Synthesis and Characterization of Magnetic Nanoparticles and its Study to Displace Oil from a Hele-Shaw Cell

Article ID: e240124226164 Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Oil spill incidents caused by human activities can cause major habitat damage and pose serious threats to all living organisms living on and within sources of water and soil. Finding a solution for oil spills is necessary to protect ecosystems, the environment, and health. Nanotechnology seems to be an interesting tool in many applications, such as soil and water remediation and oil recovery. Nanoparticles are a good alternative since they are not as expensive as chemicals used to remove oil.

Objective: The prime purpose of this research work was the comparison of the additional displacement of sunflower oil from a single fracture using ferrofluids prepared with bare and novel covalent functionalized magnetic nanoparticles. Experiences were performed at constant nanoparticle concentration and variable flow rate and at constant flow rate and variable nanoparticle concentration. The novel ferrofluid stability and its recovery properties related to a low-cost process were explored.

Methods: Tests were carried out by image analysis. Stable ferrofluids were prepared using magnetic nanoparticles (MNPs) and novel covalent functionalized magnetic nanoparticles (MSMs). Their ability to displace the residual oil in a single fracture model previously invaded by an aqueous brine solution was tested. A flow channel of a single fracture by a typical transparent Hele-Shaw cell with 12% of its area covered by a random distribution of obstacles was modeled. Oil recovery was performed at three different flow rates: 0.36, 1.80, and 3.60 mL min-1, using relatively low ferrofluid concentrations (0.0125 wt%). Oil recovery was also carried out with MSM ferrofluid at a constant flow rate of 1.80 and 3.60 mL min-1 at different nanoparticle concentrations (0.00625, 0.0125, and 0.025 wt%).

Results: Ferrofluids prepared with MSMs were more effective for oil recovery than those prepared with bare nanoparticles due to their surfactant behavior for all flows studied here. A 7.86% extra percentage of oil was removed after brine flooding. Oil recovery using MSM ferrofluid at a constant flow rate of 1.80 and 3.60 mL min-1 increased linearly with nanoparticle concentration. Magnetic nanoparticles can be efficiently recovered and reused in at least three oil displacements for the fracture model used as covalent functionalization promotes ferrofluids' stability.

Conclusion: The characteristics of the MSM amphiphilic novel coating cause the nanoparticles to be attracted to both water and oil, enhancing oil displacement. These results indicate that this novel material, whose structure stability is related to the covalent bonding of organic coating, can be considered for remediation and oil recovery in fractured media.

Graphical Abstract

[1]
Singh, T.; Shukla, S.; Kumar, P.; Wahla, V.; Bajpai, V.K.; Rather, I.A. Application of nanotechnology in food science: Perception and overview. Front. Microbiol., 2017, 8, 1501.
[http://dx.doi.org/10.3389/fmicb.2017.01501]
[2]
Hameed, A.; Fatima, G.R.; Malik, K.; Fazal-ur-Rehman, M.; Muqadas, A. Scope of nanotechnology in cosmetics: Dermatology and skin care products. J. Med. Chem. Sci., 2019, 2(1), 9-16.
[http://dx.doi.org/10.26655/jmchemsci.2019.6.2]
[3]
Zhang, H.; Liu, X.L.; Zhang, Y.F.; Gao, F.; Li, G.L.; He, Y.; Peng, M.L.; Fan, H.M. Magnetic nanoparticles based cancer therapy: Current status and applications. Sci. China Life Sci., 2018, 61(4), 400-414.
[http://dx.doi.org/10.1007/s11427-017-9271-1] [PMID: 29675551]
[4]
Tartaj, P.; Morales, M.P.; González-Carreño, T.; Veintemillas-Verdaguer, S.; Serna, C.J. Advances in magnetic nanoparticles for biotechnology applications. J. Magn. Magn. Mater., 2005, 290-291, 28-34.
[http://dx.doi.org/10.1016/j.jmmm.2004.11.155]
[5]
Simeonidis, K.; Mourdikoudis, S.; Kaprara, E.; Mitrakas, M.; Polavarapu, L. Inorganic engineered nanoparticles in drinking water treatment: A critical review. Environ. Sci. Water Res. Technol., 2016, 2(1), 43-70.
[http://dx.doi.org/10.1039/C5EW00152H]
[6]
Keller, B.D.; Ferralis, N.; Grossman, J.C. Rethinking coal: Thin films of solution processed natural carbon nanoparticles for electronic devices. Nano Lett., 2016, 16(5), 2951-2957.
[http://dx.doi.org/10.1021/acs.nanolett.5b04735] [PMID: 27031328]
[7]
Zhou, K.; Zhou, X.; Liu, J.; Huang, Z. Application of magnetic nanoparticles in petroleum industry: A review. J. Petrol. Sci. Eng., 2020, 188, 106943.
[http://dx.doi.org/10.1016/j.petrol.2020.106943]
[8]
Alsaba, M.T.; Al Dushaishi, M.F.; Abbas, A.K. A comprehensive review of nanoparticles applications in the oil and gas industry. J. Pet. Explor. Prod. Technol., 2020, 10(4), 1389-1399.
[http://dx.doi.org/10.1007/s13202-019-00825-z]
[9]
Ighalo, J.O.; Sagboye, P.A.; Umenweke, G.; Ajala, O.J.; Omoarukhe, F.O.; Adeyanju, C.A.; Ogunniyi, S.; Adeniyi, A.G. CuO nanoparticles (CuO NPs) for water treatment: A review of recent advances. Environ. Nanotechnol. Monit. Manag., 2021, 15, 100443.
[http://dx.doi.org/10.1016/j.enmm.2021.100443]
[10]
Kumari, P.; Alam, M.; Siddiqi, W.A. Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. SM&T, 2019, e00128.
[http://dx.doi.org/10.1016/j.susmat.2019.e00128]
[11]
Tan, H.W.; An, J.; Chua, C.K.; Tran, T. Metallic nanoparticle inks for 3D printing of electronics. Adv. Electron. Mater., 2019, 5(5), 1800831.
[http://dx.doi.org/10.1002/aelm.201800831]
[12]
Salem, S.S.; Fouda, A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol. Trace Elem. Res., 2021, 199(1), 344-370.
[http://dx.doi.org/10.1007/s12011-020-02138-3] [PMID: 32377944]
[13]
Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019, 1-26.
[http://dx.doi.org/10.1155/2019/3702518]
[14]
Fathi-Achachelouei, M.; Knopf-Marques, H.; Ribeiro da Silva, C.E.; Barthès, J.; Bat, E.; Tezcaner, A.; Vrana, N.E. Use of nanoparticles in tissue engineering and regenerative medicine. Front. Bioeng. Biotechnol., 2019, 7, 113.
[http://dx.doi.org/10.3389/fbioe.2019.00113] [PMID: 31179276]
[15]
Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium dioxide nanoparticles: Prospects and applications in medicine. Nanomaterials, 2020, 10(2), 387.
[http://dx.doi.org/10.3390/nano10020387] [PMID: 32102185]
[16]
Wang, Q.; Chen, N.; Li, M.; Yao, S.; Sun, X.; Feng, X.; Chen, Y. Light-related activities of metal-based nanoparticles and their implications on dermatological treatment. Drug Deliv. Transl. Res., 2023, 13(2), 386-399.
[http://dx.doi.org/10.1007/s13346-022-01216-4] [PMID: 35908132]
[17]
Raszewska-Famielec, M.; Flieger, J. Nanoparticles for topical application in the treatment of skin dysfunctions—An overview of dermo-cosmetic and dermatological products. Int. J. Mol. Sci., 2022, 23(24), 15980.
[http://dx.doi.org/10.3390/ijms232415980] [PMID: 36555619]
[18]
Ghebretatios, M.; Schaly, S.; Prakash, S. Nanoparticles in the food industry and their impact on human gut microbiome and diseases. Int. J. Mol. Sci., 2021, 22(4), 1942.
[http://dx.doi.org/10.3390/ijms22041942] [PMID: 33669290]
[19]
Milinčić D.D.; Popović D.A.; Lević S.M.; Kostić A.Ž.; Tešić Ž.L.; Nedović V.A.; Pešić M.B. Application of polyphenol-loaded nanoparticles in food industry. Nanomaterials, 2019, 9(11), 1629.
[http://dx.doi.org/10.3390/nano9111629] [PMID: 31744091]
[20]
Donnelly, C.; Hierro-Rodríguez, A.; Abert, C.; Witte, K.; Skoric, L.; Sanz-Hernández, D.; Finizio, S.; Meng, F.; McVitie, S.; Raabe, J.; Suess, D.; Cowburn, R.; Fernández-Pacheco, A. Complex free-space magnetic field textures induced by three-dimensional magnetic nanostructures. Nat. Nanotechnol., 2022, 17(2), 136-142.
[http://dx.doi.org/10.1038/s41565-021-01027-7] [PMID: 34931031]
[21]
Cherkasov, V.R.; Mochalova, E.N.; Babenyshev, A.V.; Vasilyeva, A.V.; Nikitin, P.I.; Nikitin, M.P. Nanoparticle beacons: Supersensitive smart materials with on/off-switchable affinity to biomedical targets. ACS Nano, 2020, 14(2), 1792-1803.
[http://dx.doi.org/10.1021/acsnano.9b07569] [PMID: 31944662]
[22]
Li, X.; Montague, E.C.; Pollinzi, A.; Lofts, A.; Hoare, T. Design of smart size‐ surface‐ and shape‐switching nanoparticles to improve therapeutic efficacy. Small, 2022, 18(6), 2104632.
[http://dx.doi.org/10.1002/smll.202104632] [PMID: 34936204]
[23]
Vasiliu, S.; Racovita, S.; Gugoasa, I.A.; Lungan, M.A.; Popa, M.; Desbrieres, J. The benefits of smart nanoparticles in dental applications. Int. J. Mol. Sci., 2021, 22(5), 2585.
[http://dx.doi.org/10.3390/ijms22052585] [PMID: 33806682]
[24]
Li, Z.; Yang, F.; Yin, Y. Smart materials by nanoscale magnetic assembly. Adv. Funct. Mater., 2019, 1903467.
[http://dx.doi.org/10.1002/adfm.201903467]
[25]
Dumontel, B.; Conejo-Rodriguez, V.; Vallet-Regi, M.; Manzano, M. Natural biopolymers as smart coating materials of mesoporous silica nanoparticles for drug delivery. Pharmaceutics, 2023, 15(2), 447.
[http://dx.doi.org/10.3390/pharmaceutics15020447]
[26]
Liu, Y.; Lin, G.; Medina-Sánchez, M.; Guix, M.; Makarov, D.; Jin, D. Responsive magnetic nanocomposites for intelligent shape-morphing microrobots. ACS Nano, 2023, 17(10), 8899-8917.
[http://dx.doi.org/10.1021/acsnano.3c01609] [PMID: 37141496]
[27]
Shui, L.; Ni, K.; Wang, Z. Aligned magnetic nanocomposites for modularized and recyclable soft microrobots. ACS Appl. Mater. Interfaces, 2022, 14(38), 43802-43814.
[http://dx.doi.org/10.1021/acsami.2c13108] [PMID: 36100583]
[28]
Ramos-Docampo, M.A.; Hurtado, P.; Dávila-Ibáñez, A.B.; Piñeiro, R.; Fanarraga, M.L.; Salgueiriño, V. Magnetically propelled chained nanocomposites for biologically relevant media exploration. J. Colloid Interface Sci., 2023, 629(Pt A), 287-296.
[http://dx.doi.org/10.1016/j.jcis.2022.08.154] [PMID: 36081208]
[29]
Zhang, H.; Zhong, X.; Xu, J.J.; Chen, H.Y. Fe3O4/Polypyrrole/Au nanocomposites with core/shell/shell structure: Synthesis, characterization, and their electrochemical properties. Langmuir, 2008, 24(23), 13748-13752.
[http://dx.doi.org/10.1021/la8028935] [PMID: 18991414]
[30]
Singh, H.; Bhardwaj, N.; Arya, S.K.; Khatri, M. Environmental impacts of oil spills and their remediation by magnetic nanomaterials. Environ. Nanotechnol. Monit. Manag., 2020, 14, 100305.
[http://dx.doi.org/10.1016/j.enmm.2020.100305]
[31]
Bhavya, G.; Belorkar, S.A.; Mythili, R.; Geetha, N.; Shetty, H.S.; Udikeri, S.S.; Jogaiah, S. Remediation of emerging environmental pollutants: A review based on advances in the uses of eco-friendly biofabricated nanomaterials. Chemosphere, 2021, 275, 129975.
[http://dx.doi.org/10.1016/j.chemosphere.2021.129975] [PMID: 33631403]
[32]
Jamalipour Soufi, G.; Iravani, S. Eco-friendly and sustainable synthesis of biocompatible nanomaterials for diagnostic imaging: Current challenges and future perspectives. Green Chem., 2020, 22(9), 2662-2687.
[http://dx.doi.org/10.1039/D0GC00734J]
[33]
Su, S.; Kang, P.M. Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials, 2020, 10(4), 656.
[http://dx.doi.org/10.3390/nano10040656] [PMID: 32244653]
[34]
Simonsen, G.; Strand, M.; Øye, G. Potential applications of magnetic nanoparticles within separation in the petroleum industry. J. Petrol. Sci. Eng., 2018, 165, 488-495.
[http://dx.doi.org/10.1016/j.petrol.2018.02.048]
[35]
Ling, W.; Wang, M.; Xiong, C.; Xie, D.; Chen, Q.; Chu, X.; Qiu, X.; Li, Y.; Xiao, X. Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. J. Mater. Res., 2019, 34(11), 1828-1844.
[http://dx.doi.org/10.1557/jmr.2019.129]
[36]
Abdullah, M.M.S.; Al-lohedan, H.A.; Al-khwlani, A.; Al-Maswari, B.M. Efficient oil spill uptake using surface-modified magnetite nanoparticles with PET waste derivatives; ACS, 2023.
[http://dx.doi.org/10.1021/acsomega.3c05957]
[37]
Ojemaye, M.O.; Okoh, O.O.; Okoh, A.I. Surface modified magnetic nanoparticles as efficient adsorbents for heavy metal removal from wastewater: Progress and prospects. Mater. Express, 2017, 7(6), 439-456.
[http://dx.doi.org/10.1166/mex.2017.1401]
[38]
Comanescu, C. Recent advances in surface functionalization of magnetic nanoparticles. Coatings, 2023, 13(10), 1772.
[http://dx.doi.org/10.3390/coatings13101772]
[39]
Liu, S.L.; Bing, Y.; Song, W.; Youqing, S.; Hailin, C. Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv. Colloid Interface Sci., 2020, 281-102165.
[http://dx.doi.org/10.1016/j.cis.2020.10216]
[40]
Fossati, A.; Martins Alho, M.; Jacobo, S.E. Covalent functionalized magnetic nanoparticles for crude oil recovery. Mater. Chem. Phys., 2019, 238, 121910.
[http://dx.doi.org/10.1016/j.matchemphys.2019.121910]
[41]
Fossati, A.; Martins Alho, M.; Jacobo, S.E. Polymer-functionalized nanoparticles for improving oil displacement. Adv.Nat. Sci: Nanosci. Nanotechnol, 2018, 9, 015007.
[42]
Horobin, R.W.; Kiernan, J.A. Conn’s Biological Stains: A Handbook of Dyes, Stains and Fluorochromes for Use in Biology and Medicine; Taylor and Francis: Philadelphia, PA, 2002.
[43]
Ippolito, I.; Daccord, G.; Hinch, E.J.; Hulin, J.P. Echo tracer dispersion in model fractures with a rectangular geometry. J. Contam. Hydrol., 1994, 16(1), 87-108.
[http://dx.doi.org/10.1016/0169-7722(94)90073-6]
[44]
Auradou, H.; Hulin, J.P.; Roux, S. Experimental study of miscible displacement fronts in rough self-affine fractures. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 2001, 63(6), 066306.
[http://dx.doi.org/10.1103/PhysRevE.63.066306] [PMID: 11415226]
[45]
Boschan, A.; Auradou, H.; Ippolito, I.; Chertcoff, R.; Hulin, J.P. Miscible displacement fronts of shear thinning fluids inside rough fractures. Water Resour. Res., 2007, 43(3), 2006WR005324.
[http://dx.doi.org/10.1029/2006WR005324]
[46]
Roht, Y.L.; Chertcoff, R.; Hulin, J.P.; Auradou, H.; Ippolito, I. Reversible and irreversible tracer dispersion in an oscillating flow inside a model rough fracture. Transp. Porous Media, 2018, 122(2), 421-436.
[http://dx.doi.org/10.1007/s11242-018-1014-5]
[47]
Huang, X.; Schmucker, A.; Dyke, J.; Hall, S.M.; Retrum, J.; Stein, B.; Remmes, N.; Baxter, D.V.; Dragnea, B.; Bronstein, L.M. Magnetic nanoparticles with functional silanes: evolution of well-defined shells from anhydride containing silane. J. Mater. Chem., 2009, 19(24), 4231-4239.
[http://dx.doi.org/10.1039/b821917f] [PMID: 19763240]
[48]
Chen, W.H.; Tseng, Y.T.; Hsieh, S.; Liu, W.C.; Hsieh, C.W.; Wu, C.W.; Huang, C.H.; Lin, H.Y.; Chen, C.W.; Lin, P.Y.; Chau, L.K. Silanization of solid surfaces via mercaptopropylsilatrane: A new approach of constructing gold colloid monolayers. RSC Advances, 2014, 4(87), 46527-46535.
[http://dx.doi.org/10.1039/C4RA05583G]
[49]
Tsai, J.C.; Lo, Y.L.; Lin, C.Y.; Sheu, H.M.; Lin, J.C. Feasibility of rapid quantitation of stratum corneum lipid content by Fourier transform infrared spectrometry. Spectroscopy, 2004, 18(3), 423-431.
[http://dx.doi.org/10.1155/2004/401015]
[50]
Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Chem. Int., 2011, 33(2)
[http://dx.doi.org/10.1515/ci.2011.33.2.22a]
[51]
Ali, N.; Said, A.; Ali, F.; Khan, M.; Sheikh, Z.A.; Bilal, M. Development and characterization of functionalized titanium dioxide-reinforced sulfonated copolyimide (SPI/TiO2) nanocomposite membranes with improved mechanical, thermal, and electrochemical properties. J. Inorg. Organomet. Polym. Mater., 2020, 30(11), 4585-4596.
[http://dx.doi.org/10.1007/s10904-020-01636-0]
[52]
Thamilselvi, V.; Radha, K.V. Silver nanoparticle loaded silica adsorbent for wastewater treatment. Korean J. Chem. Eng., 2017, 34(6), 1801-1812.
[http://dx.doi.org/10.1007/s11814-017-0075-4]
[53]
Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, 60(2), 309-319.
[http://dx.doi.org/10.1021/ja01269a023]
[54]
Mohapatra, S.; Pramanik, P. Synthesis and stability of functionalized iron oxide nanoparticles using organophosphorus coupling agents. Colloids Surf. A Physicochem. Eng. Asp., 2009, 339(1-3), 35-42.
[http://dx.doi.org/10.1016/j.colsurfa.2009.01.009]
[55]
Ghosh, S.; Badruddoza, A.Z.M.; Uddin, M.S.; Hidajat, K. Adsorption of chiral aromatic amino acids onto carboxymethyl-β-cyclodextrin bonded Fe3O4/SiO2 core–shell nanoparticles. J. Colloid Interface Sci., 2011, 354(2), 483-492.
[http://dx.doi.org/10.1016/j.jcis.2010.11.060] [PMID: 21167497]
[56]
Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle surface functionalization. How to improve the biocompatibility and cellular internalization. Front. Mol. Biosci., 2020, 7, 587012.
[http://dx.doi.org/10.3389/fmolb.2020.587012] [PMID: 33324678]
[57]
Zheng, Z.; Schenderlein, M.; Huang, X.; Brownbill, N.J.; Blanc, F.; Shchukin, D. Influence of functionalization of nanocontainers on self-healing anticorrosive coatings. ACS Appl. Mater. Interfaces, 2015, 7(41), 22756-22766.
[http://dx.doi.org/10.1021/acsami.5b08028] [PMID: 26393678]
[58]
Cerdan, K.; Moya, C.; Van Puyvelde, P.; Bruylants, G.; Brancart, J. Magnetic self-healing composites: Synthesis and applications. Molecules, 2022, 27(12), 3796.
[http://dx.doi.org/10.3390/molecules27123796] [PMID: 35744920]
[59]
Sun, Y.; Ding, X.; Zheng, Z.; Cheng, X.; Hu, X.; Peng, Y. Surface initiated ATRP in the synthesis of iron oxide/polystyrene core/shell nanoparticles. Eur. Polym. J., 2007, 43(3), 762-772.
[http://dx.doi.org/10.1016/j.eurpolymj.2006.10.021]
[60]
Kwok, D.Y.; Neumann, A.W. Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci., 1999, 81(3), 167-249.
[http://dx.doi.org/10.1016/S0001-8686(98)00087-6]
[61]
Zhang, H.; Ramakrishnan, T.S.; Nikolov, A.; Wasan, D. Enhanced oil displacement by nanofluid’s structural disjoining pressure in model fractured porous media. J. Colloid Interface Sci., 2018, 511, 48-56.
[http://dx.doi.org/10.1016/j.jcis.2017.09.067] [PMID: 28972895]
[62]
Wang, H.; Lin, K.Y.; Jing, B.; Krylova, G.; Sigmon, G.E.; McGinn, P.; Zhu, Y.; Na, C. Removal of oil droplets from contaminated water using magnetic carbon nanotubes. Water Res., 2013, 47(12), 4198-4205.
[http://dx.doi.org/10.1016/j.watres.2013.02.056] [PMID: 23582309]