.061]
[33]
Du, E.; Gan, L.; Li, Z.; Wang, W.; Liu, D.; Guo, Y. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol., 2015, 6(1), 58.
[http://dx.doi.org/10.1186/s40104-015-0055-7] [PMID: 26705471]
[34]
Shahriarinour, M.; Divsar, F.; Eskandari, Z. Synthesis, characterization, and antibacterial activity of thymol loaded SBA-15 mesoporous silica nanoparticles. Inorganic and Nano-Metal Chemistry, 2019, 49(6), 182-189.
[http://dx.doi.org/10.1080/24701556.2019.1624569]
[35]
Aljelehawy, Q.H.A.; Mohammadi, S.; Mohamadian, E. Antimicrobial, anticancer, antidiabetic, antineurodegenerative, and antirheumatic activities of thymol: Clarification of mechanisms. Micro Nano Bio Aspects, 2023, 2, 1-7.
[36]
Mith, H.; Duré, R.; Delcenserie, V.; Zhiri, A.; Daube, G.; Clinquart, A. Antimicrobial activities of commercial essential oils and their components against food‐borne pathogens and food spoilage bacteria. Food Sci. Nutr., 2014, 2(4), 403-416.
[http://dx.doi.org/10.1002/fsn3.116] [PMID: 25473498]
[37]
Tian, L.; Wang, X.; Liu, R.; Zhang, D.; Wang, X.; Sun, R.; Guo, W.; Yang, S.; Li, H.; Gong, G. Antibacterial mechanism of thymol against Enterobacter sakazakii. Food Control, 2021, 123, 107716.
[http://dx.doi.org/10.1016/j.foodcont.2020.107716]
[38]
Valliammai, A.; Selvaraj, A.; Yuvashree, U.; Aravindraja, C.; Karutha Pandian, S. sarA-dependent antibiofilm activity of thymol enhances the antibacterial efficacy of rifampicin against Staphylococcus aureus. Front. Microbiol., 2020, 11, 1744.
[http://dx.doi.org/10.3389/fmicb.2020.01744] [PMID: 32849374]
[39]
Gan, C.; Langa, E.; Valenzuela, A.; Ballestero, D.; Pino-Otín, M.R. Synergistic activity of thymol with commercial antibiotics against critical and high WHO priority pathogenic bacteria. Plants, 2023, 12(9), 1868.
[http://dx.doi.org/10.3390/plants12091868] [PMID: 37176927]
[40]
Deng, C.; Yan, H.; Wang, J.; Liu, K.; Liu, B.; Shi, Y. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against ESKAPE pathogens. Eur. J. Med. Chem., 2022, 244, 114888.
[http://dx.doi.org/10.1016/j.ejmech.2022.114888] [PMID: 36334453]