Application of Quercetin and its Novel Formulations in the Treatment of Malignancies of Central Nervous System: An Updated Review of Current Evidence based on Molecular Mechanisms

Page: [4180 - 4198] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Quercetin, a naturally occurring polyphenolic compound found in abundance in vegetables and fruits, has emerged as a compelling subject of study in cancer treatment. This comprehensive review delves into the significance and originality of quercetin's multifaceted mechanisms of action, with a particular focus on its application in various brain tumors such as glioblastoma, glioma, neuroblastoma, astrocytoma, and medulloblastoma. This review scrutinizes the distinctive facets of quercetin's anti-cancer properties, highlighting its capacity to modulate intricate signaling pathways, trigger apoptosis, impede cell migration, and enhance radiosensitivity in brain tumor cells. Significantly, it synthesizes recent research findings, providing insights into potential structure-activity relationships that hold promise for developing novel quercetin derivatives with heightened effectiveness. By unraveling the unique attributes of quercetin's anti-brain tumor effects and exploring its untapped potential in combination therapies, this review contributes to a deeper comprehension of quercetin's role as a prospective candidate for advancing innovative treatments for brain cancer.

[1]
Ostrom, Q.T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro-oncol., 2020, 22(12), iv1-iv96.
[http://dx.doi.org/10.1093/neuonc/noaa200] [PMID: 33123732]
[2]
Nabors, L.B.; Portnow, J.; Ammirati, M.; Baehring, J.; Brem, H.; Butowski, N.; Fenstermaker, R.A.; Forsyth, P.; Hattangadi-Gluth, J.; Holdhoff, M.; Howard, S.; Junck, L.; Kaley, T.; Kumthekar, P.; Loeffler, J.S.; Moots, P.L.; Mrugala, M.M.; Nagpal, S.; Pandey, M.; Parney, I.; Peters, K.; Puduvalli, V.K.; Ragsdale, J., III; Rockhill, J.; Rogers, L.; Rusthoven, C.; Shonka, N.; Shrieve, D.C.; Sills, A.K., Jr; Swinnen, L.J.; Tsien, C.; Weiss, S.; Wen, P.Y.; Willmarth, N.; Bergman, M.A.; Engh, A. NCCN Guidelines insights: Central nervous system cancers, version 1.2017. J. Natl. Compr. Canc. Netw., 2017, 15(11), 1331-1345.
[http://dx.doi.org/10.6004/jnccn.2017.0166] [PMID: 29118226]
[3]
Yarahmadi, A.; Khademi, F.; Mostafavi-Pour, Z.; Zal, F. In-vitro analysis of glucose and quercetin effects on m-TOR and Nrf-2 expression in HepG2 cell line (Diabetes and Cancer Connection). Nutr. Cancer, 2018, 70(5), 770-775.
[http://dx.doi.org/10.1080/01635581.2018.1470654] [PMID: 29781726]
[4]
Carullo, G.; Cappello, A.R.; Frattaruolo, L.; Badolato, M.; Armentano, B.; Aiello, F. Quercetin and derivatives: Useful tools in inflammation and pain management. Future Med. Chem., 2017, 9(1), 79-93.
[http://dx.doi.org/10.4155/fmc-2016-0186] [PMID: 27995808]
[5]
Cassidy, A.; Minihane, A.M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am. J. Clin. Nutr., 2017, 105(1), 10-22.
[http://dx.doi.org/10.3945/ajcn.116.136051] [PMID: 27881391]
[6]
Murota, K.; Terao, J. Antioxidative flavonoid quercetin: Implication of its intestinal absorption and metabolism. Arch. Biochem. Biophys., 2003, 417(1), 12-17.
[http://dx.doi.org/10.1016/S0003-9861(03)00284-4] [PMID: 12921774]
[7]
Guo, Y.; Bruno, R.S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem., 2015, 26(3), 201-210.
[http://dx.doi.org/10.1016/j.jnutbio.2014.10.008] [PMID: 25468612]
[8]
Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol., 2016, 56, 21-38.
[http://dx.doi.org/10.1016/j.tifs.2016.07.004]
[9]
Wang, F.M.; Yao, T.W.; Zeng, S. Determination of quercetin and kaempferol in human urine after orally administrated tablet of ginkgo biloba extract by HPLC. J. Pharm. Biomed. Anal., 2003, 33(2), 317-321.
[http://dx.doi.org/10.1016/S0731-7085(03)00255-3] [PMID: 12972097]
[10]
Walle, T.; Walle, U.K.; Halushka, P.V. Carbon dioxide is the major metabolite of quercetin in humans. J. Nutr., 2001, 131(10), 2648-2652.
[http://dx.doi.org/10.1093/jn/131.10.2648] [PMID: 11584085]
[11]
Egert, S.; Bosy-Westphal, A.; Seiberl, J.; Kürbitz, C.; Settler, U.; Plachta-Danielzik, S.; Wagner, A.E.; Frank, J.; Schrezenmeir, J.; Rimbach, G.; Wolffram, S.; Müller, M.J. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: A double-blinded, placebo-controlled cross-over study. Br. J. Nutr., 2009, 102(7), 1065-1074.
[http://dx.doi.org/10.1017/S0007114509359127] [PMID: 19402938]
[12]
Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schäfer, B.; Hirsch-Ernst, K.I.; Lampen, A. Safety aspects of the use of quercetin as a dietary supplement. Mol. Nutr. Food Res., 2018, 62(1), 1700447.
[http://dx.doi.org/10.1002/mnfr.201700447] [PMID: 29127724]
[13]
Shi, Y.; Williamson, G. Quercetin lowers plasma uric acid in pre-hyperuricaemic males: a randomised, double-blinded, placebo-controlled, cross-over trial. Br. J. Nutr., 2016, 115(5), 800-806.
[http://dx.doi.org/10.1017/S0007114515005310] [PMID: 26785820]
[14]
Javadi, F.; Ahmadzadeh, A.; Eghtesadi, S.; Aryaeian, N.; Zabihiyeganeh, M.; Rahimi Foroushani, A.; Jazayeri, S. The effect of quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: A double-blind, randomized controlled trial. J. Am. Coll. Nutr., 2017, 36(1), 9-15.
[http://dx.doi.org/10.1080/07315724.2016.1140093] [PMID: 27710596]
[15]
Shaterzadeh-Yazdi, H.; Noorbakhsh, MF.; Hayati, F.; Samarghandian, S.; Farkhondeh, T. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovasc Hematol Disord Drug Targets, 2018, 18(1), 52-60.
[http://dx.doi.org/10.2174/1871529X18666180212114816]
[16]
Yang, W.S.; Jeong, D.; Yi, Y.S.; Lee, B.H.; Kim, T.W.; Htwe, K.M.; Kim, Y.D.; Yoon, K.D.; Hong, S.; Lee, W.S.; Cho, J.Y. Myrsine seguinii ethanolic extract and its active component quercetin inhibit macrophage activation and peritonitis induced by LPS by targeting to Syk/Src/IRAK-1. J. Ethnopharmacol., 2014, 151(3), 1165-1174.
[http://dx.doi.org/10.1016/j.jep.2013.12.033] [PMID: 24378351]
[17]
Fuchs, Y.; Steller, H. Programmed cell death in animal development and disease. Cell, 2011, 147(4), 742-758.
[http://dx.doi.org/10.1016/j.cell.2011.10.033] [PMID: 22078876]
[18]
Kim, J.Y.; An, J.M.; Chung, W.Y.; Park, K.K.; Hwang, J.K.; Kim, D.S.; Seo, S.R.; Seo, J.T. Xanthorrhizol induces apoptosis through ROS-mediated MAPK activation in human oral squamous cell carcinoma cells and inhibits DMBA-induced oral carcinogenesis in hamsters. Phytother. Res., 2013, 27(4), 493-498.
[http://dx.doi.org/10.1002/ptr.4746] [PMID: 22627996]
[19]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 2016, 8(4), 603-619.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[20]
Su, C.C.; Lee, K.I.; Chen, M.K.; Kuo, C.Y.; Tang, C.H.; Liu, S.H. Cantharidin induced oral squamous cell carcinoma cell apoptosis via the jnk-regulated mitochondria and endoplasmic reticulum stress-related signaling pathways. PLoS One, 2016, 11(12), e0168095.
[http://dx.doi.org/10.1371/journal.pone.0168095] [PMID: 27930712]
[21]
Lorenzo, P.I.; Saatcioglu, F. Inhibition of apoptosis in prostate cancer cells by androgens is mediated through downregulation of c-Jun N-terminal kinase activation. Neoplasia, 2008, 10(5), 418-428.
[http://dx.doi.org/10.1593/neo.07985] [PMID: 18472959]
[22]
Ryu, M.J.; Chung, H.S. [10]-Gingerol induces mitochondrial apoptosis through activation of MAPK pathway in HCT116 human colon cancer cells. In Vitro Cell. Dev. Biol. Anim., 2015, 51(1), 92-101.
[http://dx.doi.org/10.1007/s11626-014-9806-6] [PMID: 25148824]
[23]
Yuan, H.; Young, C.Y.F.; Tian, Y.; Liu, Z.; Zhang, M.; Lou, H. Suppression of the androgen receptor function by quercetin through protein–protein interactions of Sp1, c-Jun, and the androgen receptor in human prostate cancer cells. Mol. Cell. Biochem., 2010, 339(1-2), 253-262.
[http://dx.doi.org/10.1007/s11010-010-0388-7] [PMID: 20148354]
[24]
Miranda-Carboni, G.A.; Krum, S.A.; Yee, K.; Nava, M.; Deng, Q.E.; Pervin, S.; Collado-Hidalgo, A.; Galić, Z.; Zack, J.A.; Nakayama, K.; Nakayama, K.I.; Lane, T.F. A functional link between Wnt signaling and SKP2-independent p27 turnover in mammary tumors. Genes Dev., 2008, 22(22), 3121-3134.
[http://dx.doi.org/10.1101/gad.1692808] [PMID: 19056892]
[25]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[26]
Ravishankar, D.; Watson, K.A.; Boateng, S.Y.; Green, R.J.; Greco, F.; Osborn, H.M.I. Exploring quercetin and luteolin derivatives as antiangiogenic agents. Eur. J. Med. Chem., 2015, 97, 259-274.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.056] [PMID: 25984842]
[27]
Xu, H-W.; Xu, L.; Hao, J-H.; Qin, C-Y.; Liu, H. Expression of P-glycoprotein and multidrug resistance-associated protein is associated with multidrug resistance in gastric cancer. J. Int. Med. Res., 2010, 38(1), 34-42.
[http://dx.doi.org/10.1177/147323001003800104] [PMID: 20233511]
[28]
Samarghandian, S.; Azimi-Nezhad, M.; Mehrad-Majd, H.; Mirhafez, S.R. Thymoquinone ameliorates acute renal failure in gentamicin-treated adult male rats. Pharmacology, 2015, 96(3-4), 112-117.
[http://dx.doi.org/10.1159/000436975] [PMID: 26202209]
[29]
Zhou, J.; Fang, L.; Liao, J.; Li, L.; Yao, W.; Xiong, Z.; Zhou, X. Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo. PLoS One, 2017, 12(3), e0172838.
[http://dx.doi.org/10.1371/journal.pone.0172838] [PMID: 28264020]
[30]
Yu, L.; Chen, Y.; Tooze, S.A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 2018, 14(2), 207-215.
[http://dx.doi.org/10.1080/15548627.2017.1378838] [PMID: 28933638]
[31]
Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[32]
Poillet-Perez, L.; White, E. Role of tumor and host autophagy in cancer metabolism. Genes Dev., 2019, 33(11-12), 610-619.
[http://dx.doi.org/10.1101/gad.325514.119] [PMID: 31160394]
[33]
Maheswari, U.; Sadras, S.R. Mechanism and regulation of autophagy in cancer. Crit. Rev. Oncog., 2018, 23(5-6), 269-280.
[http://dx.doi.org/10.1615/CritRevOncog.2018028394] [PMID: 30311560]
[34]
Chen, N.; Karantza, V. Autophagy as a therapeutic target in cancer. Cancer Biol. Ther., 2011, 11(2), 157-168.
[http://dx.doi.org/10.4161/cbt.11.2.14622] [PMID: 21228626]
[35]
Guo, H.; Ding, H.; Tang, X.; Liang, M.; Li, S.; Zhang, J.; Cao, J. Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac. Cancer, 2021, 12(9), 1415-1422.
[http://dx.doi.org/10.1111/1759-7714.13925] [PMID: 33709560]
[36]
Granato, M.; Rizzello, C.; Gilardini Montani, M.S.; Cuomo, L.; Vitillo, M.; Santarelli, R.; Gonnella, R.; D’Orazi, G.; Faggioni, A.; Cirone, M. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J. Nutr. Biochem., 2017, 41, 124-136.
[http://dx.doi.org/10.1016/j.jnutbio.2016.12.011] [PMID: 28092744]
[37]
Kim, H.; Moon, J.Y.; Ahn, K.S.; Cho, S.K. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid. Med. Cell. Longev., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/596496] [PMID: 24379902]
[38]
Liu, Y.; Gong, W.; Yang, Z.Y.; Zhou, X.S.; Gong, C.; Zhang, T.R.; Wei, X.; Ma, D.; Ye, F.; Gao, Q.L. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis, 2017, 22(4), 544-557.
[http://dx.doi.org/10.1007/s10495-016-1334-2] [PMID: 28188387]
[39]
Wang, K.; Liu, R.; Li, J.; Mao, J.; Lei, Y.; Wu, J.; Zeng, J.; Zhang, T.; Wu, H.; Chen, L.; Huang, C.; Wei, Y. Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy, 2011, 7(9), 966-978.
[http://dx.doi.org/10.4161/auto.7.9.15863] [PMID: 21610320]
[40]
Jia, L.; Huang, S.; Yin, X.; Zan, Y.; Guo, Y.; Han, L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci., 2018, 208, 123-130.
[http://dx.doi.org/10.1016/j.lfs.2018.07.027] [PMID: 30025823]
[41]
Ben Geoffrey, A.S.; Christian, P.J.; Muthu, S. Structure-activity relationship of quercetin and its tumor necrosis factor alpha inhibition activity by computational and machine learning methods. Mater. Today Proc., 2022, 50, 2609-2614.
[http://dx.doi.org/10.1016/j.matpr.2020.07.464]
[42]
Magar, R.T.; Sohng, J.K. A review on structure, modifications and structure-activity relation of quercetin and its derivatives. J. Microbiol. Biotechnol., 2020, 30(1), 11-20.
[http://dx.doi.org/10.4014/jmb.1907.07003] [PMID: 31752056]
[43]
Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, ShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. APJCP, 2017, 18(1), 3-9.
[PMID: 28239999]
[44]
Komori, T. The 2016 WHO classification of tumours of the central nervous system: The major points of revision. Neurol. Med. Chir., 2017, 57(7), 301-311.
[http://dx.doi.org/10.2176/nmc.ra.2017-0010] [PMID: 28592714]
[45]
Lin, D.; Wang, M.; Chen, Y.; Gong, J.; Chen, L.; Shi, X.; Lan, F.; Chen, Z.; Xiong, T.; Sun, H.; Wan, S. Trends in intracranial glioma incidence and mortality in the United States, 1975-2018. Front. Oncol., 2021, 11, 748061.
[http://dx.doi.org/10.3389/fonc.2021.748061] [PMID: 34790574]
[46]
Vali, R.; Azadi, A.; Tizno, A.; Farkhondeh, T.; Samini, F.; Samarghandian, S. miRNA contributes to neuropathic pains. Int. J. Biol. Macromol., 2023, 253(Pt 4), 126893.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.126893] [PMID: 37730007]
[47]
Boele, F.W.; Klein, M.; Reijneveld, J.C.; Verdonck-de Leeuw, I.M.; Heimans, J.J. Symptom management and quality of life in glioma patients. CNS Oncol., 2014, 3(1), 37-47.
[http://dx.doi.org/10.2217/cns.13.65] [PMID: 25054899]
[48]
Williams, M.; Treasure, P.; Greenberg, D.; Brodbelt, A.; Collins, P. Surgeon volume and 30 day mortality for brain tumours in England. Br. J. Cancer, 2016, 115(11), 1379-1382.
[http://dx.doi.org/10.1038/bjc.2016.317] [PMID: 27764843]
[49]
Gao, H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm. Sin. B, 2016, 6(4), 268-286.
[http://dx.doi.org/10.1016/j.apsb.2016.05.013] [PMID: 27471668]
[50]
Pang, H.H.; Chen, P.Y.; Wei, K.C.; Huang, C.W.; Shiue, Y.L.; Huang, C.Y.; Yang, H.W. Convection-enhanced delivery of a virus-like nanotherapeutic agent with dual-modal imaging for besiegement and eradication of brain tumors. Theranostics, 2019, 9(6), 1752-1763.
[http://dx.doi.org/10.7150/thno.30977] [PMID: 31037136]
[51]
Zhao, W.; Yu, X.; Peng, S.; Luo, Y.; Li, J.; Lu, L. Construction of nanomaterials as contrast agents or probes for glioma imaging. J. Nanobiotechnol., 2021, 19(1), 125.
[http://dx.doi.org/10.1186/s12951-021-00866-9] [PMID: 33941206]
[52]
Poonan, P.; Agoni, C.; Ibrahim, M.A.A.; Soliman, M.E.S. Glioma-targeted therapeutics: Computer-aided drug design prospective. Protein J., 2021, 40(5), 601-655.
[http://dx.doi.org/10.1007/s10930-021-10021-w] [PMID: 34590194]
[53]
Samarghandian, S.; Borji, A. Effects of cichorium intybus linn on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats. Cardiovasc Hematol Disord Drug Targets, 2013, 13(3), 231-236.
[54]
Hirpara, K.V.; Aggarwal, P.; Mukherjee, A.J.; Joshi, N.; Burman, A.C. Quercetin and its derivatives: Synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bio-availability. Anticancer. Agents Med. Chem., 2009, 9(2), 138-161.
[http://dx.doi.org/10.2174/187152009787313855] [PMID: 19199862]
[55]
Thomasset, S.C.; Berry, D.P.; Garcea, G.; Marczylo, T.; Steward, W.P.; Gescher, A.J. Dietary polyphenolic phytochemicals-promising cancer chemopreventive agents in humans? A review of their clinical properties. Int. J. Cancer, 2007, 120(3), 451-458.
[http://dx.doi.org/10.1002/ijc.22419] [PMID: 17131309]
[56]
Jang, E.; Kim, I.Y.; Kim, H.; Lee, D.M.; Seo, D.Y.; Lee, J.A.; Choi, K.S.; Kim, E. Quercetin and chloroquine synergistically kill glioma cells by inducing organelle stress and disrupting Ca2+ homeostasis. Biochem. Pharmacol., 2020, 178, 114098.
[http://dx.doi.org/10.1016/j.bcp.2020.114098] [PMID: 32540484]
[57]
Vanhaesebroeck, B.; Leevers, S.J.; Ahmadi, K.; Timms, J.; Katso, R.; Driscoll, P.C.; Woscholski, R.; Parker, P.J.; Waterfield, M.D. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem., 2001, 70(1), 535-602.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.535] [PMID: 11395417]
[58]
Cheng, C.K.; Fan, Q.W.; Weiss, W.A. PI3K signaling in glioma-animal models and therapeutic challenges. Brain Pathol., 2009, 19(1), 112-120.
[http://dx.doi.org/10.1111/j.1750-3639.2008.00233.x] [PMID: 19076776]
[59]
Ballif, B.A.; Blenis, J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ, 2001, 12(8), 397-408.
[60]
Pan, H.C.; Jiang, Q.; Yu, Y.; Mei, J.P.; Cui, Y.K.; Zhao, W.J. Quercetin promotes cell apoptosis and inhibits the expression of MMP-9 and fibronectin via the AKT and ERK signalling pathways in human glioma cells. Neurochem. Int., 2015, 80, 60-71.
[http://dx.doi.org/10.1016/j.neuint.2014.12.001] [PMID: 25481090]
[61]
Bi, Y.; Shen, C.; Li, C.; Liu, Y.; Gao, D.; Shi, C.; Peng, F.; Liu, Z.; Zhao, B.; Zheng, Z.; Wang, X.; Hou, X.; Liu, H.; Wu, J.; Zou, H.; Wang, K.; Zhong, C.; Zhang, J.; Shi, C.; Zhao, S. Inhibition of autophagy induced by quercetin at a late stage enhances cytotoxic effects on glioma cells. Tumour Biol., 2016, 37(3), 3549-3560.
[http://dx.doi.org/10.1007/s13277-015-4125-4] [PMID: 26454746]
[62]
Park, M.H.; Min, D.S. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells. Biochem. Biophys. Res. Commun., 2011, 412(4), 710-715.
[http://dx.doi.org/10.1016/j.bbrc.2011.08.037] [PMID: 21867678]
[63]
Śledzińska, P.; Bebyn, M.G.; Furtak, J.; Kowalewski, J.; Lewandowska, M.A. Prognostic and predictive biomarkers in gliomas. Int. J. Mol. Sci., 2021, 22(19), 10373.
[http://dx.doi.org/10.3390/ijms221910373] [PMID: 34638714]
[64]
Combs, S.; Schmid, T.; Vaupel, P.; Multhoff, G. Stress response leading to resistance in glioblastoma-the need for innovative radiotherapy (iRT) Concepts. Cancers, 2016, 8(1), 15.
[http://dx.doi.org/10.3390/cancers8010015] [PMID: 26771644]
[65]
Xu, W.; Yang, H.; Liu, Y.; Yang, Y.; Wang, P.; Kim, S.H.; Ito, S.; Yang, C.; Wang, P.; Xiao, M.T.; Liu, L.; Jiang, W.; Liu, J.; Zhang, J.; Wang, B.; Frye, S.; Zhang, Y.; Xu, Y.; Lei, Q.; Guan, K.L.; Zhao, S.; Xiong, Y. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell, 2011, 19(1), 17-30.
[http://dx.doi.org/10.1016/j.ccr.2010.12.014] [PMID: 21251613]
[66]
Bergers, G.; Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer, 2008, 8(8), 592-603.
[http://dx.doi.org/10.1038/nrc2442] [PMID: 18650835]
[67]
Jain, R.K.; di Tomaso, E.; Duda, D.G.; Loeffler, J.S.; Sorensen, A.G.; Batchelor, T.T. Angiogenesis in brain tumours. Nat. Rev. Neurosci., 2007, 8(8), 610-622.
[http://dx.doi.org/10.1038/nrn2175] [PMID: 17643088]
[68]
Semrad, T.J.; O’Donnell, R.; Wun, T.; Chew, H.; Harvey, D.; Zhou, H.; White, R.H. Epidemiology of venous thromboembolism in 9489 patients with malignant glioma. J. Neurosurg., 2007, 106(4), 601-608.
[http://dx.doi.org/10.3171/jns.2007.106.4.601] [PMID: 17432710]
[69]
Liu, Y.; Tang, Z.G.; Lin, Y.; Qu, X.G.; Lv, W.; Wang, G.B.; Li, C.L. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomed. Pharmacother., 2017, 92, 33-38.
[http://dx.doi.org/10.1016/j.biopha.2017.05.044] [PMID: 28528183]
[70]
Chen, B.; Li, X.; Wu, L.; Zhou, D.; Song, Y.; Zhang, L.; Wu, Q.; He, Q.; Wang, G.; Liu, X.; Hu, H.; Zhou, W. Quercetin suppresses human glioblastoma migration and invasion via GSK3β/β-catenin/ZEB1 signaling pathway. Front. Pharmacol., 2022, 13, 963614.
[http://dx.doi.org/10.3389/fphar.2022.963614] [PMID: 36386155]
[71]
Fathi, N.; Rashidi, G.; Khodadadi, A.; Shahi, S.; Sharifi, S. STAT3 and apoptosis challenges in cancer. Int. J. Biol. Macromol., 2018, 117, 993-1001.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.121] [PMID: 29782972]
[72]
Chang, N.; Ahn, S.H.; Kong, D.S.; Lee, H.W.; Nam, D.H. The role of STAT3 in glioblastoma progression through dual influences on tumor cells and the immune microenvironment. Mol. Cell. Endocrinol., 2017, 451, 53-65.
[http://dx.doi.org/10.1016/j.mce.2017.01.004] [PMID: 28089821]
[73]
Tan, M.S.Y.; Sandanaraj, E.; Chong, Y.K.; Lim, S.W.; Koh, L.W.H.; Ng, W.H.; Tan, N.S.; Tan, P.; Ang, B.T.; Tang, C. A STAT3-based gene signature stratifies glioma patients for targeted therapy. Nat. Commun., 2019, 10(1), 3601.
[http://dx.doi.org/10.1038/s41467-019-11614-x] [PMID: 31399589]
[74]
Zhu, C.; Wei, Y.; Wei, X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol. Cancer, 2019, 18(1), 153.
[http://dx.doi.org/10.1186/s12943-019-1090-3] [PMID: 31684958]
[75]
Woo, S.M.; Min, K.; Kim, S.; Park, J.W.; Kim, D.E.; Kim, S.H.; Choi, Y.H.; Kwon, T.K. Axl is a novel target of withaferin A in the induction of apoptosis and the suppression of invasion. Biochem. Biophys. Res. Commun., 2014, 451(3), 455-460.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.018] [PMID: 25117439]
[76]
Suh, Y.A.; Jo, S.Y.; Lee, H.Y.; Lee, C. Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cells. Int. J. Oncol., 2015, 46(3), 1405-1411.
[http://dx.doi.org/10.3892/ijo.2014.2808] [PMID: 25544427]
[77]
Kim, H.I.; Lee, S.J.; Choi, Y.J.; Kim, M.J.; Kim, T.Y.; Ko, S.G. Quercetin induces apoptosis in glioblastoma cells by suppressing Axl/IL-6/STAT3 signaling pathway. Am. J. Chin. Med., 2021, 49(3), 767-784.
[http://dx.doi.org/10.1142/S0192415X21500361] [PMID: 33657989]
[78]
Li, J.; Tang, C.; Li, L.; Li, R.; Fan, Y. Quercetin blocks t-AUCB-induced autophagy by Hsp27 and Atg7 inhibition in glioblastoma cells in vitro. J. Neurooncol., 2016, 129(1), 39-45.
[http://dx.doi.org/10.1007/s11060-016-2149-2] [PMID: 27174198]
[79]
Kruszewski, M.; Kusaczuk, M.; Kotyńska, J.; Gál, M.; Krętowski, R.; Cechowska-Pasko, M.; Naumowicz, M. The effect of quercetin on the electrical properties of model lipid membranes and human glioblastoma cells. Bioelectrochemistry, 2018, 124, 133-141.
[http://dx.doi.org/10.1016/j.bioelechem.2018.07.010] [PMID: 30029034]
[80]
Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[81]
Bianchi, F.; Tamburrini, G.; Gessi, M.; Frassanito, P.; Massimi, L.; Caldarelli, M. Central nervous system (CNS) neuroblastoma. A case-based update. Childs Nerv. Syst., 2018, 34(5), 817-823.
[http://dx.doi.org/10.1007/s00381-018-3764-3] [PMID: 29520437]
[82]
Sturm, D.; Orr, B.A.; Toprak, U.H.; Hovestadt, V.; Jones, D.T.W.; Capper, D.; Sill, M.; Buchhalter, I.; Northcott, P.A.; Leis, I.; Ryzhova, M.; Koelsche, C.; Pfaff, E.; Allen, S.J.; Balasubramanian, G.; Worst, B.C.; Pajtler, K.W.; Brabetz, S.; Johann, P.D.; Sahm, F.; Reimand, J.; Mackay, A.; Carvalho, D.M.; Remke, M.; Phillips, J.J.; Perry, A.; Cowdrey, C.; Drissi, R.; Fouladi, M.; Giangaspero, F.; Łastowska, M.; Grajkowska, W.; Scheurlen, W.; Pietsch, T.; Hagel, C.; Gojo, J.; Lötsch, D.; Berger, W.; Slavc, I.; Haberler, C.; Jouvet, A.; Holm, S.; Hofer, S.; Prinz, M.; Keohane, C.; Fried, I.; Mawrin, C.; Scheie, D.; Mobley, B.C.; Schniederjan, M.J.; Santi, M.; Buccoliero, A.M.; Dahiya, S.; Kramm, C.M.; von Bueren, A.O.; von Hoff, K.; Rutkowski, S.; Herold-Mende, C.; Frühwald, M.C.; Milde, T.; Hasselblatt, M.; Wesseling, P.; Rößler, J.; Schüller, U.; Ebinger, M.; Schittenhelm, J.; Frank, S.; Grobholz, R.; Vajtai, I.; Hans, V.; Schneppenheim, R.; Zitterbart, K.; Collins, V.P.; Aronica, E.; Varlet, P.; Puget, S.; Dufour, C.; Grill, J.; Figarella-Branger, D.; Wolter, M.; Schuhmann, M.U.; Shalaby, T.; Grotzer, M.; van Meter, T.; Monoranu, C.M.; Felsberg, J.; Reifenberger, G.; Snuderl, M.; Forrester, L.A.; Koster, J.; Versteeg, R.; Volckmann, R.; van Sluis, P.; Wolf, S.; Mikkelsen, T.; Gajjar, A.; Aldape, K.; Moore, A.S.; Taylor, M.D.; Jones, C.; Jabado, N.; Karajannis, M.A.; Eils, R.; Schlesner, M.; Lichter, P.; von Deimling, A.; Pfister, S.M.; Ellison, D.W.; Korshunov, A.; Kool, M. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell, 2016, 164(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2016.01.015] [PMID: 26919435]
[83]
Tian, X.; Zhou, D.; Chen, L.; Tian, Y.; Zhong, B.; Cao, Y.; Dong, Q.; Zhou, M.; Yan, J.; Wang, Y.; Qiu, Y.; Zhang, L.; Li, Z.; Wang, H.; Wang, D.; Ying, G.; Zhao, Q. Polo- like kinase 4 mediates epithelial–mesenchymal transition in neuroblastoma via PI3K/Akt signaling pathway. Cell Death Dis., 2018, 9(2), 54.
[http://dx.doi.org/10.1038/s41419-017-0088-2] [PMID: 29352113]
[84]
Lockshin, R.A.; Zakeri, Z. Cell death in health and disease. J. Cell. Mol. Med., 2007, 11(6), 1214-1224.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00150.x] [PMID: 18031301]
[85]
Alhakamy, N.A.; Md, S. Repurposing itraconazole loaded plga nanoparticles for improved antitumor efficacy in non-small cell lung cancers. Pharmaceutics, 2019, 11(12), 685.
[http://dx.doi.org/10.3390/pharmaceutics11120685] [PMID: 31888155]
[86]
Alhakamy, N.A.; A Fahmy, U.; Badr-Eldin, S.M.; Ahmed, O.A.A.; Asfour, H.Z.; Aldawsari, H.M.; Algandaby, M.M.; Eid, B.G.; Abdel-Naim, A.B.; Awan, Z.A.; K Alruwaili, N.; Mohamed, A.I. Optimized icariin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells. Pharmaceutics, 2020, 12(4), 346.
[http://dx.doi.org/10.3390/pharmaceutics12040346] [PMID: 32290412]
[87]
Md, S.; Alhakamy, N.A.; Aldawsari, H.M.; Husain, M.; Kotta, S.; Abdullah, S.T.; A Fahmy, U.; Alfaleh, M.A.; Asfour, H.Z. Formulation design, statistical optimization, and in vitro evaluation of a naringenin nanoemulsion to enhance apoptotic activity in A549 lung cancer cells. Pharmaceuticals, 2020, 13(7), 152.
[http://dx.doi.org/10.3390/ph13070152] [PMID: 32679917]
[88]
Gibson, L.; Holmgreen, S.P.; Huang, D.C.; Bernard, O.; Copeland, N.G.; Jenkins, N.A.; Sutherland, G.R.; Baker, E.; Adams, J.M.; Cory, S. bcl-w, a novel member of the bcl-2 family, promotes cell survival. Oncogene, 1996, 13(4), 665-675.
[PMID: 8761287]
[89]
Sugantha Priya, E.; Selvakumar, K.; Bavithra, S.; Elumalai, P.; Arunkumar, R.; Raja Singh, P.; Brindha Mercy, A.; Arunakaran, J. Anti-cancer activity of quercetin in neuroblastoma: An in vitro approach. Neurol. Sci., 2014, 35(2), 163-170.
[http://dx.doi.org/10.1007/s10072-013-1462-1] [PMID: 23771516]
[90]
Jakubowicz-Gil, J.; Rzeski, W.; Zdzisińska, B.; Piersiak, T.; Weiksza, K.; Glowniak, K.; Gawron, A. Different sensitivity of neurons and neuroblastoma cells to quercetin treatment. Acta Neurobiol. Exp., 2008, 68(4), 463-476.
[PMID: 19112469]
[91]
Samarghandian, S.; Azimi-Nezhad, M.; Samini, F. Preventive effect of safranal against oxidative damage in aged male rat brain. Exp. Anim., 2015, 64(1), 65-71.
[http://dx.doi.org/10.1538/expanim.14-0027] [PMID: 25312506]
[92]
Thompson, E.M.; Hielscher, T.; Bouffet, E.; Remke, M.; Luu, B.; Gururangan, S.; McLendon, R.E.; Bigner, D.D.; Lipp, E.S.; Perreault, S.; Cho, Y.J.; Grant, G.; Kim, S.K.; Lee, J.Y.; Rao, A.A.N.; Giannini, C.; Li, K.K.W.; Ng, H.K.; Yao, Y.; Kumabe, T.; Tominaga, T.; Grajkowska, W.A.; Perek-Polnik, M.; Low, D.C.Y.; Seow, W.T.; Chang, K.T.E.; Mora, J.; Pollack, I.F.; Hamilton, R.L.; Leary, S.; Moore, A.S.; Ingram, W.J.; Hallahan, A.R.; Jouvet, A.; Fèvre-Montange, M.; Vasiljevic, A.; Faure-Conter, C.; Shofuda, T.; Kagawa, N.; Hashimoto, N.; Jabado, N.; Weil, A.G.; Gayden, T.; Wataya, T.; Shalaby, T.; Grotzer, M.; Zitterbart, K.; Sterba, J.; Kren, L.; Hortobágyi, T.; Klekner, A.; László, B.; Pócza, T.; Hauser, P.; Schüller, U.; Jung, S.; Jang, W.Y.; French, P.J.; Kros, J.M.; van Veelen, M.L.C.; Massimi, L.; Leonard, J.R.; Rubin, J.B.; Vibhakar, R.; Chambless, L.B.; Cooper, M.K.; Thompson, R.C.; Faria, C.C.; Carvalho, A.; Nunes, S.; Pimentel, J.; Fan, X.; Muraszko, K.M.; López-Aguilar, E.; Lyden, D.; Garzia, L.; Shih, D.J.H.; Kijima, N.; Schneider, C.; Adamski, J.; Northcott, P.A.; Kool, M.; Jones, D.T.W.; Chan, J.A.; Nikolic, A.; Garre, M.L.; Van Meir, E.G.; Osuka, S.; Olson, J.J.; Jahangiri, A.; Castro, B.A.; Gupta, N.; Weiss, W.A.; Moxon-Emre, I.; Mabbott, D.J.; Lassaletta, A.; Hawkins, C.E.; Tabori, U.; Drake, J.; Kulkarni, A.; Dirks, P.; Rutka, J.T.; Korshunov, A.; Pfister, S.M.; Packer, R.J.; Ramaswamy, V.; Taylor, M.D. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: A retrospective integrated clinical and molecular analysis. Lancet Oncol., 2016, 17(4), 484-495.
[http://dx.doi.org/10.1016/S1470-2045(15)00581-1] [PMID: 26976201]
[93]
Gajjar, A.J.; Robinson, G.W. Medulloblastoma-translating discoveries from the bench to the bedside. Nat. Rev. Clin. Oncol., 2014, 11(12), 714-722.
[http://dx.doi.org/10.1038/nrclinonc.2014.181] [PMID: 25348790]
[94]
Northcott, P.A.; Robinson, G.W.; Kratz, C.P.; Mabbott, D.J.; Pomeroy, S.L.; Clifford, S.C.; Rutkowski, S.; Ellison, D.W.; Malkin, D.; Taylor, M.D.; Gajjar, A.; Pfister, S.M. Medulloblastoma. Nat. Rev. Dis. Primers, 2019, 5(1), 11.
[http://dx.doi.org/10.1038/s41572-019-0063-6] [PMID: 30765705]
[95]
Taylor, M.D.; Northcott, P.A.; Korshunov, A.; Remke, M.; Cho, Y.J.; Clifford, S.C.; Eberhart, C.G.; Parsons, D.W.; Rutkowski, S.; Gajjar, A.; Ellison, D.W.; Lichter, P.; Gilbertson, R.J.; Pomeroy, S.L.; Kool, M.; Pfister, S.M. Molecular subgroups of medulloblastoma: The current consensus. Acta Neuropathol., 2012, 123(4), 465-472.
[http://dx.doi.org/10.1007/s00401-011-0922-z] [PMID: 22134537]
[96]
Labbé, D.; Provençal, M.; Lamy, S.; Boivin, D.; Gingras, D.; Béliveau, R. The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J. Nutr., 2009, 139(4), 646-652.
[http://dx.doi.org/10.3945/jn.108.102616] [PMID: 19244381]
[97]
Lagerweij, T.; Hiddingh, L.; Biesmans, D.; Crommentuijn, M.H.W.; Cloos, J.; Li, X.N.; Kogiso, M.; Tannous, B.A.; Vandertop, W.P.; Noske, D.P.; Kaspers, G.J.L.; Würdinger, T.; Hulleman, E. A chemical screen for medulloblastoma identifies quercetin as a putative radiosensitizer. Oncotarget, 2016, 7(24), 35776-35788.
[http://dx.doi.org/10.18632/oncotarget.7980] [PMID: 26967057]
[98]
Annabi, B.; Rojas-Sutterlin, S.; Laroche, M.; Lachambre, M.P.; Moumdjian, R.; Béliveau, R. The diet-derived sulforaphane inhibits matrix metalloproteinase-9-activated human brain microvascular endothelial cell migration and tubulogenesis. Mol. Nutr. Food Res., 2008, 52(6), 692-700.
[http://dx.doi.org/10.1002/mnfr.200700434] [PMID: 18435488]
[99]
Gingras, D.; Gendron, M.; Boivin, D.; Moghrabi, A.; Théorêt, Y.; Béliveau, R. Induction of medulloblastoma cell apoptosis by sulforaphane, a dietary anticarcinogen from Brassica vegetables. Cancer Lett., 2004, 203(1), 35-43.
[http://dx.doi.org/10.1016/j.canlet.2003.08.025] [PMID: 14670615]
[100]
Ostrom, Q.T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Stroup, N.E.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-oncology, 2013, 15(S2), ii1-ii56.
[101]
Altieri, R.; Certo, F.; Rocca, G.L.; Melcarne, A.; Garbossa, D.; Bianchi, A.; Crimi, S.; Pluchino, A.; Peschillo, S.; Barbagallo, G.M.V. Radiological evaluation of ex novo high grade glioma: Velocity of diametric expansion and acceleration time study. Radiol. Oncol., 2020, 55(1), 26-34.
[http://dx.doi.org/10.2478/raon-2020-0071] [PMID: 33885243]
[102]
Forjaz, G.; Barnholtz-Sloan, J.S.; Kruchko, C.; Siegel, R.; Negoita, S.; Ostrom, Q.T.; Dickie, L.; Ruhl, J.; Van Dyke, A.; Patil, N.; Cioffi, G.; Miller, K.D.; Waite, K.; Mariotto, A.B. An updated histology recode for the analysis of primary malignant and nonmalignant brain and other central nervous system tumors in the Surveillance, Epidemiology, and End Results Program. Neurooncol. Adv., 2021, 3(1), vdaa175.
[http://dx.doi.org/10.1093/noajnl/vdaa175] [PMID: 33506208]
[103]
Djurovic, Z.; Jovanovic, V.; Obrenovic, R.; Djurovic, B.; Soldatovic, I.; Vranic, A.; Jakovljevic, V.; Djuric, D.; Zivkovic, V. The importance of the blood levels of homocysteine, folate and vitamin B12 in patients with primary malignant brain tumors. JBUON, 2020, 25(6), 2600-2607.
[104]
Yang, J.; Yang, Q. Identification of core genes and screening of potential targets in glioblastoma multiforme by integrated bioinformatic analysis. Front. Oncol., 2021, 10, 615976.
[http://dx.doi.org/10.3389/fonc.2020.615976] [PMID: 33718116]
[105]
Miyake, K.; Suzuki, K.; Ogawa, T.; Ogawa, D.; Hatakeyama, T.; Shinomiya, A.; Kudomi, N.; Yamamoto, Y.; Nishiyama, Y.; Tamiya, T. Multiple positron emission tomography tracers for use in the classification of gliomas according to the 2016 World Health Organization criteria. Neurooncol. Adv., 2021, 3(1), vdaa172.
[http://dx.doi.org/10.1093/noajnl/vdaa172] [PMID: 33681765]
[106]
Kanno, S.; Tomizawa, A.; Ohtake, T.; Koiwai, K.; Ujibe, M.; Ishikawa, M. Naringenin-induced apoptosis via activation of NF-κB and necrosis involving the loss of ATP in human promyeloleukemia HL-60 cells. Toxicol. Lett., 2006, 166(2), 131-139.
[http://dx.doi.org/10.1016/j.toxlet.2006.06.005] [PMID: 16860949]
[107]
Rzeski, W.; Matysiak, J.; Kandefer-Szerszeń, M. Anticancer, neuroprotective activities and computational studies of 2-amino-1,3,4-thiadiazole based compound. Bioorg. Med. Chem., 2007, 15(9), 3201-3207.
[http://dx.doi.org/10.1016/j.bmc.2007.02.041] [PMID: 17350846]
[108]
Jakubowicz-Gil, J.; Langner, E.; Wertel, I.; Piersiak, T.; Rzeski, W. Temozolomide, quercetin and cell death in the MOGGCCM astrocytoma cell line. Chem. Biol. Interact., 2010, 188(1), 190-203.
[http://dx.doi.org/10.1016/j.cbi.2010.07.015] [PMID: 20654599]
[109]
Jakubowicz-Gil, J.; Langner, E.; Rzeski, W. Kinetic studies of the effects of Temodal and quercetin on astrocytoma cells. Pharmacol. Rep., 2011, 63(2), 403-416.
[110]
Nam, J.S.; Sharma, A.; Nguyen, L.; Chakraborty, C.; Sharma, G.; Lee, S.S. Application of bioactive quercetin in oncotherapy: From nutrition to nanomedicine. Molecules, 2016, 21(1), 108.
[http://dx.doi.org/10.3390/molecules21010108] [PMID: 26797598]
[111]
Okamoto, T. Safety of quercetin for clinical application (Review). Int. J. Mol. Med., 2005, 16(2), 275-278.
[http://dx.doi.org/10.3892/ijmm.16.2.275] [PMID: 16012761]
[112]
Ratnam, D.V.; Ankola, D.D.; Bhardwaj, V.; Sahana, D.K.; Kumar, M.N.V.R. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control. Release, 2006, 113(3), 189-207.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.015] [PMID: 16790290]
[113]
Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of quercetin: Problems and promises. Curr. Med. Chem., 2013, 20(20), 2572-2582.
[http://dx.doi.org/10.2174/09298673113209990120] [PMID: 23514412]
[114]
García-Mediavilla, V.; Crespo, I.; Collado, P.S.; Esteller, A.; Sánchez-Campos, S.; Tuñón, M.J.; González-Gallego, J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol., 2007, 557(2-3), 221-229.
[http://dx.doi.org/10.1016/j.ejphar.2006.11.014] [PMID: 17184768]
[115]
Kaul, T.N.; Middleton, E., Jr; Ogra, P.L. Antiviral effect of flavonoids on human viruses. J. Med. Virol., 1985, 15(1), 71-79.
[http://dx.doi.org/10.1002/jmv.1890150110] [PMID: 2981979]
[116]
Martinho, N.; Damgé, C.; Reis, C.P. Recent advances in drug delivery systems. J. Biomater. Nanobiotechnol., 2011, 2(5), 510-526.
[http://dx.doi.org/10.4236/jbnb.2011.225062]
[117]
Jahangirian, H.; Ghasemian lemraski, E.; Webster, T.J.; Rafiee-Moghaddam, R.; Abdollahi, Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int. J. Nanomed., 2017, 12, 2957-2978.
[http://dx.doi.org/10.2147/IJN.S127683] [PMID: 28442906]
[118]
De Villiers, M.M.; Aramwit, P.; Kwon, G.S. Nanotechnology in drug delivery; Springer Science & Business Media, 2008.
[119]
Parveen, S.; Sahoo, S.K. Nanomedicine. Clin. Pharmacokinet., 2006, 45(10), 965-988.
[http://dx.doi.org/10.2165/00003088-200645100-00002] [PMID: 16984211]
[120]
Farhoudi, L.; Kesharwani, P.; Majeed, M.; Johnston, T.P.; Sahebkar, A. Polymeric nanomicelles of curcumin: Potential applications in cancer. Int. J. Pharm., 2022, 617, 121622.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121622] [PMID: 35227805]
[121]
Liu, Y.; Castro Bravo, K.M.; Liu, J. Targeted liposomal drug delivery: A nanoscience and biophysical perspective. Nanoscale Horiz., 2021, 6(2), 78-94.
[http://dx.doi.org/10.1039/D0NH00605J] [PMID: 33400747]
[122]
Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem., 2019, 164, 640-653.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.007] [PMID: 30640028]
[123]
Chavda, V.P.; Vihol, D.; Mehta, B.; Shah, D.; Patel, M.; Vora, L.K.; Pereira-Silva, M.; Paiva-Santos, A.C. Phytochemical-loaded liposomes for anticancer therapy: An updated review. Nanomedicine, 2022, 17(8), 547-568.
[http://dx.doi.org/10.2217/nnm-2021-0463] [PMID: 35259920]
[124]
Dian, L.; Yang, Z.; Li, F.; Wang, Z.; Pan, X.; Peng, X.; Huang, X.; Guo, Z.; Quan, G.; Shi, X.; Chen, B.; Li, G.; Wu, C. Cubic phase nanoparticles for sustained release of ibuprofen: Formulation, characterization, and enhanced bioavailability study. Int. J. Nanomed., 2013, 8, 845-854.
[PMID: 23468008]
[125]
Johnston, A.P.R.; Such, G.K.; Ng, S.L.; Caruso, F. Challenges facing colloidal delivery systems: From synthesis to the clinic. Curr. Opin. Colloid Interface Sci., 2011, 16(3), 171-181.
[http://dx.doi.org/10.1016/j.cocis.2010.11.003]
[126]
Katragadda, U.; Teng, Q.; Rayaprolu, B.M.; Chandran, T.; Tan, C. Multi-drug delivery to tumor cells via micellar nanocarriers. Int. J. Pharm., 2011, 419(1-2), 281-286.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.033] [PMID: 21820041]
[127]
Licciardi, M.; Cavallaro, G.; Di Stefano, M.; Pitarresi, G.; Fiorica, C.; Giammona, G. New self-assembling polyaspartylhydrazide copolymer micelles for anticancer drug delivery. Int. J. Pharm., 2010, 396(1-2), 219-228.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.021] [PMID: 20600731]
[128]
Mumtaz, S.M.; Bhardwaj, G.; Goswami, S.; Tonk, R.K.; Goyal, R.K.; Abu-Izneid, T.; Pottoo, F.H. Management of glioblastoma multiforme by phytochemicals: Applications of nanoparticle-based targeted drug delivery system. Curr. Drug Targets, 2021, 22(4), 429-442.
[http://dx.doi.org/10.2174/1389450121666200727115454] [PMID: 32718288]
[129]
Singla, R.K.; Sai, C.S.; Chopra, H.; Behzad, S.; Bansal, H.; Goyal, R.; Gautam, R.K.; Tsagkaris, C.; Joon, S.; Singla, S.; Shen, B. Natural products for the management of castration-resistant prostate cancer: Special focus on nanoparticles based studies. Front. Cell Dev. Biol., 2021, 9, 745177.
[http://dx.doi.org/10.3389/fcell.2021.745177] [PMID: 34805155]
[130]
Rezaei-Tazangi, F.; Roghani-Shahraki, H.; Khorsand Ghaffari, M.; Abolhasani Zadeh, F.; Boostan, A.; ArefNezhad, R.; Motedayyen, H. The therapeutic potential of common herbal and nano-based herbal formulations against ovarian cancer: New insight into the current evidence. Pharmaceuticals, 2021, 14(12), 1315.
[http://dx.doi.org/10.3390/ph14121315] [PMID: 34959716]
[131]
Ashrafizadeh, M.; Ahmadi, Z.; Kotla, N.G.; Afshar, E.G.; Samarghandian, S.; Mandegary, A.; Pardakhty, A.; Mohammadinejad, R.; Sethi, G. Nanoparticles targeting STATs in cancer therapy. Cells, 2019, 8(10), 1158.
[http://dx.doi.org/10.3390/cells8101158] [PMID: 31569687]
[132]
Wang, G.; Wang, J.; Luo, J.; Wang, L.; Chen, X.; Zhang, L.; Jiang, S. PEG2000-DPSE-coated quercetin nanoparticles remarkably enhanced anticancer effects through induced programed cell death on C6 glioma cells. J. Biomed. Mater. Res. A, 2013, 101(11), 3076-3085.
[http://dx.doi.org/10.1002/jbm.a.34607] [PMID: 23529952]
[133]
Wang, G.; Wang, J.J.; Chen, X.L.; Du, S.M.; Li, D.S.; Pei, Z.J.; Lan, H.; Wu, L.B. The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death Dis., 2013, 4(8), e746.
[http://dx.doi.org/10.1038/cddis.2013.242] [PMID: 23907460]
[134]
Halevas, E.; Mavroidi, B.; Nday, C.M.; Tang, J.; Smith, G.C.; Boukos, N.; Litsardakis, G.; Pelecanou, M.; Salifoglou, A. Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity. J. Inorg. Biochem., 2020, 213, 111271.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111271] [PMID: 33069945]
[135]
Lou, M.; Zhang, L.N.; Ji, P.G.; Feng, F.Q.; Liu, J.H.; Yang, C.; Li, B.F.; Wang, L. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomed. Pharmacother., 2016, 84, 1-9.
[136]
Wang, G.; Wang, J.J.; Yang, G.Y.; Du, S.M.; Zeng, N.; Li, D.S.; Li, R.M.; Chen, J.Y.; Feng, J.B.; Yuan, S.H.; Ye, F. Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int. J. Nanomedicine, 2012, 7, 271-280.
[PMID: 22275840]
[137]
Ersoz, M.; Erdemir, A.; Derman, S.; Arasoglu, T.; Mansuroglu, B. Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells. Pharm. Dev. Technol., 2020, 25(6), 757-766.
[http://dx.doi.org/10.1080/10837450.2020.1740933] [PMID: 32192406]
[138]
Wang, G.; Wang, J.J.; Chen, X.L.; Du, L.; Li, F. Quercetin-loaded freeze-dried nanomicelles: Improving absorption and anti-glioma efficiency in vitro and in vivo. J Control Release, 2016, 235, 276-290.
[139]
Paranthaman, S.; Uthaiah, C.A.; Osmani, R.A.M.; Hani, U.; Ghazwani, M.; Alamri, A.H.; Fatease, A.A.; Madhunapantula, S.V.; Gowda, D.V. Anti-proliferative potential of quercetin loaded polymeric mixed micelles on Rat C6 and human U87MG glioma cells. Pharmaceutics, 2022, 14(8), 1643.
[http://dx.doi.org/10.3390/pharmaceutics14081643] [PMID: 36015268]
[140]
Barbarisi, M.; Iaffaioli, R.V.; Armenia, E.; Schiavo, L.; De Sena, G.; Tafuto, S.; Barbarisi, A.; Quagliariello, V. Novel nanohydrogel of hyaluronic acid loaded with quercetin alone and in combination with temozolomide as new therapeutic tool, CD44 targeted based, of glioblastoma multiforme. J. Cell. Physiol., 2018, 233(10), 6550-6564.
[http://dx.doi.org/10.1002/jcp.26238] [PMID: 29030990]
[141]
Johnson, C.; Smith, A.; Anderson, B. Polyphenolic structure of quercetin and its implications in anticancer signaling pathways. Cancer Res., 2012, 30(5), 411-425.