Exploration of Antileishmanial Compounds Derived from Natural Sources

Page: [1 - 13] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Aims: Leishmaniasis is a deadly tropical disease that is neglected in many countries. World Health Organization, along with a few other countries, has been working together to protect against these parasites. Many novel drugs from the past few years have been discovered and subjected against leishmaniasis, which have been effective but they are quite expensive for lower-class people. Some drugs showed no effect on the patients, and the longer use of these medicines has made resistance against these deadly parasites. Researchers have been working for better medication by using natural products from medicinal plants (oils, secondary metabolites, plant extracts) and other alternatives to find active compounds as an alternative to the current synthetic drugs.

Materials and Methods: To find more potential natural products to treat Leishmania spp, a study has been conducted and reported many plant metabolites and other natural alternatives from plants and their extracts. Selected research papers with few term words such as natural products, plant metabolites, Leishmaniasis, in vivo, in vitro, and treatment against leishmaniasis; in the Google Scholar, PubMed, and Science Direct databases with selected research papers published between 2015 and 2021 have been chosen for further analysis has been included in this report which has examined either in vivo or in vitro analysis.

Results: This paper reported more than 20 novel natural compounds in 20 research papers that have been identified which report a leishmanicidal activity and shows an action against promastigote, axenic, and intracellular amastigote forms.

Conclusion: Medicinal plants, along with a few plant parts and extracts, have been reported as a possible novel anti-leishmanial medication. These medicinal plants are considered nontoxic to Host cells. Leishmaniasis treatments will draw on the isolated compounds as a source further and these compounds compete with those already offered in clinics.

Graphical Abstract

[1]
Ogden, G.B.; Melby, P.C. Leishmania. Encycl. Microbiol., 2009, (Jan), 663-673.
[http://dx.doi.org/10.1016/B978-012373944-5.00195-4]
[2]
Gossage, S.M.; Rogers, M.E.; Bates, P.A. Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int. J. Parasitol., 2003, 33(10), 1027-1034.
[http://dx.doi.org/10.1016/S0020-7519(03)00142-5] [PMID: 13129524]
[3]
Leishmaniasis. Available from: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/leishmaniasis (Accessed Jun. 17, 2022).
[4]
Khan, M.; Bhaskar, K.; Kikuchi, M. Comparison of PCR-based diagnoses for visceral leishmaniasis in Bangladesh. Parasitol. Int., 2014, 63(2), 327-331.
[5]
Hosseininejad, M.; Mohebali, M.; Hosseini, F.; Karimi, S. Seroprevalence of canine visceral leishmaniasis in asymptomatic dogs in Iran. Iran. J. Vet. Res., 2012, 13(1), 54-57.
[6]
WHO. Control of the leishmaniases: Report of a meeting of the WHO Expert Commitee on the Control of Leishmaniases., 2010. Available from: https://apps.who.int/iris/handle/10665/44412?locale-attribute =ar&utm_source=transaction&utm_medium=email [ (Accessed: Jul. 01, 2022).
[7]
Handman, E. Cell biology of Leishmania. Adv. Parasitol., 1999, 44, 1-39.
[http://dx.doi.org/10.1016/S0065-308X(08)60229-8] [PMID: 10563394]
[8]
Oryan, A.; Mehrabani, D.; Owji, S.M.; Motazedian, M.H.; Hatam, G.H.; Asgari, Q. Morphologic changes due to cutaneous leishmaniosis in BALB/c mice experimentally infected with leishmania major. J. Appl. Anim. Res., 2011, 34(1), 87-92.
[http://dx.doi.org/10.1080/09712119.2008.9706946]
[9]
O’Dempsey, T. Topical treatment modalities for old world cutaneous leishmaniasis: A review. Prague Med. Rep., 2012, 113(2), 105-118.
[10]
Oryan, A.; Shirian, S.; Tabandeh, M.R.; Hatam, G.R.; Kalantari, M.; Daneshbod, Y. Molecular, cytological, and immunocytochemical study and kDNA sequencing of laryngeal Leishmania infantum infection. Parasitol. Res., 2013, 112(4), 1799-1804.
[http://dx.doi.org/10.1007/s00436-012-3240-z] [PMID: 23263387]
[11]
Al-Hajj, M.M.; Al-Shamahy, H.A.; Moharram, B. In vitro anti-leishmanial activity against cutaneous leishmania parasites and preliminary phytochemical analysis of four yemeni medicinal plants. Artic. Univers. J. Pharm. Res., 2018, 3(4)
[http://dx.doi.org/10.22270/ujpr.v3i4.183]
[12]
Gutiérrez-Rebolledo, G.A.; Drier-Jonas, S.; Jiménez-Arellanes, M.A. Natural compounds and extracts from Mexican medicinal plants with anti-leishmaniasis activity: An update. Asian Pac. J. Trop. Med., 2017, 10(12), 1105-1110.
[http://dx.doi.org/10.1016/j.apjtm.2017.10.016] [PMID: 29268964]
[13]
Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet, 2018, 392(10151), 951-970.
[http://dx.doi.org/10.1016/S0140-6736(18)31204-2] [PMID: 30126638]
[14]
Kimutai, R.; Musa, A.M.; Njoroge, S.; Omollo, R.; Alves, F.; Hailu, A.; Khalil, E.A.G.; Diro, E.; Soipei, P.; Musa, B.; Salman, K.; Ritmeijer, K.; Chappuis, F.; Rashid, J.; Mohammed, R.; Jameneh, A.; Makonnen, E.; Olobo, J.; Okello, L.; Sagaki, P.; Strub, N.; Ellis, S.; Alvar, J.; Balasegaram, M.; Alirol, E.; Wasunna, M. Safety and effectiveness of sodium stibogluconate and paromomycin combination for the treatment of visceral leishmaniasis in eastern Africa: Results from a pharmacovigilance programme. Clin. Drug Investig., 2017, 37(3), 259-272.
[http://dx.doi.org/10.1007/s40261-016-0481-0] [PMID: 28066878]
[15]
Sundar, S.; More, D.K.; Singh, M.K.; Singh, V.P.; Sharma, S.; Makharia, A.; Kumar, P.C.K.; Murray, H.W. Failure of pentavalent antimony in visceral leishmaniasis in India: Report from the center of the Indian epidemic. Clin. Infect. Dis., 2000, 31(4), 1104-1107.
[http://dx.doi.org/10.1086/318121] [PMID: 11049798]
[16]
Dorlo, T.P.C.; Huitema, A.D.R.; Beijnen, J.H.; de Vries, P.J. Optimal dosing of miltefosine in children and adults with visceral leishmaniasis. Antimicrob. Agents Chemother., 2012, 56(7), 3864-3872.
[http://dx.doi.org/10.1128/AAC.00292-12] [PMID: 22585212]
[17]
Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem., 2011, 46(10), 4769-4807.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.057] [PMID: 21889825]
[18]
Cragg, G.M.; Newman, D. J. Biodiversity: A continuing source of novel drug leads. Pure Appl. Chem., 2005, 77(1), 7-24.
[http://dx.doi.org/10.1351/pac200577010007]
[19]
Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.; Biavatti, M.W.; Brun, R.; Da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.; Lago, J.H.; Leon, L.L.; Lopes, N.P. das Neves Amorim, R.C.; Niehues, M.; Ogungbe, I.V.; Pohlit, A.M.; Scotti, M.T.; Setzer, W.N.; de N C Soeiro, M.; Steindel, M.; Tempone, A.G. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part II. Curr. Med. Chem., 2012, 19(14), 2176-2228.
[http://dx.doi.org/10.2174/092986712800229087] [PMID: 22414104]
[20]
Sajjadi, S. Natural anti-leishmaniasis compounds in traditional iranian medicine. JIITM, 2012, 3(1), 41-50.
[21]
da Silva, R.R.P.; da Silva, B.J.M.; Rodrigues, A.P.D.; Farias, L.H.S.; da Silva, M.N.; Alves, D.T.V.; Bastos, G.N.T.; do Nascimento, J.L.M.; Silva, E.O. In vitro biological action of aqueous extract from roots of Physalis angulata against Leishmania (Leishmania) amazonensis. BMC Complement. Altern. Med., 2015, 15(1), 249.
[http://dx.doi.org/10.1186/s12906-015-0717-1] [PMID: 26205771]
[22]
Badirzadeh, A.; Heidari-Kharaji, M.; Fallah-Omrani, V.; Dabiri, H.; Araghi, A.; Salimi Chirani, A. Antileishmanial activity of Urtica dioica extract against zoonotic cutaneous leishmaniasis. PLoS Negl. Trop. Dis., 2020, 14(1), e0007843.
[http://dx.doi.org/10.1371/journal.pntd.0007843] [PMID: 31929528]
[23]
Greve, H.L.; Kaiser, M.; Mäser, P.; Schmidt, T.J. Boswellic acids show in vitro activity against leishmania donovani. Molecules, 2021, 26(12), 3651.
[http://dx.doi.org/10.3390/molecules26123651] [PMID: 34203815]
[24]
Boswellia serrata-frankincense (A Jesus Gifted Herb); An Updated Pharmacological Profile. Available from: https://scialert.net/abstract/?doi=pharmacologia.2013.457.463 (Accessed Jun. 21, 2022).
[25]
Mahmoud, A.B.; Danton, O.; Kaiser, M.; Khalid, S.; Hamburger, M.; Mäser, P. HPLC-based activity profiling for antiprotozoal compounds in croton gratissimus and cuscuta hyalina. Front. Pharmacol., 2020, 11, 1246.
[http://dx.doi.org/10.3389/fphar.2020.01246] [PMID: 32922290]
[26]
Ngadjui, B.T.; Abegaz, B.M.; Keumedjio, F.; Folefoc, G.N.; Kapche, G.W.F. Diterpenoids from the stem bark of Croton zambesicus. Phytochemistry, 2002, 60(4), 345-349.
[http://dx.doi.org/10.1016/S0031-9422(02)00034-1] [PMID: 12031423]
[27]
Aderogba, M.A.; McGaw, L.J.; Bezabih, M.; Abegaz, B.M. Isolation and characterisation of novel antioxidant constituents of Croton zambesicus leaf extract. Nat. Prod. Res., 2011, 2513, 1224-1233.
[http://dx.doi.org/10.1080/14786419.2010.532499]
[28]
Antileishmania activity of Levandula officinalis essence against Leishmania major in In vitro media - Shahrekord University Of Medical Sciences. Available from: http://eprints.skums.ac.ir/3619/(accessed Jun. 23, 2022)
[29]
Baloch, N.; Kakar, A.M.; Nabi, S.; Wajid, Z.; Kakar, M.A.; Al-Kahraman, Y.M.S.A. In vitro antimicrobial, insecticidal, antitumor activities and their phytochemical estimation of methanolic extract and its fractions of Medicago lupulina leaves. World Appl. Sci. J., 2013, 23(4), 500-506.
[http://dx.doi.org/10.5829/IDOSI.WASJ.2013.23.04.368]
[30]
Eskandari, E.G.; Doudi, M. International Journal of Farming and Allied Sciences The study of antileishmanial effect of Medicago lupulina leaves essential oil on Leishmania major (MRHO/IR/75/ER) by MTT assay 2016. Available from: www.ijfas.com(Accessed: Jun. 24, 2022)
[31]
Preliminary Phytochemical Analysis and Antimicrobial Activity of Some Weeds collected from Marathwada Region | Nagesh A Dhole - Academia.edu. Available from: https://www.academia.edu/22336709/Preliminary_Phytochemical_Analysis_and_Antimicrobial_Activity_of_Some_Weeds_collected_from_Marathwada_Region (Accessed Jun. 24, 2022)
[32]
Elham Gharirvand, E. An In vitro study of antileishmanial effect of Portulaca oleracea. Available from: https://www.jvbd.org/temp/JVectorBorneDis534362-6886259_190742.pdf
[33]
Doudi, M.; Shirazi, S. Antileishmanial effect of Crataegus microphylla leaf extract on Leishmania major (MRHO/IR/75/ER) promastigotes. Int. J. Mol. Clin. Microbiol., 2017, 7(1), 761-768.
[34]
Albakhit, S.; Khademvatan, S.; Doudi, M.; Foroutan-Rad, M. Antileishmanial activity of date (phoenix dactylifera l) fruit and pit extracts in vitro. J. Evid. Based Complementary Altern. Med., 2016, 21(4), NP98-NP102.
[http://dx.doi.org/10.1177/2156587216651031] [PMID: 27242378]
[35]
Baliga, M.S.; Baliga, B.R.V.; Kandathil, S.M.; Bhat, H.P.; Vayalil, P.K. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res. Int., 2011, 44(7), 1812-1822.
[http://dx.doi.org/10.1016/j.foodres.2010.07.004]
[36]
Ljubuncic, P.; Portnaya, I.; Cogan, U.; Azaizeh, H.; Bomzon, A. Antioxidant activity of Crataegus aronia aqueous extract used in traditional Arab medicine in Israel. J. Ethnopharmacol., 2005, 101(1-3), 153-161.
[http://dx.doi.org/10.1016/j.jep.2005.04.024] [PMID: 15970411]
[37]
Rigelsky, J.M.; Sweet, B.V. Hawthorn: Pharmacology and therapeutic uses. Am. J. Health Syst. Pharm., 2002, 59(5), 417-422.
[http://dx.doi.org/10.1093/ajhp/59.5.417] [PMID: 11887407]
[38]
Dabirzadeh, M. Effect of methanolic extract of hawthorn (Crataegus aronia) fruit on Leishmania major in vitro. Feyz, 2016, 20(1), 11-15.
[39]
Demarchi, I.G.; Thomazella, M.V.; de Souza Terron, M.; Lopes, L.; Gazim, Z.C.; Cortez, D.A.G.; Donatti, L.; Aristides, S.M.A.; Silveira, T.G.V.; Lonardoni, M.V.C. Antileishmanial activity of essential oil and 6,7-dehydroroyleanone isolated from Tetradenia riparia. Exp. Parasitol., 2015, 157, 128-137.
[http://dx.doi.org/10.1016/j.exppara.2015.06.014] [PMID: 26116864]
[40]
Polya, G. Biochemical targets of plant bioactive compounds A pharmacological reference guide to sites of action and biological effects; CRC Press, 2003.
[41]
Shale, T.L.; Stirk, W.A.; van Staden, J. Screening of medicinal plants used in Lesotho for anti-bacterial and anti-inflammatory activity. J. Ethnopharmacol., 1999, 67(3), 347-354.
[http://dx.doi.org/10.1016/S0378-8741(99)00035-5] [PMID: 10617071]
[42]
Van Puyvelde, L.; De Kimpe, N.; Ayobangira, F.X.; Costa, J.; Nshimyumukiza, P.; Boily, Y.; Hakizamungu, E.; Schamp, N. Wheat rootlet growth inhibition test of Rwandese medicinal plants: Active principles of Tetradenia riparia and Diplolophium africanum. J. Ethnopharmacol., 1988, 24(2-3), 233-246.
[http://dx.doi.org/10.1016/0378-8741(88)90156-0] [PMID: 3253494]
[43]
Gazim, Z.C. Seasonal variation, chemical composition, and analgesic and antimicrobial activities of the essential oil from leaves of tetradenia riparia (hochst.) codd in southern brazil. Molecules, 2010, 15(8), 5509-5524.
[http://dx.doi.org/10.3390/molecules15085509]
[44]
Kusumoto, N.; Ashitani, T.; Hayasaka, Y.; Murayama, T.; Ogiyama, K.; Takahashi, K. Antitermitic activities of abietane-type diterpenes from taxodium distichum cones. J. Chem. Ecol., 2009, 35(6), 635-642.
[http://dx.doi.org/10.1007/s10886-009-9646-0]
[45]
Gupta, G.; Peine, K.J.; Abdelhamid, D.; Snider, H.; Shelton, A.B.; Rao, L.; Kotha, S.R.; Huntsman, A.C.; Varikuti, S.; Oghumu, S.; Naman, C.B.; Pan, L.; Parinandi, N.L.; Papenfuss, T.L.; Kinghorn, A.D.; Bachelder, E.M.; Ainslie, K.M.; Fuchs, J.R.; Satoskar, A.R. A novel sterol isolated from a plant used by mayan traditional healers is effective in treatment of visceral leishmaniasis caused by leishmania donovani. ACS Infect. Dis., 2015, 1(10), 497-506.
[http://dx.doi.org/10.1021/acsinfecdis.5b00081] [PMID: 27623316]
[46]
Chan-Bacab, M.J.; Balanza, E.; Deharo, E.; Muñoz, V.; García, R.D.; Peña-Rodríguez, L.M. Variation of leishmanicidal activity in four populations of Urechites andrieuxii. J. Ethnopharmacol., 2003, 86(2-3), 243-247.
[http://dx.doi.org/10.1016/S0378-8741(03)00011-4] [PMID: 12738094]
[47]
Lezama-Dávila, C.M.; Pan, L.; Isaac-Márquez, A.P.; Terrazas, C.; Oghumu, S.; Isaac-Márquez, R.; Pech-Dzib, M.Y.; Barbi, J.; Calomeni, E.; Parinandi, N.; Kinghorn, A.D.; Satoskar, A.R. Pentalinon andrieuxii root extract is effective in the topical treatment of cutaneous leishmaniasis caused by Leishmania mexicana. Phytother. Res., 2014, 28(6), 909-916.
[http://dx.doi.org/10.1002/ptr.5079] [PMID: 24347110]
[48]
Biological activities of the plant‐derived bisindole voacamine with reference to malaria - Ramanitrahasimbola. Phytotherapy Research; Wiley 2001.
[49]
Chowdhury, S.R.; Kumar, A.; Godinho, J.L.P.; De Macedo Silva, S.T.; Zuma, A.A.; Saha, S.; Kumari, N.; Rodrigues, J.C.F.; Sundar, S.; Dujardin, J.C.; Roy, S.; De Souza, W.; Mukhopadhyay, S.; Majumder, H.K. Voacamine alters Leishmania ultrastructure and kills parasite by poisoning unusual bi-subunit topoisomerase IB. Biochem. Pharmacol., 2017, 138, 19-30.
[http://dx.doi.org/10.1016/j.bcp.2017.05.002] [PMID: 28483460]
[50]
Al Nasr, I. In vitro anti-leishmanial assessment of some medicinal plants collected from al qassim, Saudi Arabia. Acta Parasitol., 2020, 65(3), 696-703, 1234.
[http://dx.doi.org/10.2478/s11686-020-00205-2] [PMID: 32347535]
[51]
Shah, S.M. Benzoic Acid Derivatives of Ifloga spicata (Forssk.) Sch.Bip. as Potential Anti-Leishmanial against Leishmania tropica. Process, 2019, 7(4), 208.
[http://dx.doi.org/10.3390/pr7040208]
[52]
Hammiche, V.; Maiza, K. Traditional medicine in Central Sahara: Pharmacopoeia of Tassili N’ajjer. J. Ethnopharmacol., 2006, 105(3), 358-367.
[http://dx.doi.org/10.1016/j.jep.2005.11.028] [PMID: 16414225]
[53]
Abouri, M.; El Mousadik, A.; Msanda, F. An ethnobotanical survey of medicinal plants used in the Tata Province, Morocco. 2012. Available from: https://www.academia.edu/download/65902670/An_ethnobotanical_survey_of_medicinal_pl20210305-15320-1rd0ng9.pdf
[54]
Ayrom, F.; Rasouli, S.; Shemshadi, B. In vitro antileishmanial activity of achillea santolina essential oil against leishmania infantum Promastigote by Methylthiazole Tetrazolium (MTT) and trypan blue colorimetric methods. Arch. Razi Inst., 2021, 76(3), 529-536.
[http://dx.doi.org/10.22092/ARI.2020.352245.1555] [PMID: 34824746]
[55]
Nayebpour, M.; Golalipour, M.J.; Khori, V.; Azarhoush, R.; Azadbakht, M. Effect of Achillea santolina on mice spermatogenesis. DARU J. Pharmaceut. Sci, 2004, 12(1)
[56]
Nemeth, E.; Bernath, J. Biological activities of yarrow species (Achillea spp.). Curr. Pharm. Des., 2008, 14(29), 3151-3167.
[http://dx.doi.org/10.2174/138161208786404281] [PMID: 19075697]
[57]
Rottini, M.M. Endlicheria bracteolata (meisn.) essential oil as a weapon against leishmania amazonensis: In vitro assay. Molecules, 2019, 24(14), 2525.
[http://dx.doi.org/10.3390/molecules24142525]
[58]
Pramanik, P.K.; Paik, D.; Pramanik, A.; Chakraborti, T. White jute (Corchorus capsularis L.) leaf extract has potent leishmanicidal activity against Leishmania donovani. Parasitol. Int., 2019, 71, 41-45.
[http://dx.doi.org/10.1016/j.parint.2019.03.012] [PMID: 30890371]
[59]
Islam, M.S.; Alfasane, M.A.; Khondker, M. Planktonic primary productivity of a eutrophic water body of Dhaka Metropolis, Bangladesh. Bangladesh J. Bot., 2013, 41(2), 135-142.
[http://dx.doi.org/10.3329/bjb.v41i2.13437]
[60]
Zakaria, Z.A.; Sulaiman, M.R.; Gopalan, H.K.; Abdul Ghani, Z.D.; Raden Mohd Nor, R.N.; Mat Jais, A.M.; Abdullah, F.C. Antinociceptive and anti-inflammatory properties of Corchorus capsularis leaves chloroform extract in experimental animal models. Yakugaku Zasshi, 2007, 127(2), 359-365.
[http://dx.doi.org/10.1248/yakushi.127.359] [PMID: 17268156]
[61]
Kharat, M.; Kharat, K.; Sundar, S.; Pai, K. Metabolomic approach to study the Aerva sanguinolenta plant extract mechanism of action in Leishmania parasite. Int. J. Infect. Dis., 2018, 73, 144.
[http://dx.doi.org/10.1016/j.ijid.2018.04.3740]
[62]
Sarker, J.; Ali, M.R.; Khan, M.A.; Rahman, M.M.; Hossain, A.S.M.S.; Alam, A.H.M.K. The plant aerva sanguinolenta: A review on traditional uses, phytoconstituents and pharmacological activities. Pharmacogn. Rev., 2021, 13(26), 89-92.
[http://dx.doi.org/10.5530/phrev.2019.2.9]
[63]
Sahid, E.D.N.; Claudino, J.C.; Oda, F.B.; Carvalho, F.A.; Santos, A.G.; Graminha, M.A.S.; Clementino, L.C. Baccharis trimera (Less.) DC leaf derivatives and eupatorin activities against Leishmania amazonensis. Nat. Prod. Res., 2022, 36(6), 1599-1603.
[http://dx.doi.org/10.1080/14786419.2021.1887175] [PMID: 33586545]
[64]
Menezes, A.P.S.; da Silva, J.; Fisher, C.; da Silva, F.R.; Reyes, J.M.; Picada, J.N.; Ferraz, A.G.; Corrêa, D.S.; Premoli, S.M.; Dias, J.F.; de Souza, C.T.; Ferraz, A.B.F. Chemical and toxicological effects of medicinal Baccharis trimera extract from coal burning area. Chemosphere, 2016, 146, 396-404.
[http://dx.doi.org/10.1016/j.chemosphere.2015.12.028] [PMID: 26741544]
[65]
Pádua, B.C.; Silva, L.D.; Rossoni, J.V.; Humberto, J.L.; Chaves, M.M.; Silva, M.E.; Pedrosa, M.L.; Costa, D.C. Antioxidant properties of Baccharis trimera in the neutrophils of Fisher rats. J. Ethnopharmacol., 2010, 129(3), 381-386.
[http://dx.doi.org/10.1016/j.jep.2010.04.018] [PMID: 20430095]
[66]
Pereira, W.K.V.; Lonardoni, M.V.C.; Grespan, R.; Caparroz-Assef, S.M.; Cuman, R.K.N.; Bersani-Amado, C.A. Immunomodulatory effect of Canova medication on experimental Leishmania amazonensis infection. J. Infect., 2005, 51(2), 157-164.
[http://dx.doi.org/10.1016/j.jinf.2004.09.009] [PMID: 16038768]
[67]
Fonseca-Silva, F.; Inacio, J.D.F.; Canto-Cavalheiro, M.M.; Almeida-Amaral, E.E. Reactive oxygen species production by quercetin causes the death of Leishmania amazonensis intracellular amastigotes. J. Nat. Prod., 2013, 76(8), 1505-1508.
[http://dx.doi.org/10.1021/np400193m] [PMID: 23876028]
[68]
Da Silva, B.J.M.; Da Silva, R.R.P.; Rodrigues, A.P.D.; Farias, L.H.S.; Do Nascimento, J.L.M.; Silva, E.O. Physalis angulata induces death of promastigotes and amastigotes of Leishmania (Leishmania) amazonensis via the generation of reactive oxygen species. Micron, 2016, 82, 25-32.
[http://dx.doi.org/10.1016/j.micron.2015.12.001] [PMID: 26765293]
[69]
Fürst, R.; Zündorf, I. Plant-derived anti-inflammatory compounds: Hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators Inflamm., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/146832] [PMID: 24987194]
[70]
Das, A.; Ali, N. Vaccine development against Leishmania donovani. Front. Immunol., 2012, 3(MAY), 99.
[http://dx.doi.org/10.3389/FIMMU.2012.00099/BIBTEX] [PMID: 22615707]
[71]
Abdellahi, L.; Iraji, F.; Mahmoudabadi, A.; Hejazi, S.H. Vaccination in leishmaniasis: A review article. Iran. Biomed. J., 2022, 26(1), 1-35.
[http://dx.doi.org/10.52547/IBJ.26.1.35] [PMID: 34952558]
[72]
Reguera, R.M.; Elmahallawy, E.K.; García-Estrada, C.; Carbajo-Andrés, R.; Balaña-Fouce, R. DNA topoisomerases of leishmania parasites; druggable targets for drug discovery. Curr. Med. Chem., 2019, 26(32), 5900-5923.
[http://dx.doi.org/10.2174/0929867325666180518074959] [PMID: 29773051]
[73]
Peretz, A.; Zabari, L.; Pastukh, N.; Avital, N.; Masaphy, S. In vitro antileishmanial activity of a black morel, morchella importuna (Ascomycetes). Int. J. Med. Mushrooms, 2018, 20(1), 71-80.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2018025313] [PMID: 29604914]
[74]
Souza, G.S.; de Carvalho, L.P.; de Melo, E.J.T.; Gomes, V.M.; Carvalho, A.O. The toxic effect of Vu -Defr, a defensin from Vigna unguiculata seeds, on Leishmania amazonensis is associated with reactive oxygen species production, mitochondrial dysfunction, and plasma membrane perturbation. Can. J. Microbiol., 2018, 64(7), 455-464.
[http://dx.doi.org/10.1139/cjm-2018-0095] [PMID: 29586486]
[75]
Reithinger, R.; Dujardin, J.C.; Louzir, H.; Pirmez, C.; Alexander, B.; Brooker, S. Cutaneous leishmaniasis. Lancet Infect. Dis., 2007, 7(9), 581-596.
[http://dx.doi.org/10.1016/S1473-3099(07)70209-8] [PMID: 17714672]
[76]
Oryan, A. Plant-derived compounds in treatment of leishmaniasis. J. Vet. Res., 2015, 16(1), 1.