Cardiovascular & Hematological Agents in Medicinal Chemistry

Author(s): Lu Liu, Guneet Inderjeet Kaur, Avinash Kumar, Abhinav Kanwal and Shailendra Pratap Singh*

DOI: 10.2174/0118715257273506231208045308

The Role of Gut Microbiota and Associated Compounds in Cardiovascular Health and its Therapeutic Implications

Page: [375 - 389] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

It is possible that gut bacteria may have a beneficial effect on cardiovascular health in humans. It may play a major role in the progression of a variety of cardiovascular diseases, including Heart Failure (HF), Atherosclerosis, Coronary Arterial Disease (CAD), Ischemic Heart Disease (IHD), and Others. Dysbiosis of the gut microbiota, along with its direct and indirect impact on gut health, may induce cardiovascular disorders. Although advanced studies have demonstrated the relationship of various metabolites to cardiovascular diseases (CVD) in animals, translating their functional capacity to humans remains a significant area of research. This paper simplifies the demonstration of some compounds, pathways, and components like Trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and butyrate production. It demonstrates how a change in eating habits causes TMAO and how the impact of different drugs on gut microbiota species and high consumption of Westernized food causes several heartrelated problems, such as atherosclerosis and inflammation that can even become the cause of heart failure. Modulation of the gut microbiome, on the other hand, is a novel therapeutic measure because it can be easily altered through diet and other lifestyle changes. It could then be used to lower the risk of several CVDs.

[1]
Forkosh, E.; Ilan, Y. The heart-gut axis: New target for atherosclerosis and congestive heart failure therapy. Open Heart, 2019, 6(1), e000993.
[http://dx.doi.org/10.1136/openhrt-2018-000993] [PMID: 31168383]
[2]
Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res., 2020, 30(6), 492-506.
[http://dx.doi.org/10.1038/s41422-020-0332-7] [PMID: 32433595]
[3]
Zhang, Y.; Wang, Y.; Ke, B.; Du, J. TMAO: How gut microbiota contributes to heart failure. Transl. Res., 2021, 228, 109-125.
[http://dx.doi.org/10.1016/j.trsl.2020.08.007] [PMID: 32841736]
[4]
Tang, W.H.W.; Li, D.Y.; Hazen, S.L. Dietary metabolism, the gut microbiome, and heart failure. Nat. Rev. Cardiol., 2019, 16(3), 137-154.
[http://dx.doi.org/10.1038/s41569-018-0108-7] [PMID: 30410105]
[5]
Aho, V.T.E.; Houser, M.C.; Pereira, P.A.B.; Chang, J.; Rudi, K.; Paulin, L.; Hertzberg, V.; Auvinen, P.; Tansey, M.G.; Scheperjans, F. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol. Neurodegener., 2021, 16(1), 6.
[http://dx.doi.org/10.1186/s13024-021-00427-6] [PMID: 33557896]
[6]
DeGruttola, A.K.; Low, D.; Mizoguchi, A.; Mizoguchi, E. Current understanding of dysbiosis in disease in human and animal models. Inflamm. Bowel Dis., 2016, 22(5), 1137-1150.
[http://dx.doi.org/10.1097/MIB.0000000000000750] [PMID: 27070911]
[7]
Galland, L. The gut microbiome and the brain. J. Med. Food, 2014, 17(12), 1261-1272.
[http://dx.doi.org/10.1089/jmf.2014.7000] [PMID: 25402818]
[8]
Määttä, A.M.; Salminen, A.; Pietiäinen, M.; Leskelä, J.; Palviainen, T.; Sattler, W.; Sinisalo, J.; Salomaa, V.; Kaprio, J.; Pussinen, P.J. Endotoxemia is associated with an adverse metabolic profile. Innate Immun., 2021, 27(1), 3-14.
[http://dx.doi.org/10.1177/1753425920971702] [PMID: 33243051]
[9]
Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; Bhutani, T.; Liao, W. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med., 2017, 15(1), 73.
[http://dx.doi.org/10.1186/s12967-017-1175-y] [PMID: 28388917]
[10]
Roberts, A.B.; Gu, X.; Buffa, J.A.; Hurd, A.G.; Wang, Z.; Zhu, W.; Gupta, N.; Skye, S.M.; Cody, D.B.; Levison, B.S.; Barrington, W.T.; Russell, M.W.; Reed, J.M.; Duzan, A.; Lang, J.M.; Fu, X.; Li, L.; Myers, A.J.; Rachakonda, S.; DiDonato, J.A.; Brown, J.M.; Gogonea, V.; Lusis, A.J.; Garcia-Garcia, J.C.; Hazen, S.L. Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med., 2018, 24(9), 1407-1417.
[http://dx.doi.org/10.1038/s41591-018-0128-1] [PMID: 30082863]
[11]
Tang, W.H.W.; Wang, Z.; Kennedy, D.J.; Wu, Y.; Buffa, J.A.; Agatisa-Boyle, B.; Li, X.S.; Levison, B.S.; Hazen, S.L. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res., 2015, 116(3), 448-455.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305360] [PMID: 25599331]
[12]
Zhou, J.; Li, M.; Chen, Q.; Li, X.; Chen, L.; Dong, Z.; Zhu, W.; Yang, Y.; Liu, Z.; Chen, Q. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery. Nat. Commun., 2022, 13(1), 3432.
[http://dx.doi.org/10.1038/s41467-022-31171-0] [PMID: 35701435]
[13]
Krueger, E.S.; Lloyd, T.S.; Tessem, J.S. The accumulation and molecular effects of trimethylamine N-oxide on metabolic tissues: It’s not all bad. Nutrients, 2021, 13(8), 2873.
[http://dx.doi.org/10.3390/nu13082873] [PMID: 34445033]
[14]
Li, J.; Li, Y.; Ivey, K.L.; Wang, D.D.; Wilkinson, J.E.; Franke, A.; Lee, K.H.; Chan, A.; Huttenhower, C.; Hu, F.B.; Rimm, E.B.; Sun, Q. Interplay between diet and gut microbiome, and circulating concentrations of trimethylamine N-oxide: Findings from a longitudinal cohort of US men. Gut, 2022, 71(4), 724-733.
[http://dx.doi.org/10.1136/gutjnl-2020-322473] [PMID: 33926968]
[15]
Organ, C.L.; Otsuka, H.; Bhushan, S.; Wang, Z.; Bradley, J.; Trivedi, R.; Polhemus, D.J.; Tang, W.H.W.; Wu, Y.; Hazen, S.L.; Lefer, D.J. Choline diet and its gut microbe–derived metabolite, trimethylamine N-oxide, exacerbate pressure overload–induced heart failure. Circ. Heart Fail., 2016, 9(1), e002314.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.115.002314] [PMID: 26699388]
[16]
Chen, K.; Zheng, X.; Feng, M.; Li, D.; Zhang, H. Gut microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice. Front. Physiol., 2017, 8, 139.
[http://dx.doi.org/10.3389/fphys.2017.00139] [PMID: 28377725]
[17]
Barrea, L.; Annunziata, G.; Muscogiuri, G.; Di Somma, C.; Laudisio, D.; Maisto, M.; de Alteriis, G.; Tenore, G.; Colao, A.; Savastano, S. Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients, 2018, 10(12), 1971.
[http://dx.doi.org/10.3390/nu10121971] [PMID: 30551613]
[18]
Trøseid, M.; Andersen, G.Ø.; Broch, K.; Hov, J.R. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine, 2020, 52, 102649.
[http://dx.doi.org/10.1016/j.ebiom.2020.102649]
[19]
Faheem, S.A.; Saeed, N.M.; El-Naga, R.N.; Ayoub, I.M.; Azab, S.S. Hepatoprotective effect of cranberry nutraceutical extract in non-alcoholic fatty liver model in rats: Impact on insulin resistance and Nrf-2 expression. Front. Pharmacol., 2020, 11, 218.
[http://dx.doi.org/10.3389/fphar.2020.00218] [PMID: 32256346]
[20]
Boutagy, N.E.; Neilson, A.P.; Osterberg, K.L.; Smithson, A.T.; Englund, T.R.; Davy, B.M.; Hulver, M.W.; Davy, K.P. Probiotic supplementation and trimethylamine‐ N ‐oxide production following a high‐fat diet. Obesity, 2015, 23(12), 2357-2363.
[http://dx.doi.org/10.1002/oby.21212] [PMID: 26465927]
[21]
Chou, R.H.; Chen, C.Y.; Chen, I.C.; Huang, H.L.; Lu, Y.W.; Kuo, C.S.; Chang, C.C.; Huang, P.H.; Chen, J.W.; Lin, S.J. Trimethylamine N-oxide, circulating endothelial progenitor cells, and endothelial function in patients with stable angina. Sci. Rep., 2019, 9(1), 4249.
[http://dx.doi.org/10.1038/s41598-019-40638-y] [PMID: 30862856]
[22]
Ma, G.; Pan, B.; Chen, Y.; Guo, C.; Zhao, M.; Zheng, L.; Chen, B. Trimethylamine N-oxide in atherogenesis: Impairing endothelial self-repair capacity and enhancing monocyte adhesion. Biosci. Rep., 2017, 37(2), BSR20160244.
[http://dx.doi.org/10.1042/BSR20160244] [PMID: 28153917]
[23]
Cheng, X.; Qiu, X.; Liu, Y.; Yuan, C.; Yang, X. Trimethylamine N-oxide promotes tissue factor expression and activity in vascular endothelial cells: A new link between trimethylamine N-oxide and atherosclerotic thrombosis. Thromb. Res., 2019, 177, 110-116.
[http://dx.doi.org/10.1016/j.thromres.2019.02.028] [PMID: 30875490]
[24]
Simó, C.; García-Cañas, V. Dietary bioactive ingredients to modulate the gut microbiota-derived metabolite TMAO. New opportunities for functional food development. Food Funct., 2020, 11(8), 6745-6776.
[http://dx.doi.org/10.1039/D0FO01237H] [PMID: 32686802]
[25]
Caricilli, A.; Saad, M. The role of gut microbiota on insulin resistance. Nutrients, 2013, 5(3), 829-851.
[http://dx.doi.org/10.3390/nu5030829] [PMID: 23482058]
[26]
Harris, K.; Kassis, A.; Major, G.; Chou, C.J. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J. Obes., 2012, 2012, 879151.
[27]
Tamburini, S.; Shen, N.; Wu, H.C.; Clemente, J.C. The microbiome in early life: Implications for health outcomes. Nat. Med., 2016, 22(7), 713-722.
[http://dx.doi.org/10.1038/nm.4142] [PMID: 27387886]
[28]
Li, J.; Lin, S.; Vanhoutte, P.M.; Woo, C.W.; Xu, A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in apoe−/− mice. Circulation, 2016, 133(24), 2434-2446.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.019645] [PMID: 27143680]
[29]
Ahmed, I.; Roy, B.; Khan, S.; Septer, S.; Umar, S. Microbiome, metabolome and inflammatory bowel disease. Microorganisms, 2016, 4(2), 20.
[http://dx.doi.org/10.3390/microorganisms4020020] [PMID: 27681914]
[30]
Trego, A.; Keating, C.; Nzeteu, C.; Graham, A.; O’Flaherty, V.; Ijaz, U.Z. Beyond basic diversity estimates—Analytical tools for mechanistic interpretations of amplicon sequencing data. Microorganisms, 2022, 10(10), 1961.
[http://dx.doi.org/10.3390/microorganisms10101961] [PMID: 36296237]
[31]
Liu, S.; Moon, C.D.; Zheng, N.; Huws, S.; Zhao, S.; Wang, J. Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation. Microbiome, 2022, 10(1), 76.
[http://dx.doi.org/10.1186/s40168-022-01272-5] [PMID: 35546409]
[32]
Verster, A.J.; Borenstein, E. Competitive lottery-based assembly of selected clades in the human gut microbiome. Microbiome, 2018, 6(1), 186.
[http://dx.doi.org/10.1186/s40168-018-0571-8] [PMID: 30340536]
[33]
Eng, A.; Borenstein, E. Taxa-function robustness in microbial communities. Microbiome, 2018, 6(1), 45.
[http://dx.doi.org/10.1186/s40168-018-0425-4] [PMID: 29499759]
[34]
Chen, W.; Zhang, S.; Wu, J.; Ye, T.; Wang, S.; Wang, P.; Xing, D. Butyrate-producing bacteria and the gut-heart axis in atherosclerosis. Clin. Chim. Acta, 2020, 507, 236-241.
[http://dx.doi.org/10.1016/j.cca.2020.04.037] [PMID: 32376324]
[35]
Darcy, J.L.; Amend, A.S.; Swift, S.O.I.; Sommers, P.S.; Lozupone, C.A. specificity: An R package for analysis of feature specificity to environmental and higher dimensional variables, applied to microbiome species data. Environ. Microbiol., 2022, 17(1), 34.
[http://dx.doi.org/10.1186/s40793-022-00426-0] [PMID: 35752802]
[36]
Keating, C.; Bolton-Warberg, M.; Hinchcliffe, J.; Davies, R.; Whelan, S.; Wan, A.H.L.; Fitzgerald, R.D.; Davies, S.J.; Ijaz, U.Z.; Smith, C.J. Temporal changes in the gut microbiota in farmed Atlantic cod (Gadus morhua) outweigh the response to diet supplementation with macroalgae. Anim. Microbiome, 2021, 3(1), 7.
[http://dx.doi.org/10.1186/s42523-020-00065-1] [PMID: 33500003]
[37]
De Vrieze, J.; Pinto, A.J.; Sloan, W.T.; Ijaz, U.Z. The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome, 2018, 6(1), 63.
[http://dx.doi.org/10.1186/s40168-018-0449-9] [PMID: 29609653]
[38]
Silva, Y.P.; Bernardi, A.; Frozza, R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol., 2020, 11, 25.
[http://dx.doi.org/10.3389/fendo.2020.00025] [PMID: 32082260]
[39]
Blaak, E.E.; Canfora, E.E.; Theis, S.; Frost, G.; Groen, A.K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; van Harsselaar, J.; van Tol, R.; Vaughan, E.E.; Verbeke, K. Short chain fatty acids in human gut and metabolic health. Benef. Microbes, 2020, 11(5), 411-455.
[http://dx.doi.org/10.3920/BM2020.0057] [PMID: 32865024]
[40]
Yiew, K.H.; Chatterjee, T.K.; Hui, D.Y.; Weintraub, N.L. Histone deacetylases and cardiometabolic diseases. Arterioscler. Thromb. Vasc. Biol., 2015, 35(9), 1914-1919.
[http://dx.doi.org/10.1161/ATVBAHA.115.305046] [PMID: 26183616]
[41]
Hara, T.; Kimura, I.; Inoue, D.; Ichimura, A.; Hirasawa, A. Free fatty acid receptors and their role in regulation of energy metabolism. Rev. Physiol. Biochem. Pharmacol., 2013, 164, 77-116.
[http://dx.doi.org/10.1007/112_2013_13]
[42]
Ichimura, A.; Hasegawa, S.; Kasubuchi, M.; Kimura, I. Free fatty acid receptors as therapeutic targets for the treatment of diabetes. Front. Pharmacol., 2014, 5, 236.
[http://dx.doi.org/10.3389/fphar.2014.00236]
[43]
Chambers, E.S.; Preston, T.; Frost, G.; Morrison, D.J. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr. Nutr. Rep., 2018, 7(4), 198-206.
[http://dx.doi.org/10.1007/s13668-018-0248-8] [PMID: 30264354]
[44]
Du, Y.; Li, X.; Su, C.; Xi, M.; Zhang, X.; Jiang, Z.; Wang, L.; Hong, B. Butyrate protects against high‐fat diet‐induced atherosclerosis via up‐regulating ABCA1 expression in apolipoprotein E‐deficiency mice. Br. J. Pharmacol., 2020, 177(8), 1754-1772.
[http://dx.doi.org/10.1111/bph.14933] [PMID: 31769014]
[45]
Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol., 2019, 10, 277.
[http://dx.doi.org/10.3389/fimmu.2019.00277] [PMID: 30915065]
[46]
Seeliger, S.; Janssen, P.H.; Schink, B. Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. FEMS Microbiol. Lett., 2002, 211(1), 65-70.
[http://dx.doi.org/10.1111/j.1574-6968.2002.tb11204.x] [PMID: 12052552]
[47]
Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol., 2017, 19(1), 29-41.
[http://dx.doi.org/10.1111/1462-2920.13589] [PMID: 27928878]
[48]
Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; Wu, Y.; Schauer, P.; Smith, J.D.; Allayee, H.; Tang, W.H.W.; DiDonato, J.A.; Lusis, A.J.; Hazen, S.L. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011, 472(7341), 57-63.
[http://dx.doi.org/10.1038/nature09922] [PMID: 21475195]
[49]
Tang, W.H.W.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med., 2013, 368(17), 1575-1584.
[http://dx.doi.org/10.1056/NEJMoa1109400] [PMID: 23614584]
[50]
Rosser, E.C.; Piper, C.J.M.; Matei, D.E.; Blair, P.A.; Rendeiro, A.F.; Orford, M.; Alber, D.G.; Krausgruber, T.; Catalan, D.; Klein, N.; Manson, J.J.; Drozdov, I.; Bock, C.; Wedderburn, L.R.; Eaton, S.; Mauri, C. Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells. Cell Metab., 2020, 31(4), 837-851.e10.
[http://dx.doi.org/10.1016/j.cmet.2020.03.003] [PMID: 32213346]
[51]
Kimura, I.; Ozawa, K.; Inoue, D.; Imamura, T.; Kimura, K.; Maeda, T.; Terasawa, K.; Kashihara, D.; Hirano, K.; Tani, T.; Takahashi, T.; Miyauchi, S.; Shioi, G.; Inoue, H.; Tsujimoto, G. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun., 2013, 4(1), 1829.
[http://dx.doi.org/10.1038/ncomms2852] [PMID: 23652017]
[52]
Lin, H.V.; Frassetto, A.; Kowalik, E.J., Jr; Nawrocki, A.R.; Lu, M.M.; Kosinski, J.R.; Hubert, J.A.; Szeto, D.; Yao, X.; Forrest, G.; Marsh, D.J. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One, 2012, 7(4), e35240.
[http://dx.doi.org/10.1371/journal.pone.0035240] [PMID: 22506074]
[53]
Li, Z.; Yi, C.X.; Katiraei, S.; Kooijman, S.; Zhou, E.; Chung, C.K.; Gao, Y.; van den Heuvel, J.K.; Meijer, O.C.; Berbée, J.F.P.; Heijink, M.; Giera, M.; Willems van Dijk, K.; Groen, A.K.; Rensen, P.C.N.; Wang, Y. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut, 2018, 67(7), 1269-1279.
[http://dx.doi.org/10.1136/gutjnl-2017-314050] [PMID: 29101261]
[54]
Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; Takahashi, M.; Fukuda, N.N.; Murakami, S.; Miyauchi, E.; Hino, S.; Atarashi, K.; Onawa, S.; Fujimura, Y.; Lockett, T.; Clarke, J.M.; Topping, D.L.; Tomita, M.; Hori, S.; Ohara, O.; Morita, T.; Koseki, H.; Kikuchi, J.; Honda, K.; Hase, K.; Ohno, H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 2013, 504(7480), 446-450.
[http://dx.doi.org/10.1038/nature12721] [PMID: 24226770]
[55]
Segain, J-P.; Raingeard de la Blétière, D.; Bourreille, A.; Leray, V.; Gervois, N.; Rosales, C.; Ferrier, L.; Bonnet, C.; Blottière, H.M.; Galmiche, J.P. Butyrate inhibits inflammatory responses through NFkappa B inhibition: Implications for Crohn’s disease. Gut, 2000, 47(3), 397-403.
[http://dx.doi.org/10.1136/gut.47.3.397] [PMID: 10940278]
[56]
Rivera-Chávez, F.; Zhang, L.F.; Faber, F.; Lopez, C.A.; Byndloss, M.X.; Olsan, E.E.; Xu, G.; Velazquez, E.M.; Lebrilla, C.B.; Winter, S.E.; Bäumler, A.J. Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe, 2016, 19(4), 443-454.
[http://dx.doi.org/10.1016/j.chom.2016.03.004] [PMID: 27078066]
[57]
Khan, S.; Maremanda, K.P.; Jena, G. Butyrate, a short-chain fatty acid and histone deacetylases inhibitor: nutritional, physiological, and pharmacological aspects in diabetes.Handbook of nutrition, diet, and epigenetics; Springer International Publishing, 2019, pp. 793-807.
[http://dx.doi.org/10.1007/978-3-319-55530-0_70]
[58]
Fung, K.Y.C.; Cosgrove, L.; Lockett, T.; Head, R.; Topping, D.L. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br. J. Nutr., 2012, 108(5), 820-831.
[http://dx.doi.org/10.1017/S0007114512001948] [PMID: 22676885]
[59]
Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of action of probiotics. Adv. Nutr., 2019, 10(S1), S49-S66.
[http://dx.doi.org/10.1093/advances/nmy063]
[60]
Siddiqui, M.T.; Cresci, G.A.M. The immunomodulatory functions of butyrate. J. Inflamm. Res., 2021, 14, 6025-6041.
[http://dx.doi.org/10.2147/JIR.S300989] [PMID: 34819742]
[61]
Wang, R.X.; Lee, J.S.; Campbell, E.L.; Colgan, S.P. Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin. Proc. Natl. Acad. Sci., 2020, 117(21), 11648-11657.
[http://dx.doi.org/10.1073/pnas.1917597117] [PMID: 32398370]
[62]
Cohen, L.J.; Esterhazy, D.; Kim, S.H.; Lemetre, C.; Aguilar, R.R.; Gordon, E.A.; Pickard, A.J.; Cross, J.R.; Emiliano, A.B.; Han, S.M.; Chu, J.; Vila-Farres, X.; Kaplitt, J.; Rogoz, A.; Calle, P.Y.; Hunter, C.; Bitok, J.K.; Brady, S.F. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature, 2017, 549(7670), 48-53.
[http://dx.doi.org/10.1038/nature23874] [PMID: 28854168]
[63]
Cully, M. Gut feeling on bacterial GPCR agonists. Nat. Rev. Drug Discov., 2017, 16(11), 754-754.
[http://dx.doi.org/10.1038/nrd.2017.205] [PMID: 29081522]
[64]
Husted, A.S.; Trauelsen, M.; Rudenko, O.; Hjorth, S.A.; Schwartz, T.W. GPCR-mediated signaling of metabolites. Cell Metab., 2017, 25(4), 777-796.
[http://dx.doi.org/10.1016/j.cmet.2017.03.008] [PMID: 28380372]
[65]
Kimura, I.; Miyamoto, J.; Ohue-Kitano, R.; Watanabe, K.; Yamada, T.; Onuki, M.; Aoki, R.; Isobe, Y.; Kashihara, D.; Inoue, D.; Inaba, A.; Takamura, Y.; Taira, S.; Kumaki, S.; Watanabe, M.; Ito, M.; Nakagawa, F.; Irie, J.; Kakuta, H.; Shinohara, M.; Iwatsuki, K.; Tsujimoto, G.; Ohno, H.; Arita, M.; Itoh, H.; Hase, K. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science, 2020, 367(6481), eaaw8429.
[http://dx.doi.org/10.1126/science.aaw8429] [PMID: 32108090]
[66]
Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; Lee, J.R.; Offermanns, S.; Ganapathy, V. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity, 2014, 40(1), 128-139.
[http://dx.doi.org/10.1016/j.immuni.2013.12.007] [PMID: 24412617]
[67]
Albany, C. Dissecting the role of Regulatory T cells in Atherosclerosis; PhD Thesis, King’s College London, 2021.
[68]
Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; Smith, J.D.; DiDonato, J.A.; Chen, J.; Li, H.; Wu, G.D.; Lewis, J.D.; Warrier, M.; Brown, J.M.; Krauss, R.M.; Tang, W.H.W.; Bushman, F.D.; Lusis, A.J.; Hazen, S.L. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med., 2013, 19(5), 576-585.
[http://dx.doi.org/10.1038/nm.3145] [PMID: 23563705]
[69]
Al-Obaide, M.; Singh, R.; Datta, P.; Rewers-Felkins, K.; Salguero, M.; Al-Obaidi, I.; Kottapalli, K.; Vasylyeva, T. Gut microbiota-dependent trimethylamine-N-oxide and serum biomarkers in patients with T2DM and advanced CKD. J. Clin. Med., 2017, 6(9), 86.
[http://dx.doi.org/10.3390/jcm6090086] [PMID: 28925931]
[70]
Yu, Z.L.; Zhang, L.Y.; Jiang, X.M.; Xue, C.H.; Chi, N.; Zhang, T.T.; Wang, Y.M. Effects of dietary choline, betaine, and L‐carnitine on the generation of trimethylamine‐N‐oxide in healthy mice. J. Food Sci., 2020, 85(7), 2207-2215.
[http://dx.doi.org/10.1111/1750-3841.15186] [PMID: 32572979]
[71]
Millard, H.R.; Musani, S.K.; Dibaba, D.T.; Talegawkar, S.A.; Taylor, H.A.; Tucker, K.L.; Bidulescu, A. Dietary choline and betaine; associations with subclinical markers of cardiovascular disease risk and incidence of CVD, coronary heart disease and stroke: The Jackson Heart Study. Eur. J. Nutr., 2018, 57(1), 51-60.
[http://dx.doi.org/10.1007/s00394-016-1296-8] [PMID: 27550622]
[72]
Fatkhullina, A.R.; Peshkova, I.O.; Dzutsev, A.; Aghayev, T.; McCulloch, J.A.; Thovarai, V.; Badger, J.H.; Vats, R.; Sundd, P.; Tang, H.Y.; Kossenkov, A.V.; Hazen, S.L.; Trinchieri, G.; Grivennikov, S.I.; Koltsova, E.K. An interleukin-23-interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis. Immunity, 2018, 49(5), 943-957.e9.
[http://dx.doi.org/10.1016/j.immuni.2018.09.011] [PMID: 30389414]
[73]
Brown, J.M.; Hazen, S.L. The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases. Annu. Rev. Med., 2015, 66(1), 343-359.
[http://dx.doi.org/10.1146/annurev-med-060513-093205] [PMID: 25587655]
[74]
Beale, A.L.; O’Donnell, J.A.; Nakai, M.E.; Nanayakkara, S.; Vizi, D.; Carter, K.; Dean, E.; Ribeiro, R.V.; Yiallourou, S.; Carrington, M.J.; Marques, F.Z.; Kaye, D.M. The gut microbiome of heart failure with preserved ejection fraction. J. Am. Heart Assoc., 2021, 10(13), e020654.
[http://dx.doi.org/10.1161/JAHA.120.020654] [PMID: 34212778]
[75]
Meyer, K.A.; Benton, T.Z.; Bennett, B.J.; Jacobs, D.R., Jr; Lloyd-Jones, D.M.; Gross, M.D.; Carr, J.J.; Gordon-Larsen, P.; Zeisel, S.H. Microbiota‐dependent metabolite trimethylamine n‐oxide and coronary artery calcium in the coronary artery risk development in young adults study (CARDIA). J. Am. Heart Assoc., 2016, 5(10), e003970.
[http://dx.doi.org/10.1161/JAHA.116.003970] [PMID: 27792658]
[76]
Mueller, D.M.; Allenspach, M.; Othman, A.; Saely, C.H.; Muendlein, A.; Vonbank, A.; Drexel, H.; von Eckardstein, A. Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis, 2015, 243(2), 638-644.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.10.091] [PMID: 26554714]
[77]
Pluznick, J.L.; Protzko, R.J.; Gevorgyan, H.; Peterlin, Z.; Sipos, A.; Han, J.; Brunet, I.; Wan, L.X.; Rey, F.; Wang, T.; Firestein, S.J.; Yanagisawa, M.; Gordon, J.I.; Eichmann, A.; Peti-Peterdi, J.; Caplan, M.J. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl. Acad. Sci., 2013, 110(11), 4410-4415.
[http://dx.doi.org/10.1073/pnas.1215927110] [PMID: 23401498]
[78]
Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 2017, 9(9), 1021.
[http://dx.doi.org/10.3390/nu9091021] [PMID: 28914794]
[79]
Gatarek, P.; Kaluzna-Czaplinska, J. Trimethylamine N-oxide (TMAO) in human health. EXCLI J., 2021, 20, 301-319.
[PMID: 33746664]
[80]
Markowiak-Kopeć, P.; Śliżewska, K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients, 2020, 12(4), 1107.
[http://dx.doi.org/10.3390/nu12041107] [PMID: 32316181]
[81]
Imhann, F.; Vich Vila, A.; Bonder, M.J.; Lopez Manosalva, A.G.; Koonen, D.P.Y.; Fu, J.; Wijmenga, C.; Zhernakova, A.; Weersma, R.K. The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes, 2017, 8(4), 351-358.
[http://dx.doi.org/10.1080/19490976.2017.1284732] [PMID: 28118083]
[82]
Falony, G.; Joossens, M.; Vieira-Silva, S.; Wang, J.; Darzi, Y.; Faust, K.; Kurilshikov, A.; Bonder, M.J.; Valles-Colomer, M.; Vandeputte, D.; Tito, R.Y.; Chaffron, S.; Rymenans, L.; Verspecht, C.; De Sutter, L.; Lima-Mendez, G.; D’hoe, K.; Jonckheere, K.; Homola, D.; Garcia, R.; Tigchelaar, E.F.; Eeckhaudt, L.; Fu, J.; Henckaerts, L.; Zhernakova, A.; Wijmenga, C.; Raes, J. Population-level analysis of gut microbiome variation. Science, 2016, 352(6285), 560-564.
[http://dx.doi.org/10.1126/science.aad3503] [PMID: 27126039]
[83]
Jackson, M.A.; Verdi, S.; Maxan, M.E.; Shin, C.M.; Zierer, J.; Bowyer, R.C.E.; Martin, T.; Williams, F.M.K.; Menni, C.; Bell, J.T.; Spector, T.D.; Steves, C.J. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat. Commun., 2018, 9(1), 2655.
[http://dx.doi.org/10.1038/s41467-018-05184-7] [PMID: 29985401]
[84]
Shreiner, A.B.; Kao, J.Y.; Young, V.B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol., 2015, 31(1), 69-75.
[http://dx.doi.org/10.1097/MOG.0000000000000139] [PMID: 25394236]
[85]
Arrieta, M.C.; Stiemsma, L.T.; Amenyogbe, N.; Brown, E.M.; Finlay, B. The intestinal microbiome in early life: Health and disease. Front. Immunol., 2014, 5, 427.
[http://dx.doi.org/10.3389/fimmu.2014.00427] [PMID: 25250028]
[86]
Vieira-Silva, S.; Falony, G.; Belda, E.; Nielsen, T.; Aron-Wisnewsky, J.; Chakaroun, R.; Forslund, S.K.; Assmann, K.; Valles-Colomer, M.; Nguyen, T.T.D.; Proost, S.; Prifti, E.; Tremaroli, V.; Pons, N.; Le Chatelier, E.; Andreelli, F.; Bastard, J.P.; Coelho, L.P.; Galleron, N.; Hansen, T.H.; Hulot, J.S.; Lewinter, C.; Pedersen, H.K.; Quinquis, B.; Rouault, C.; Roume, H.; Salem, J.E.; Søndertoft, N.B.; Touch, S.; Dumas, M.E.; Ehrlich, S.D.; Galan, P.; Gøtze, J.P.; Hansen, T.; Holst, J.J.; Køber, L.; Letunic, I.; Nielsen, J.; Oppert, J.M.; Stumvoll, M.; Vestergaard, H.; Zucker, J.D.; Bork, P.; Pedersen, O.; Bäckhed, F.; Clément, K.; Raes, J. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581(7808), 310-315.
[http://dx.doi.org/10.1038/s41586-020-2269-x] [PMID: 32433607]
[87]
Binda, C.; Lopetuso, L.R.; Rizzatti, G.; Gibiino, G.; Cennamo, V.; Gasbarrini, A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis., 2018, 50(5), 421-428.
[http://dx.doi.org/10.1016/j.dld.2018.02.012] [PMID: 29567414]
[88]
Purchiaroni, F. The role of intestinal microbiota and the immune system. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(3)
[89]
Ashida, H.; Ogawa, M.; Kim, M.; Mimuro, H.; Sasakawa, C. Bacteria and host interactions in the gut epithelial barrier. Nat. Chem. Biol., 2012, 8(1), 36-45.
[http://dx.doi.org/10.1038/nchembio.741] [PMID: 22173358]
[90]
Macfarlane, G.T.; Englyst, H.N. Starch utilization by the human large intestinal microflora. J. Appl. Bacteriol., 1986, 60(3), 195-201.
[http://dx.doi.org/10.1111/j.1365-2672.1986.tb01073.x] [PMID: 2423494]
[91]
Ryan, S.M.; Fitzgerald, G.F.; van Sinderen, D. Screening for and identification of starch-, amylopectin-, and pullulan-degrading activities in bifidobacterial strains. Appl. Environ. Microbiol., 2006, 72(8), 5289-5296.
[http://dx.doi.org/10.1128/AEM.00257-06] [PMID: 16885278]
[92]
Salyers, A.A.; West, S.E.; Vercellotti, J.R.; Wilkins, T.D. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl. Environ. Microbiol., 1977, 34(5), 529-533.
[http://dx.doi.org/10.1128/aem.34.5.529-533.1977] [PMID: 563214]
[93]
Choudoir, M.; Rossabi, S.; Gebert, M.; Helmig, D.; Fierer, N. A phylogenetic and functional perspective on volatile organic compound production by actinobacteria. mSystems, 2019, 4(2), e00295-e18.
[http://dx.doi.org/10.1128/mSystems.00295-18] [PMID: 30863793]
[94]
Azad, M.A.K.; Sarker, M.; Li, T.; Yin, J. Probiotic species in the modulation of gut microbiota: An overview. BioMed Res. Int., 2018, 2018, 9478630.
[http://dx.doi.org/10.1155/2018/9478630]
[95]
Fu, X.; Liu, Z.; Zhu, C.; Mou, H.; Kong, Q. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit. Rev. Food Sci. Nutr., 2019, 59(S1), S130-S152.
[http://dx.doi.org/10.1080/10408398.2018.1542587]
[96]
Ganesan, K.; Chung, S.K.; Vanamala, J.; Xu, B. Causal relationship between diet-induced gut microbiota changes and diabetes: A novel strategy to transplant Faecalibacterium prausnitzii in preventing diabetes. Int. J. Mol. Sci., 2018, 19(12), 3720.
[http://dx.doi.org/10.3390/ijms19123720] [PMID: 30467295]
[97]
Ndeh, D.; Gilbert, H.J. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol. Rev., 2018, 42(2), 146-164.
[http://dx.doi.org/10.1093/femsre/fuy002] [PMID: 29325042]
[98]
Kuo, S.M. Does modification of the large intestinal microbiome contribute to the anti-inflammatory activity of fermentable fiber? Curr. Dev. Nutr., 2018, 2(2), nzx004.
[http://dx.doi.org/10.3945/cdn.117.001180] [PMID: 30377676]
[99]
Yang, Q.; Liang, Q.; Balakrishnan, B.; Belobrajdic, D.P.; Feng, Q-J.; Zhang, W. Role of dietary nutrients in the modulation of gut microbiota: A narrative review. Nutrients, 2020, 12(2), 381.
[http://dx.doi.org/10.3390/nu12020381] [PMID: 32023943]
[100]
Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol., 2015, 33(9), 496-503.
[http://dx.doi.org/10.1016/j.tibtech.2015.06.011] [PMID: 26210164]
[101]
Desriac, F.; Jégou, C.; Balnois, E.; Brillet, B.; Chevalier, P.; Fleury, Y. Antimicrobial peptides from marine proteobacteria. Mar. Drugs, 2013, 11(10), 3632-3660.
[http://dx.doi.org/10.3390/md11103632] [PMID: 24084784]