Global Emergence of SARS-CoV2 Infection and Scientific Interventions to Contain its Spread

Page: [307 - 325] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

The global pandemic caused by COVID-19 posed a significant challenge to public health, necessitating rapid scientific interventions to tackle the spread of infection. The review discusses the key areas of research on COVID-19 including viral genomics, epidemiology, pathogenesis, diagnostics, and therapeutics. The genome sequencing of the virus facilitated the tracking of its evolution, transmission dynamics, and identification of variants. Epidemiological studies have provided insights into disease spread, risk factors, and the impact of public health infrastructure and social distancing measures. Investigations of the viral pathogenesis have elucidated the mechanisms underlying immune responses and severe manifestations including the long-term effects of COVID-19. Overall, the article provides an updated overview of the diagnostic methods developed for SARS-CoV-2 and discusses their strengths, limitations, and appropriate utilization in different clinical and public health settings. Furthermore, therapeutic approaches including antiviral drugs, immunomodulatory therapies, and repurposed medications have been investigated to alleviate disease severity and improve patient outcomes. Through a comprehensive analysis of these scientific efforts, the review provides an overview of the advancements made in understanding and tackling SARS-CoV-2, while underscoring the need for continued research to address the evolving challenges posed by this global health crisis.

Graphical Abstract

[1]
(a) Coronavirus disease 2019 (COVID-19) Situation Report – 38. 2019. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200227-sitrep-38-covid-19.pdf?sfvrsn=9f98940c_2;
(b) Zheng, J SARS-CoV-2: An emerging coronavirus that causes a global threat. Int. J. Biol. Sci, 2020, 16(10), 1678-1685.
[http://dx.doi.org/10.7150/ijbs.45053] [PMID: 32226285]
[2]
Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, 24(6), 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[3]
Zhong, N.S.; Zheng, B.J.; Li, Y.M.; Poon, L.L.M.; Xie, Z.H.; Chan, K.H.; Li, P.H.; Tan, S.Y.; Chang, Q.; Xie, J.P.; Liu, X.Q.; Xu, J.; Li, D.X.; Yuen, K.Y.; Peiris, J.S.M.; Guan, Y. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet, 2003, 362(9393), 1353-1358.
[http://dx.doi.org/10.1016/S0140-6736(03)14630-2] [PMID: 14585636]
[4]
Drosten, C.; Günther, S.; Preiser, W.; van der Werf, S.; Brodt, H.R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.M.; Berger, A.; Burguière, A.M.; Cinatl, J.; Eickmann, M.; Escriou, N.; Grywna, K.; Kramme, S.; Manuguerra, J.C.; Müller, S.; Rickerts, V.; Stürmer, M.; Vieth, S.; Klenk, H.D.; Osterhaus, A.D.M.E.; Schmitz, H.; Doerr, H.W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med., 2003, 348(20), 1967-1976.
[http://dx.doi.org/10.1056/NEJMoa030747] [PMID: 12690091]
[5]
Ksiazek, T.G.; Erdman, D.; Goldsmith, C.S.; Zaki, S.R.; Peret, T.; Emery, S.; Tong, S.; Urbani, C.; Comer, J.A.; Lim, W.; Rollin, P.E.; Dowell, S.F.; Ling, A.E.; Humphrey, C.D.; Shieh, W.J.; Guarner, J.; Paddock, C.D.; Rota, P.; Fields, B.; DeRisi, J.; Yang, J.Y.; Cox, N.; Hughes, J.M.; LeDuc, J.W.; Bellini, W.J.; Anderson, L.J. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med., 2003, 348(20), 1953-1966.
[http://dx.doi.org/10.1056/NEJMoa030781] [PMID: 12690092]
[6]
(a) Fouchier, R.A.M.; Kuiken, T.; Schutten, M.; van Amerongen, G.; van Doornum, G.J.J.; van den Hoogen, B.G.; Peiris, M.; Lim, W.; Stöhr, K.; Osterhaus, A.D.M.E. Koch’s postulates fulfilled for SARS virus. Nature, 2003, 423(6937), 240.;
(b) ) C., Rahul; H.K., Avathi; S.K., Sushanth; B.G., Reddy; D.P., Thammisetty; G.V., Nagaraju A Review on recent trends in corona virus disease prevention and treatment methods and research directions for future. Eur. Chem. Bull., 2023, 12(1), 786-807.
[http://dx.doi.org/10.1038/423240a] [PMID: 12748632]
[7]
Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, 367(19), 1814-1820.
[http://dx.doi.org/10.1056/NEJMoa1211721] [PMID: 23075143]
[8]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[9]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H-R.; Zhu, Y.; Li, B.; Huang, C-L.; Chen, H-D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R-D.; Liu, M-Q.; Chen, Y.; Shen, X-R.; Wang, X.; Zheng, X-S.; Zhao, K.; Chen, Q-J.; Deng, F.; Liu, L-L.; Yan, B.; Zhan, F-X.; Wang, Y-Y.; Xiao, G-F.; Shi, Z-L. Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 588(7836), E6.
[http://dx.doi.org/10.1038/s41586-020-2951-z]
[10]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[11]
Chan, J.F.W.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.W.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[12]
Chen, L.; Liu, W.; Zhang, Q.; Xu, K.; Ye, G.; Wu, W.; Sun, Z.; Liu, F.; Wu, K.; Zhong, B.; Mei, Y.; Zhang, W.; Chen, Y.; Li, Y.; Shi, M.; Lan, K.; Liu, Y. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg. Microbes Infect., 2020, 9(1), 313-319.
[http://dx.doi.org/10.1080/22221751.2020.1725399] [PMID: 32020836]
[13]
Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.Y.; Poon, R.W.S.; Tsoi, H.W.; Lo, S.K.F.; Chan, K.H.; Poon, V.K.M.; Chan, W.M.; Ip, J.D.; Cai, J.P.; Cheng, V.C.C.; Chen, H.; Hui, C.K.M.; Yuen, K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 2020, 395(10223), 514-523.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[14]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[15]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[16]
Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci., 2020, 63(3), 457-460.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[17]
Guan, Y.; Zheng, B.J.; He, Y.Q.; Liu, X.L.; Zhuang, Z.X.; Cheung, C.L.; Luo, S.W.; Li, P.H.; Zhang, L.J.; Guan, Y.J.; Butt, K.M.; Wong, K.L.; Chan, K.W.; Lim, W.; Shortridge, K.F.; Yuen, K.Y.; Peiris, J.S.M.; Poon, L.L.M. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 2003, 302(5643), 276-278.
[http://dx.doi.org/10.1126/science.1087139] [PMID: 12958366]
[18]
Wang, M.; Yan, M.; Xu, H.; Liang, W.; Kan, B.; Zheng, B.; Chen, H.; Zheng, H.; Xu, Y.; Zhang, E.; Wang, H.; Ye, J.; Li, G.; Li, M.; Cui, Z.; Liu, Y.F.; Guo, R.T.; Liu, X.N.; Zhan, L.H.; Zhou, D.H.; Zhao, A.; Hai, R.; Yu, D.; Guan, Y.; Xu, J. SARS-CoV infection in a restaurant from palm civet. Emerg. Infect. Dis., 2005, 11(12), 1860-1865.
[http://dx.doi.org/10.3201/eid1112.041293] [PMID: 16485471]
[19]
Song, H.D.; Tu, C.C.; Zhang, G.W.; Wang, S.Y.; Zheng, K.; Lei, L.C.; Chen, Q.X.; Gao, Y.W.; Zhou, H.Q.; Xiang, H.; Zheng, H.J.; Chern, S.W.W.; Cheng, F.; Pan, C.M.; Xuan, H.; Chen, S.J.; Luo, H.M.; Zhou, D.H.; Liu, Y.F.; He, J.F.; Qin, P.Z.; Li, L.H.; Ren, Y.Q.; Liang, W.J.; Yu, Y.D.; Anderson, L.; Wang, M.; Xu, R.H.; Wu, X.W.; Zheng, H.Y.; Chen, J.D.; Liang, G.; Gao, Y.; Liao, M.; Fang, L.; Jiang, L.Y.; Li, H.; Chen, F.; Di, B.; He, L.J.; Lin, J.Y.; Tong, S.; Kong, X.; Du, L.; Hao, P.; Tang, H.; Bernini, A.; Yu, X.J.; Spiga, O.; Guo, Z.M.; Pan, H.Y.; He, W.Z.; Manuguerra, J.C.; Fontanet, A.; Danchin, A.; Niccolai, N.; Li, Y.X.; Wu, C.I.; Zhao, G.P. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc. Natl. Acad. Sci., 2005, 102(7), 2430-2435.
[http://dx.doi.org/10.1073/pnas.0409608102] [PMID: 15695582]
[20]
Shi, Z.; Hu, Z. A review of studies on animal reservoirs of the SARS coronavirus. Virus Res., 2008, 133(1), 74-87.
[http://dx.doi.org/10.1016/j.virusres.2007.03.012] [PMID: 17451830]
[21]
Li, W.; Shi, Z.; Yu, M.; Ren, W.; Smith, C.; Epstein, J.H.; Wang, H.; Crameri, G.; Hu, Z.; Zhang, H.; Zhang, J.; McEachern, J.; Field, H.; Daszak, P.; Eaton, B.T.; Zhang, S.; Wang, L.F. Bats are natural reservoirs of SARS-like coronaviruses. Science, 2005, 310(5748), 676-679.
[http://dx.doi.org/10.1126/science.1118391] [PMID: 16195424]
[22]
Lau, S.K.P.; Woo, P.C.Y.; Li, K.S.M.; Huang, Y.; Tsoi, H.W.; Wong, B.H.L.; Wong, S.S.Y.; Leung, S.Y.; Chan, K.H.; Yuen, K.Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci., 2005, 102(39), 14040-14045.
[http://dx.doi.org/10.1073/pnas.0506735102] [PMID: 16169905]
[23]
Ge, X.Y.; Li, J.L.; Yang, X.L.; Chmura, A.A.; Zhu, G.; Epstein, J.H.; Mazet, J.K.; Hu, B.; Zhang, W.; Peng, C.; Zhang, Y.J.; Luo, C.M.; Tan, B.; Wang, N.; Zhu, Y.; Crameri, G.; Zhang, S.Y.; Wang, L.F.; Daszak, P.; Shi, Z.L. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 2013, 503(7477), 535-538.
[http://dx.doi.org/10.1038/nature12711] [PMID: 24172901]
[24]
Hu, B.; Zeng, L.P.; Yang, X.L.; Ge, X.Y.; Zhang, W.; Li, B.; Xie, J.Z.; Shen, X.R.; Zhang, Y.Z.; Wang, N.; Luo, D.S.; Zheng, X.S.; Wang, M.N.; Daszak, P.; Wang, L.F.; Cui, J.; Shi, Z.L. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog., 2017, 13(11), e1006698.
[http://dx.doi.org/10.1371/journal.ppat.1006698] [PMID: 29190287]
[25]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[26]
Jiang, S.; Du, L.; Shi, Z. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: Calling for developing therapeutic and prophylactic strategies. Emerg. Microbes Infect., 2020, 9(1), 275-277.
[http://dx.doi.org/10.1080/22221751.2020.1723441] [PMID: 32005086]
[27]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J. Virol., 2020, 94(7), e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[28]
Giovanetti, M.; Benedetti, F.; Campisi, G.; Ciccozzi, A.; Fabris, S.; Ceccarelli, G.; Tambone, V.; Caruso, A.; Angeletti, S.; Zella, D.; Ciccozzi, M. Evolution patterns of SARS-CoV-2: Snapshot on its genome variants. Biochem. Biophys. Res. Commun., 2021, 538, 88-91.
[http://dx.doi.org/10.1016/j.bbrc.2020.10.102] [PMID: 33199021]
[29]
Galloway, S.E.; Paul, P.; MacCannell, D.R.; Johansson, M.A.; Brooks, J.T.; MacNeil, A.; Slayton, R.B.; Tong, S.; Silk, B.J.; Armstrong, G.L.; Biggerstaff, M.; Dugan, V.G. Emergence of SARS-CoV-2 B.1.1.7 Lineage - United States, December 29, 2020-January 12, 2021. MMWR Morb. Mortal. Wkly. Rep., 2021, 70(3), 95-99.
[http://dx.doi.org/10.15585/mmwr.mm7003e2] [PMID: 33476315]
[30]
(a) Davies, N.G.; Abbott, S.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.D.; Pearson, C.A.B.; Russell, T.W.; Tully, D.C.; Washburne, A.D.; Wenseleers, T.; Gimma, A.; Waites, W.; Wong, K.L.M.; van Zandvoort, K.; Silverman, J.D.; Diaz-Ordaz, K.; Keogh, R.; Eggo, R.M.; Funk, S.; Jit, M.; Atkins, K.E.; Edmunds, W.J. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science, 2021, 372(6538), eabg3055.
[http://dx.doi.org/10.1126/science.abg3055] [PMID: 33658326];
(b) Hoteit, R.; Yassine, H.M Biological properties of SARS-CoV- -2 variants: Epidemiological impact and clinical consequences Vaccines, 2022, 10(6), 919.
[http://dx.doi.org/10.3390/vaccines10060919]
[31]
Walensky, R.P.; Walke, H.T.; Fauci, A.S. SARS-CoV-2 variants of concern in the united states-challenges and opportunities. JAMA, 2021, 325(11), 1037-1038.
[http://dx.doi.org/10.1001/jama.2021.2294] [PMID: 33595644]
[32]
Wu, K.; Werner, A.P.; Moliva, J.I.; Koch, M.; Choi, A.; Stewart-Jones, G.B.E.; Bennett, H.; Boyoglu-Barnum, S.; Shi, W.; Graham, B.S.; Carfi, A.; Corbett, K.S.; Seder, R.A.; Edwards, D.K.; Wu, K; Werner, AP; Moliva, JI; Koch, M; Choi, A; Stewart-Jones, GBE; Bennett, H; Boyoglu-Barnum, S; Shi, W; Graham, BS; Carfi, A; Corbett, KS; Seder, RA; Edwards, DK mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv, 2021.
[http://dx.doi.org/10.1101/2021.01.25.427948]
[33]
Volz, E.; Mishra, S.; Chand, M.; Barrett, J.C.; Johnson, R.; Geidelberg, L.; Hinsley, W.R.; Laydon, D.J.; Dabrera, G.; O’Toole, Á.; Amato, R.; Ragonnet-Cronin, M.; Harrison, I.; Jackson, B.; Ariani, C.V.; Boyd, O.; Loman, N.J.; McCrone, J.T.; Gonçalves, S.; Jorgensen, D.; Myers, R.; Hill, V.; Jackson, D.K.; Gaythorpe, K.; Groves, N.; Sillitoe, J.; Kwiatkowski, D.P.; Flaxman, S.; Ratmann, O.; Bhatt, S.; Hopkins, S.; Gandy, A.; Rambaut, A.; Ferguson, N.M. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature, 2021, 593(7858), 266-269.
[http://dx.doi.org/10.1038/s41586-021-03470-x] [PMID: 33767447]
[34]
Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.; Pillay, S.; San, E.J.; Msomi, N.; Mlisana, K.; von Gottberg, A.; Walaza, S.; Allam, M.; Ismail, A.; Mohale, T.; Glass, A.J.; Engelbrecht, S.; Van Zyl, G.; Preiser, W.; Petruccione, F.; Sigal, A.; Hardie, D.; Marais, G.; Hsiao, N.; Korsman, S.; Davies, M.A.; Tyers, L.; Mudau, I.; York, D.; Maslo, C.; Goedhals, D.; Abrahams, S.; Laguda-Akingba, O.; Alisoltani-Dehkordi, A.; Godzik, A.; Wibmer, C.K.; Sewell, B.T.; Lourenço, J.; Alcantara, L.C.J.; Kosakovsky Pond, S.L.; Weaver, S.; Martin, D.; Lessells, R.J.; Bhiman, J.N.; Williamson, C.; de Oliveira, T. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature, 2021, 592(7854), 438-443.
[http://dx.doi.org/10.1038/s41586-021-03402-9] [PMID: 33690265]
[35]
Wibmer, C.K.; Ayres, F.; Hermanus, T.; Madzivhandila, M.; Kgagudi, P.; Oosthuysen, B.; Lambson, B.E.; de Oliveira, T.; Vermeulen, M.; Van der Berg, K.; Rossouw, T.; Boswell, M.; Ueckermann, V.; Meiring, S.; Von Gottberg, A.; Cohen, C.; Morris, L.; Bhiman, J.N.; Moore, P.L. SARS-CoV-2 501Y. bioRxiv, 2021.
[36]
Mwenda, M.; Saasa, N.; Sinyange, N.; Busby, G.; Chipimo, P.J.; Hendry, J.; Kapona, O.; Yingst, S.; Hines, J.Z.; Minchella, P.; Simulundu, E.; Changula, K.; Nalubamba, K.S.; Sawa, H.; Kajihara, M.; Yamagishi, J.; Kapin’a, M.; Kapata, N.; Fwoloshi, S.; Zulu, P.; Mulenga, L.B.; Agolory, S.; Mukonka, V.; Bridges, D.J. Detection of B.1.351 SARS-CoV-2 variant strain-zambia, december 2020. MMWR Morb. Mortal. Wkly. Rep., 2021, 70(8), 280-282.
[http://dx.doi.org/10.15585/mmwr.mm7008e2] [PMID: 33630820]
[37]
Wang, P.; Casner, R.G.; Nair, M.S.; Wang, M.; Yu, J.; Cerutti, G.; Liu, L.; Kwong, P.D.; Huang, Y.; Shapiro, L.; Ho, D.D. Increased resistance of SARS-CoV-2 variant. bioRxiv, 2021.
[38]
Vaughan, A.; Mellan, T.A.; Whittaker, C.; Claro, I.M.; Candido, D.D.S.; Mishra, S.; Crispim, M.A.E.; Sales, F.C.; Hawryluk, I.; McCrone, J.T.; Hulswit, R.J.G.; Franco, L.A.M.; Ramundo, M.S.; de Jesus, J.G.; Andrade, P.S.; Coletti, T.M.; Ferreira, G.M.; Silva, C.A.M.; Manuli, E.R.; Pereira, R.H.M.; Peixoto, P.S.; Kraemer, M.U.; Gaburo, N.; Camilo, C.D.C.; Hoeltgebaum, H.; Souza, W.M.; Rocha, E.C.; de Souza, L.M.; de Pinho, M.C.; Araujo, L.J.T.; Malta, F.S.V.; de Lima, A.B.; Silva, J.D.P.; Zauli, D.A.G. Omicron emerges. New Sci., 2021, 252(3363), 7.
[http://dx.doi.org/10.1016/S0262-4079(21)02140-0] [PMID: 34876769]
[39]
Callaway, E. Heavily mutated Omicron variant puts scientists on alert. Nature, 2021, 600(7887), 21.
[http://dx.doi.org/10.1038/d41586-021-03552-w] [PMID: 34824381]
[40]
Gu, H.; Krishnan, P.; Ng, D.Y.M.; Chang, L.D.J.; Liu, G.Y.Z.; Cheng, S.S.M.; Hui, M.M.Y.; Fan, M.C.Y.; Wan, J.H.L.; Lau, L.H.K.; Cowling, B.J.; Peiris, M.; Poon, L.L.M. Probable transmission of SARS-CoV-2 omicron variant in quarantine hotel, Hong Kong, China, November 2021. Emerg. Infect. Dis., 2022, 28(2), 460-462.
[http://dx.doi.org/10.3201/eid2802.212422] [PMID: 34860154]
[41]
Chen, J; Wang, R; Gilby, NB; Wei, GW Omicron (B.1.1.529): Infectivity, vaccine breakthrough, and antibody resistance. ArXiv., 2021.
[42]
Yue, C.; Song, W.; Wang, L.; Jian, F.; Chen, X.; Gao, F.; Shen, Z.; Wang, Y.; Wang, X.; Cao, Y. ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5. Lancet Infect. Dis., 2023, 23(3), 278-280.
[http://dx.doi.org/10.1016/S1473-3099(23)00010-5] [PMID: 36746173]
[43]
Zhang, W.; Davis, B.D.; Chen, S.S.; Sincuir Martinez, J.M.; Plummer, J.T.; Vail, E. Emergence of a novel SARS-CoV-2 variant in Southern California. JAMA, 2021, 325(13), 1324-1326.
[http://dx.doi.org/10.1001/jama.2021.1612] [PMID: 33571356]
[44]
Voloch, C.M.; da Silva Francisco, R., Jr; de Almeida, L.G.P.; Cardoso, C.C.; Brustolini, O.J.; Gerber, A.L.; Guimarães, A.P.C.; Mariani, D.; da Costa, R.M.; Ferreira, O.C., Jr; Cavalcanti, A.C.; Frauches, T.S.; de Mello, C.M.B.; Leitão, I.C.; Galliez, R.M.; Faffe, D.S.; Castiñeiras, T.M.P.P.; Tanuri, A.; de Vasconcelos, A.T.R. Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil. J. Virol., 2021, 95(10), e00119-21.
[http://dx.doi.org/10.1128/JVI.00119-21] [PMID: 33649194]
[45]
Tracking SARS-CoV-2 variants. Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (Accessed on: January 3, 2022).
[46]
Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; Penzar, D.; Perlman, S.; Poon, L.L.M.; Samborskiy, D.V.; Sidorov, I.A.; Sola, I.; Ziebuhr, J. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[47]
Davies, N.G.; Jarvis, C.I.; Edmunds, WJ; Jewell, NP; Diaz-Ordaz, K; Keogh, RH. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature, 2021, 593(7858), 270-4.
[http://dx.doi.org/10.1101/2021.02.01.21250959]
[48]
Rodrigues, E.F.; Moreno, J.; Leite, P.P.; Casaca, P.; Nunes, B.; Gomes, J.P.; Ferreira, R.; Isidro, J.; Borges, V.; Vieira, L.; Duarte, S.; Sousa, C.; Almeida, J.P.; Menezes, L.; Vaz, D.; Leite, A.; Peralta-Santos, A. B.1.617.2 SARS-CoV-2 (Delta) variant is associated with increased risk of hospitalization and death compared with B.1.1.7 SARS-CoV-2 (Alpha) variant. medRix, 2022, 2, 20122.
[http://dx.doi.org/10.1101/2022.01.21.22268602]
[49]
Radvak, P.; Kwon, H.J.; Kosikova, M.; Ortega-Rodriguez, U.; Xiang, R.; Phue, J.N.; Shen, R.F.; Rozzelle, J.; Kapoor, N.; Rabara, T.; Fairman, J.; Xie, H. SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains. Nat. Commun., 2021, 12(1), 6559.
[http://dx.doi.org/10.1038/s41467-021-26803-w] [PMID: 34772941]
[50]
Liu, H.; Wei, P.; Zhang, Q.; Chen, Z.; Aviszus, K.; Downing, W.; Peterson, S.; Reynoso, L.; Downey, G.P.; Frankel, S.K.; Kappler, J.; Marrack, P.; Zhang, G. 501Y.V2 and 501Y.V3 variants of SARS-CoV-2 lose binding to bamlanivimab in vitro. MAbs, 2021, 13(1), 1919285.
[http://dx.doi.org/10.1080/19420862.2021.1919285] [PMID: 34074219]
[51]
Coutinho, R.M.; Marquitti, F.M.D.; Ferreira, L.S.; Borges, M.E.; da Silva, R.L.P.; Canton, O.; Portella, T.P.; Poloni, S.; Franco, C.; Plucinski, M.M.; Lessa, F.C.; da Silva, A.A.M.; Kraenkel, R.A.; de Sousa, M.V.M.A.; Prado, P.I. Model-based estimation of transmissibility and reinfection of SARS-CoV-2 P.1 variant. Commun. Med., 2021, 1(1), 48.
[http://dx.doi.org/10.1038/s43856-021-00048-6] [PMID: 35602219]
[52]
Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis., 2020, 20(5), 533-534.
[http://dx.doi.org/10.1016/S1473-3099(20)30120-1] [PMID: 32087114]
[53]
Spira, B. The impact of the highly virulent SARS-CoV-2 gamma variant on young adults in the State of São Paulo: Was it inevitable? Cureus, 2022, 14(7), e26486.
[http://dx.doi.org/10.7759/cureus.26486] [PMID: 35919213]
[54]
Dawood, F.S.; Porucznik, C.A.; Veguilla, V.; Stanford, J.B.; Duque, J.; Rolfes, M.A.; Dixon, A.; Thind, P.; Hacker, E.; Castro, M.J.E.; Jeddy, Z.; Daugherty, M.; Altunkaynak, K.; Hunt, D.R.; Kattel, U.; Meece, J.; Stockwell, M.S. Incidence rates, household infection risk, and clinical characteristics of SARS-CoV-2 infection among children and adults in utah and New York City, New York. JAMA Pediatr., 2022, 176(1), 59-67.
[http://dx.doi.org/10.1001/jamapediatrics.2021.4217] [PMID: 34623377]
[55]
Dhawan, M.; Sharma, A.; Priyanka; Thakur, N.; Rajkhowa, T.K.; Choudhary, O.P. Delta variant (B.1.617.2) of SARS-CoV-2: Mutations, impact, challenges and possible solutions. Hum. Vaccin. Immunother., 2022, 18(5), 2068883.
[http://dx.doi.org/10.1080/21645515.2022.2068883] [PMID: 35507895]
[56]
Chakraborty, C.; Bhattacharya, M.; Sharma, A.R.; Mallik, B. Omicron (B.1.1.529) - A new heavily mutated variant: Mapped location and probable properties of its mutations with an emphasis on S-glycoprotein. Int. J. Biol. Macromol., 2022, 219, 980-997.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.07.254] [PMID: 35952818]
[57]
Ward, I.L.; Bermingham, C.; Ayoubkhani, D.; Gethings, O.J.; Pouwels, K.B.; Yates, T.; Khunti, K.; Hippisley-Cox, J.; Banerjee, A.; Walker, A.S.; Nafilyan, V. Risk of covid-19 related deaths for SARS-CoV-2 omicron (B.1.1.529) compared with delta (B.1.617.2): Retrospective cohort study. BMJ, 2022, 378, e070695.
[http://dx.doi.org/10.1136/bmj-2022-070695] [PMID: 35918098]
[58]
Allen, H.; Tessier, E.; Turner, C.; Anderson, C.; Blomquist, P.; Simons, D.; Løchen, A.; Jarvis, C.I.; Groves, N.; Capelastegui, F.; Flannagan, J.; Zaidi, A.; Chen, C.; Rawlinson, C.; Hughes, G.J.; Chudasama, D.; Nash, S.; Thelwall, S.; Lopez-Bernal, J.; Dabrera, G.; Charlett, A.; Kall, M.; Lamagni, T. Comparative transmission of SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) variants and the impact of vaccination: National cohort study, England. Epidemiol. Infect., 2023, 151, e58.
[http://dx.doi.org/10.1017/S0950268823000420] [PMID: 36938806]
[59]
Wang, P.; Nair, M.S.; Liu, L.; Iketani, S.; Luo, Y.; Guo, Y.; Wang, M.; Yu, J.; Zhang, B.; Kwong, P.D.; Graham, B.S.; Mascola, J.R.; Chang, J.Y.; Yin, M.T.; Sobieszczyk, M.; Kyratsous, C.A.; Shapiro, L.; Sheng, Z.; Huang, Y.; Ho, D.D. Antibody Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7. bioRxiv, 2021, 2021.01.25.428137.
[http://dx.doi.org/10.21203/rs.3.rs-155394/v1]
[60]
Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. 1975. J. Immunol., 2005, 174(5), 2453-2455.
[PMID: 15728446]
[61]
Hansel, T.T.; Kropshofer, H.; Singer, T.; Mitchell, J.A.; George, A.J.T. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov., 2010, 9(4), 325-338.
[http://dx.doi.org/10.1038/nrd3003] [PMID: 20305665]
[62]
Both, L.; Banyard, A.C.; van Dolleweerd, C.; Wright, E.; Ma, J.K.C.; Fooks, A.R. Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Pediatr. Pol., 2013, 88(5), T15-T23.
[http://dx.doi.org/10.1016/j.pepo.2013.08.006] [PMID: 32287402]
[63]
Asherson, R.A.; Gunter, K.; Daya, D.; Shoenfeld, Y. Multiple autoimmune diseases in a young woman: Tuberculosis and splenectomy as possible triggering factors? Another example of the “mosaic” of autoimmunity. J. Rheumatol., 2008, 35(6), 1224-1226.
[PMID: 18528954]
[64]
Waudby-West, R.; Parcell, B.J.; Palmer, C.N.A.; Bell, S.; Chalmers, J.D.; Siddiqui, M.K. The association between SARS-CoV-2 RT-PCR cycle threshold and mortality in a community cohort. Eur. Respir. J., 2021, 58(1), 2100360.
[http://dx.doi.org/10.1183/13993003.00360-2021] [PMID: 34172468]
[65]
Abdulrahman, A.; Mallah, S.I.; Alawadhi, A.; Perna, S.; Janahi, E.M.; AlQahtani, M.M. Association between RT-PCR Ct values and COVID-19 new daily cases: A multicenter cross-sectional study. medRxiv, 2020, 29(3), 416.
[http://dx.doi.org/10.1101/2020.12.07.20245233]
[66]
Karahasan Yagci, A.; Sarinoglu, R.C.; Bilgin, H.; Yanılmaz, Ö.; Sayın, E.; Deniz, G.; Guncu, M.M.; Doyuk, Z.; Barıs, C.; Kuzan, B.N.; Aslan, B.; Korten, V.; Cimsit, C. Relationship of the cycle threshold values of SARS-CoV-2 polymerase chain reaction and total severity score of computerized tomography in patients with COVID 19. Int. J. Infect. Dis., 2020, 101, 160-166.
[http://dx.doi.org/10.1016/j.ijid.2020.09.1449] [PMID: 32992013]
[67]
Anaclerio, F.; Ferrante, R.; Mandatori, D.; Antonucci, I.; Capanna, M.; Damiani, V.; Tomo, P.D.; Ferrante, R.; Ranaudo, M.; De Laurenzi, V.; Stuppia, L.; De Fabritiis, S. Different strategies for the identification of SARS-CoV-2 variants in the laboratory practice. Genes, 2021, 12(9), 1428.
[http://dx.doi.org/10.3390/genes12091428] [PMID: 34573410]
[68]
Vega-Magaña, N.; Sánchez-Sánchez, R.; Hernández-Bello, J.; Venancio-Landeros, A.A.; Peña-Rodríguez, M.; Vega-Zepeda, R.A.; Galindo-Ornelas, B.; Díaz-Sánchez, M.; García-Chagollán, M.; Macedo-Ojeda, G.; García-González, O.P.; Muñoz-Valle, J.F. RT-qPCR assays for rapid detection of the N501Y, 69-70del, K417N, and E484K SARS-CoV-2 mutations: A screening strategy to identify variants with clinical impact. Front. Cell. Infect. Microbiol., 2021, 11, 672562.
[http://dx.doi.org/10.3389/fcimb.2021.672562] [PMID: 34123874]
[69]
Aguilar-Shea, A.L.; Vera-García, M.; Güerri-Fernández, R. Rapid antigen tests for the detection of SARS-CoV-2: A narrative review. Aten. Primaria, 2021, 53(9), 102127.
[http://dx.doi.org/10.1016/j.aprim.2021.102127] [PMID: 34217106]
[70]
Verma, M.K.; Sharma, P.K.; Verma, H.K.; Singh, A.N.; Singh, D.D.; Verma, P.; Siddiqui, A.H. Rapid diagnostic methods for SARS-CoV-2 (COVID-19) detection: An evidence-based report. J. Med. Life, 2021, 14(4), 431-442.
[http://dx.doi.org/10.25122/jml-2021-0168] [PMID: 34621365]
[71]
Mandal, D.K.; Bhattarai, B.R.; Pokhrel, S.; Chhusyabaga, M.; Bhandari, P.; Bhatt, M.P.; Marhattha, S.B. Diagnostic performance of SARS-CoV-2 rapid antigen test in relation to RT-PCR Cq Value. Adv. Virol., 2022, 2022, 1-8.
[http://dx.doi.org/10.1155/2022/9245248] [PMID: 35592595]
[72]
Wise, J. Covid-19: New coronavirus variant is identified in UK. BMJ, 2020, 371, m4857.
[http://dx.doi.org/10.1136/bmj.m4857] [PMID: 33328153]
[73]
Gottlieb, R.L.; Nirula, A.; Chen, P.; Boscia, J.; Heller, B.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; Shawa, I.; Kumar, P.; Adams, A.C.; Van Naarden, J.; Custer, K.L.; Durante, M.; Oakley, G.; Schade, A.E.; Holzer, T.R.; Ebert, P.J.; Higgs, R.E.; Kallewaard, N.L.; Sabo, J.; Patel, D.R.; Klekotka, P.; Shen, L.; Skovronsky, D.M. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19. JAMA, 2021, 325(7), 632-644.
[http://dx.doi.org/10.1001/jama.2021.0202] [PMID: 33475701]
[74]
Westendorf, K.; Žentelis, S.; Wang, L.; Foster, D.; Vaillancourt, P.; Wiggin, M.; Lovett, E.; van der Lee, R.; Hendle, J.; Pustilnik, A.; Sauder, J.M.; Kraft, L.; Hwang, Y.; Siegel, R.W.; Chen, J.; Heinz, B.A.; Higgs, R.E.; Kallewaard, N.L.; Jepson, K.; Goya, R.; Smith, M.A.; Collins, D.W.; Pellacani, D.; Xiang, P.; de Puyraimond, V.; Ricicova, M.; Devorkin, L.; Pritchard, C.; O’Neill, A.; Dalal, K.; Panwar, P.; Dhupar, H.; Garces, F.A.; Cohen, C.A.; Dye, J.M.; Huie, K.E.; Badger, C.V.; Kobasa, D.; Audet, J.; Freitas, J.J.; Hassanali, S.; Hughes, I.; Munoz, L.; Palma, H.C.; Ramamurthy, B.; Cross, R.W.; Geisbert, T.W.; Menacherry, V.; Lokugamage, K.; Borisevich, V.; Lanz, I.; Anderson, L.; Sipahimalani, P.; Corbett, K.S.; Yang, E.S.; Zhang, Y.; Shi, W.; Zhou, T.; Choe, M.; Misasi, J.; Kwong, P.D.; Sullivan, N.J.; Graham, B.S.; Fernandez, T.L.; Hansen, C.L.; Falconer, E.; Mascola, J.R.; Jones, B.E.; Barnhart, B.C. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. bioRxiv, 2022.
[75]
Levin, M.J.; Ustianowski, A.; De Wit, S.; Launay, O.; Avila, M.; Templeton, A.; Yuan, Y.; Seegobin, S.; Ellery, A.; Levinson, D.J.; Ambery, P.; Arends, R.H.; Beavon, R.; Dey, K.; Garbes, P.; Kelly, E.J.; Koh, G.C.K.W.; Near, K.A.; Padilla, K.W.; Psachoulia, K.; Sharbaugh, A.; Streicher, K.; Pangalos, M.N.; Esser, M.T. Intramuscular AZD7442 (Tixagevimab–Cilgavimab) for prevention of Covid-19. N. Engl. J. Med., 2022, 386(23), 2188-2200.
[http://dx.doi.org/10.1056/NEJMoa2116620] [PMID: 35443106]
[76]
Dong, J.; Zost, S.J.; Greaney, A.J.; Starr, T.N.; Dingens, A.S.; Chen, E.C.; Chen, R.E.; Case, J.B.; Sutton, R.E.; Gilchuk, P.; Rodriguez, J.; Armstrong, E.; Gainza, C.; Nargi, R.S.; Binshtein, E.; Xie, X.; Zhang, X.; Shi, P.Y.; Logue, J.; Weston, S.; McGrath, M.E.; Frieman, M.B.; Brady, T.; Tuffy, K.M.; Bright, H.; Loo, Y.M.; McTamney, P.M.; Esser, M.T.; Carnahan, R.H.; Diamond, M.S.; Bloom, J.D.; Crowe, J.E., Jr Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat. Microbiol., 2021, 6(10), 1233-1244.
[http://dx.doi.org/10.1038/s41564-021-00972-2] [PMID: 34548634]
[77]
Zost, S.J.; Gilchuk, P.; Case, J.B.; Binshtein, E.; Chen, R.E.; Nkolola, J.P.; Schäfer, A.; Reidy, J.X.; Trivette, A.; Nargi, R.S.; Sutton, R.E.; Suryadevara, N.; Martinez, D.R.; Williamson, L.E.; Chen, E.C.; Jones, T.; Day, S.; Myers, L.; Hassan, A.O.; Kafai, N.M.; Winkler, E.S.; Fox, J.M.; Shrihari, S.; Mueller, B.K.; Meiler, J.; Chandrashekar, A.; Mercado, N.B.; Steinhardt, J.J.; Ren, K.; Loo, Y.M.; Kallewaard, N.L.; McCune, B.T.; Keeler, S.P.; Holtzman, M.J.; Barouch, D.H.; Gralinski, L.E.; Baric, R.S.; Thackray, L.B.; Diamond, M.S.; Carnahan, R.H.; Crowe, J.E., Jr Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584(7821), 443-449.
[http://dx.doi.org/10.1038/s41586-020-2548-6] [PMID: 32668443]
[78]
Beavis, K.G.; Matushek, S.M.; Abeleda, A.P.F.; Bethel, C.; Hunt, C.; Gillen, S.; Moran, A.; Tesic, V. Evaluation of the EUROIMMUN anti-SARS-CoV-2 ELISA assay for detection of IgA and IgG antibodies. J. Clin. Virol., 2020, 129, 104468.
[http://dx.doi.org/10.1016/j.jcv.2020.104468] [PMID: 32485620]
[79]
Ghaffari, A.; Meurant, R.; Ardakani, A. COVID-19 serological tests: How well do they actually perform. Diagnostics, 2020, 10(7), 453.
[http://dx.doi.org/10.3390/diagnostics10070453] [PMID: 32635444]
[80]
Lisboa Bastos, M.; Tavaziva, G.; Abidi, S.K.; Campbell, J.R.; Haraoui, L.P.; Johnston, J.C.; Lan, Z.; Law, S.; MacLean, E.; Trajman, A.; Menzies, D.; Benedetti, A.; Ahmad Khan, F. Diagnostic accuracy of serological tests for covid-19: Systematic review and meta-analysis. BMJ, 2020, 370, m2516.
[http://dx.doi.org/10.1136/bmj.m2516] [PMID: 32611558]
[81]
Ni, Y.N.; Luo, J.; Yu, H.; Liu, D.; Liang, B.M.; Liang, Z.A. The effect of high-flow nasal cannula in reducing the mortality and the rate of endotracheal intubation when used before mechanical ventilation compared with conventional oxygen therapy and noninvasive positive pressure ventilation. A systematic review and meta-analysis. Am. J. Emerg. Med., 2018, 36(2), 226-233.
[http://dx.doi.org/10.1016/j.ajem.2017.07.083] [PMID: 28780231]
[82]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[83]
Avorn, J. Learning about the safety of drugs--a half-century of evolution. N. Engl. J. Med., 2011, 365(23), 2151-2153.
[http://dx.doi.org/10.1056/NEJMp1110327] [PMID: 22150034]
[84]
Yuen, C.K.; Lam, J.Y.; Wong, W.M.; Mak, L.F.; Wang, X.; Chu, H.; Cai, J.P.; Jin, D.Y.; To, K.K.W.; Chan, J.F.W.; Yuen, K.Y.; Kok, K.H. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg. Microbes Infect., 2020, 9(1), 1418-1428.
[http://dx.doi.org/10.1080/22221751.2020.1780953] [PMID: 32529952]
[85]
Ranieri, V.M.; Pettilä, V.; Karvonen, M.K.; Jalkanen, J.; Nightingale, P.; Brealey, D.; Mancebo, J.; Ferrer, R.; Mercat, A.; Patroniti, N.; Quintel, M.; Vincent, J.L.; Okkonen, M.; Meziani, F.; Bellani, G.; MacCallum, N.; Creteur, J.; Kluge, S.; Artigas-Raventos, A.; Maksimow, M.; Piippo, I.; Elima, K.; Jalkanen, S.; Jalkanen, M.; Bellingan, G. Effect of intravenous interferon β-1a on death and days free from mechanical ventilation among patients with moderate to severe acute respiratory distress syndrome. JAMA, 2020, 323(8), 725-733.
[http://dx.doi.org/10.1001/jama.2019.22525] [PMID: 32065831]
[86]
Davoudi-Monfared, E.; Rahmani, H.; Khalili, H.; Hajiabdolbaghi, M.; Salehi, M.; Abbasian, L.; Kazemzadeh, H.; Yekaninejad, M.S. A randomized clinical trial of the efficacy and safety of interferon β-1a in treatment of severe COVID-19. Antimicrob. Agents Chemother., 2020, 64(9), e01061-20.
[http://dx.doi.org/10.1128/AAC.01061-20] [PMID: 32661006]
[87]
Sosa, J.P.; Ferreira Caceres, M.M.; Ross Comptis, J.; Quiros, J.; Príncipe-Meneses, F.S.; Riva-Moscoso, A.; Belizaire, M.P.; Malanyaon, F.Q.; Agadi, K.; Jaffery, S.S.; Sahajwani, J.; Arshia, A.; Senatus, A.; Verdecia, G.; Akano, L.; Razzack, A.A.; Salam, S.; Gadamidi, V.K.; Marian, S. Effects of interferon beta in COVID-19 adult patients: Systematic review. Infect. Chemother., 2021, 53(2), 247-260.
[http://dx.doi.org/10.3947/ic.2021.0028] [PMID: 34216119]
[88]
Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; Prudon, B.; Green, C.; Felton, T.; Chadwick, D.; Rege, K.; Fegan, C.; Chappell, L.C.; Faust, S.N.; Jaki, T.; Jeffery, K.; Montgomery, A.; Rowan, K.; Juszczak, E.; Baillie, J.K.; Haynes, R.; Landray, M.J. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med., 2021, 384(8), 693-704.
[http://dx.doi.org/10.1056/NEJMoa2021436] [PMID: 32678530]
[89]
Huet, T.; Beaussier, H.; Voisin, O.; Jouveshomme, S.; Dauriat, G.; Lazareth, I.; Sacco, E.; Naccache, J.M.; Bézie, Y.; Laplanche, S.; Le Berre, A.; Le Pavec, J.; Salmeron, S.; Emmerich, J.; Mourad, J.J.; Chatellier, G.; Hayem, G. Anakinra for severe forms of COVID-19: A cohort study. Lancet Rheumatol., 2020, 2(7), e393-e400.
[http://dx.doi.org/10.1016/S2665-9913(20)30164-8] [PMID: 32835245]
[90]
Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Frydas, I.; Kritas, S.K. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J. Biol. Regul. Homeost. Agents, 2020, 34(2), 327-331.
[PMID: 32171193]
[91]
Cellina, M.; Orsi, M.; Bombaci, F.; Sala, M.; Marino, P.; Oliva, G. Favorable changes of CT findings in a patient with COVID-19 pneumonia after treatment with tocilizumab. Diagn. Interv. Imaging, 2020, 101(5), 323-324.
[http://dx.doi.org/10.1016/j.diii.2020.03.010] [PMID: 32278585]
[92]
Michot, J.M.; Albiges, L.; Chaput, N.; Saada, V.; Pommeret, F.; Griscelli, F.; Balleyguier, C.; Besse, B.; Marabelle, A.; Netzer, F.; Merad, M.; Robert, C.; Barlesi, F.; Gachot, B.; Stoclin, A. Tocilizumab, an anti-IL-6 receptor antibody, to treat COVID-19-related respiratory failure: A case report. Ann. Oncol., 2020, 31(7), 961-964.
[http://dx.doi.org/10.1016/j.annonc.2020.03.300] [PMID: 32247642]
[93]
Rosas, I.O.; Bräu, N.; Waters, M.; Go, R.C.; Hunter, B.D.; Bhagani, S.; Skiest, D.; Aziz, M.S.; Cooper, N.; Douglas, I.S.; Savic, S.; Youngstein, T.; Del Sorbo, L.; Cubillo Gracian, A.; De La Zerda, D.J.; Ustianowski, A.; Bao, M.; Dimonaco, S.; Graham, E.; Matharu, B.; Spotswood, H.; Tsai, L.; Malhotra, A. Tocilizumab in hospitalized patients with severe covid-19 pneumonia. N. Engl. J. Med., 2021, 384(16), 1503-1516.
[http://dx.doi.org/10.1056/NEJMoa2028700] [PMID: 33631066]
[94]
Stone, J.H.; Frigault, M.J.; Serling-Boyd, N.J.; Fernandes, A.D.; Harvey, L.; Foulkes, A.S.; Horick, N.K.; Healy, B.C.; Shah, R.; Bensaci, A.M.; Woolley, A.E.; Nikiforow, S.; Lin, N.; Sagar, M.; Schrager, H.; Huckins, D.S.; Axelrod, M.; Pincus, M.D.; Fleisher, J.; Sacks, C.A.; Dougan, M.; North, C.M.; Halvorsen, Y.D.; Thurber, T.K.; Dagher, Z.; Scherer, A.; Wallwork, R.S.; Kim, A.Y.; Schoenfeld, S.; Sen, P.; Neilan, T.G.; Perugino, C.A.; Unizony, S.H.; Collier, D.S.; Matza, M.A.; Yinh, J.M.; Bowman, K.A.; Meyerowitz, E.; Zafar, A.; Drobni, Z.D.; Bolster, M.B.; Kohler, M.; D’Silva, K.M.; Dau, J.; Lockwood, M.M.; Cubbison, C.; Weber, B.N.; Mansour, M.K. Efficacy of tocilizumab in patients hospitalized with Covid-19. N. Engl. J. Med., 2020, 383(24), 2333-2344.
[http://dx.doi.org/10.1056/NEJMoa2028836] [PMID: 33085857]
[95]
Gordon, A.C.; Mouncey, P.R.; Al-Beidh, F.; Rowan, K.M.; Nichol, A.D.; Arabi, Y.M.; Annane, D.; Beane, A.; van Bentum-Puijk, W.; Berry, L.R.; Bhimani, Z.; Bonten, M.J.M.; Bradbury, C.A.; Brunkhorst, F.M.; Buzgau, A.; Cheng, A.C.; Detry, M.A.; Duffy, E.J.; Estcourt, L.J.; Fitzgerald, M.; Goossens, H.; Haniffa, R.; Higgins, A.M.; Hills, T.E.; Horvat, C.M.; Lamontagne, F.; Lawler, P.R.; Leavis, H.L.; Linstrum, K.M.; Litton, E.; Lorenzi, E.; Marshall, J.C.; Mayr, F.B.; McAuley, D.F.; McGlothlin, A.; McGuinness, S.P.; McVerry, B.J.; Montgomery, S.K.; Morpeth, S.C.; Murthy, S.; Orr, K.; Parke, R.L.; Parker, J.C.; Patanwala, A.E.; Pettilä, V.; Rademaker, E.; Santos, M.S.; Saunders, C.T.; Seymour, C.W.; Shankar-Hari, M.; Sligl, W.I.; Turgeon, A.F.; Turner, A.M.; van de Veerdonk, F.L.; Zarychanski, R.; Green, C.; Lewis, R.J.; Angus, D.C.; McArthur, C.J.; Berry, S.; Webb, S.A.; Derde, L.P.G. Interleukin-6 receptor antagonists in critically Ill patients with covid-19. N. Engl. J. Med., 2021, 384(16), 1491-1502.
[http://dx.doi.org/10.1056/NEJMoa2100433] [PMID: 33631065]
[96]
Lescure, F.X.; Honda, H.; Fowler, R.A.; Lazar, J.S.; Shi, G.; Wung, P.; Patel, N.; Hagino, O.; Bazzalo, I.J.; Casas, M.M.; Nuñez, S.A.; Pere, Y.; Ibarrola, C.M.; Solis, A.M.A.; Cuesta, M.C.; Duarte, A.E.; Gutierrez, F.P.M.; Iannantuono, M.A.; Miyazaki, E.A.; Silvio, J.P.; Scublinsky, D.G.; Bales, A.; Catarino, D.; Fiss, E.; Mohrbacher, S.; Sato, V.; Baylao, A.; Cavalcante, A.; Correa, F.; de Andrade, C.A.; Furtado, J.; Ribeiro, F.N.; Telles, V.; Trevelin, L.T.; Vipich, R.; Boldo, R.; Borges, P.; Lobo, S.; Luckemeyer, G.; Machado, L.; Alves, M.B.; Iglessias, A.C.; Lago, M.M.; Santos, D.W.; Chapdelaine, H.; Falcone, E.L.; Jamal, R.; Luong, M-L.; Durand, M.; Doucet, S.; Carrier, F-M.; Coburn, B.A.; Del Sorbo, L.; Walmsley, S.L.; Belga, S.; Chen, L.Y.; Mah, A.D.; Steiner, T.; Wright, A.J.; Hajek, J.; Adhikari, N.; Fowler, R.A.; Daneman, N.; Khwaja, K.A.; Shahin, J.; Gonzalez, C.; Silva, R.; Lindh, M.; Maluenda, G.; Fernandez, P.; Oyonarte, M.; Lasso, M.; Boyer, A.; Bronnimann, D.; Bui, H-N.; Cazanave, C.; Chaussade, H.; Desclaux, A.; Ducours, M.; Duvignaud, A.; Malvy, D.; Martin, L.; Neau, D.; Nguyen, D.; Pistone, T.; Soubrane-Wirth, G.; Leitao, J.; Allavena, C.; Biron, C.; Bouchez, S.; Gaborit, B.; Gregoire, A.; Le Turnier, P.; Lecompte, A-S.; Lecomte, R.; Lefebvre, M.; Raffi, F.; Boutoille, D.; Morineau, P.H.; Guéry, R.; Chatelus, E.; Dumoussaud, N.; Felten, R.; Luca, F.; Goichot, B.; Schneider, F.; Taquet, M-C.; Groh, M.; Roumier, M.; Neuville, M.; Bachelard, A.; Isernia, V.; Lescure, F-X.; Phung, B-C.; Rachline, A.; Sautereau, A.; Vallois, D.; Bleher, Y.; Boucher, D.; Coudon, C.; Esnault, J.; Guimard, T.; Leautez-Nainville, S.; Merrien, D.; Morrier, M.; Motte-Vincent, P.; Gabeff, R.; Leclerc, H.; Cozic, C.; Decours, R.; Février, R.; Colin, G.; Abgrall, S.; Vignes, D.; Sterpu, R.; Kuellmar, M.; Meersch-Dini, M.; Weiss, R.; Zarbock, A.; Antony, C.; Berger, M.; Brenner, T.; Taube, C.; Herbstreit, F.; Dolff, S.; Konik, M.; Schmidt, K.; Zettler, M.; Witzke, O.; Boell, B.; Garcia Borrega, J.; Koehler, P.; Zander, T.; Dusse, F.; Al-Sawaf, O.; Köhler, P.; Eichenauer, D.; Kochanek, M.; Shimabukuro-Vornhagen, A.; Mellinghoff, S.; Claßen, A.; Heger, J-M.; Meyer-Schwickerath, C.; Liedgens, P.; Heindel, K.; Belkin, A.; Biber, A.; Gilboa, M.; Levy, I.; Litachevsky, V.; Rahav, G.; Finesod Wiedner, A.; Zilberman-Daniels, T.; Oster, Y.; Strahilevitz, J.; Sviri, S.; Baldissera, E.M.; Campochiaro, C.; Cavalli, G.; Dagna, L.; De Luca, G.; Della Torre, E.; Tomelleri, A.; Bernasconi De Luca, D.; Capetti, A.F.; Coen, M.; Cossu, M.V.; Galli, M.; Giacomelli, A.; Gubertini, G.A.; Rusconi, S.; Burastero, G.J.; Digaetano, M.; Guaraldi, G.; Meschiari, M.; Mussini, C.; Puzzolante, C.; Volpi, S.; Aiello, M.; Ariani, A.; Chetta, A.A.; Frizzelli, A.; Ticinesi, A.; Tuttolomondo, D.; Aliberti, S.; Blasi, F.B.; Di Pasquale, M.F.; Misuraca, S.; Pilocane, T.; Simonetta, E.; Aghelmo, A.M.; Angelini, C.; Brunetta, E.; Canonica, G.W.; Ciccarelli, M.; Dal Farra, S.; De Santis, M.; Ferri, S.; Folci, M.; Guidelli, G.M.; Heffler, E.M.; Loiacono, F.; Malipiero, G.; Paoletti, G.; Pedale, R.; Puggioni, F.A.; Racca, F.; Zumbo, A.; Satou, M.; Honda, H.; Lisun, T.; Protsenko, D.; Rubtsov, N.; Beloglazova, I.; Fomina, D.; Lysenko, M.; Serdotetskova, S.; Firstov, V.; Gordeev, I.; Kokorin, I.; Komissarova, K.; Lapochkina, N.; Luchinkina, E.; Malimon, V.; Mamedguseyinova, S.; Polubatonova, K.; Suvorova, N.; Arribas, J.; Borobia Perez, A.M.; de la Calle Prieto, F.; Figueira, J.C.; Motejano, S.R.; Mora-Rillo, M.; Prados, S.C.; Queiruga, P.J.; Fernandez, A.F.; Guerro, B.M.; Bendala Estrada, A.; Caballero, M.A.; Garcia, L.M.E.; García-Martínez, R.; Collado, A.M.; Munoz, G.P.; Torres do Rego, A.; Villalba, G.M.V.; Burrillo, A.; Valerio, M.M.; Gijon, V.P.; Infante, H.S.; Velilla, E.; Machado, M.; Olmedo, M.; Pinilla, B.; Almirante, G.B.; Cañas, R.M.E.; Contreras, M.S.; Cortés, H.A.; Falcó, F.V.; Ferrer, R.R.; Nuvials, C.X.; Ribera, P.E.; Suanzes, D.P.; Rebollo, C.P.; Garcia, A.F.; Soriano, A.; Oliver Caldes, A.; González, C.A.; Cardozo, C.; De la Mora, C.L.; Pena, L.R.; Chamorro, S.; Crespillo-Andujar, C.; Escudero, S.R.; Fortún-Abete, J.; Monge-Maillo, B.; Moreno, Z.A.; Norman, F.; Sanchez, C.M.; Serrano, V.S.; Vizcarra, P. Sarilumab in patients admitted to hospital with severe or critical COVID-19: A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med., 2021, 9(5), 522-532.
[http://dx.doi.org/10.1016/S2213-2600(21)00099-0] [PMID: 33676590]
[97]
Singh, A.K.; Singh, A.; Singh, R.; Misra, A. Molnupiravir in COVID-19: A systematic review of literature. Diabetes Metab. Syndr., 2021, 15(6), 102329.
[http://dx.doi.org/10.1016/j.dsx.2021.102329] [PMID: 34742052]
[98]
Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; Du, J.; Pedley, A.; Assaid, C.; Strizki, J.; Grobler, J.A.; Shamsuddin, H.H.; Tipping, R.; Wan, H.; Paschke, A.; Butterton, J.R.; Johnson, M.G.; De Anda, C. Molnupiravir for oral treatment of covid-19 in nonhospitalized patients. N. Engl. J. Med., 2022, 386(6), 509-520.
[http://dx.doi.org/10.1056/NEJMoa2116044] [PMID: 34914868]
[99]
Mahase, E. Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ, 2021, 375(2713), n2713.
[http://dx.doi.org/10.1136/bmj.n2713] [PMID: 34750163]
[100]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[101]
Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R.W.; Dierberg, K.; Tapson, V.; Hsieh, L.; Patterson, T.F.; Paredes, R.; Sweeney, D.A.; Short, W.R.; Touloumi, G.; Lye, D.C.; Ohmagari, N.; Oh, M.; Ruiz-Palacios, G.M.; Benfield, T.; Fätkenheuer, G.; Kortepeter, M.G.; Atmar, R.L.; Creech, C.B.; Lundgren, J.; Babiker, A.G.; Pett, S.; Neaton, J.D.; Burgess, T.H.; Bonnett, T.; Green, M.; Makowski, M.; Osinusi, A.; Nayak, S.; Lane, H.C. Remdesivir for the treatment of Covid-19 — final report. N. Engl. J. Med., 2020, 383(19), 1813-1826.
[http://dx.doi.org/10.1056/NEJMoa2007764] [PMID: 32445440]
[102]
Goldman, J.D.; Lye, D.C.B.; Hui, D.S.; Marks, K.M.; Bruno, R.; Montejano, R.; Spinner, C.D.; Galli, M.; Ahn, M.Y.; Nahass, R.G.; Chen, Y.S.; SenGupta, D.; Hyland, R.H.; Osinusi, A.O.; Cao, H.; Blair, C.; Wei, X.; Gaggar, A.; Brainard, D.M.; Towner, W.J.; Muñoz, J.; Mullane, K.M.; Marty, F.M.; Tashima, K.T.; Diaz, G.; Subramanian, A. Remdesivir for 5 or 10 days in patients with severe Covid-19. N. Engl. J. Med., 2020, 383(19), 1827-1837.
[http://dx.doi.org/10.1056/NEJMoa2015301] [PMID: 32459919]
[103]
Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; Arribas López, J.R.; Cattelan, A.M.; Soriano Viladomiu, A.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; Chai, L.Y.A.; Roestenberg, M.; Tsang, O.T.Y.; Bernasconi, E.; Le Turnier, P.; Chang, S.C.; SenGupta, D.; Hyland, R.H.; Osinusi, A.O.; Cao, H.; Blair, C.; Wang, H.; Gaggar, A.; Brainard, D.M.; McPhail, M.J.; Bhagani, S.; Ahn, M.Y.; Sanyal, A.J.; Huhn, G.; Marty, F.M. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19. JAMA, 2020, 324(11), 1048-1057.
[http://dx.doi.org/10.1001/jama.2020.16349] [PMID: 32821939]
[104]
Zhang, R.; Mylonakis, E. In inpatients with COVID-19, none of remdesivir, hydroxychloroquine, lopinavir, or interferon β-1a differed from standard care for in-hospital mortality. Ann. Intern. Med., 2021, 174(2), JC17.
[http://dx.doi.org/10.7326/ACPJ202102160-017] [PMID: 33524282]
[105]
Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; Hidalgo, A.; Sachdeva, Y.; Mittal, S.; Osiyemi, O.; Skarbinski, J.; Juneja, K.; Hyland, R.H.; Osinusi, A.; Chen, S.; Camus, G.; Abdelghany, M.; Davies, S.; Behenna-Renton, N.; Duff, F.; Marty, F.M.; Katz, M.J.; Ginde, A.A.; Brown, S.M.; Schiffer, J.T.; Hill, J.A. Early remdesivir to prevent progression to severe covid-19 in outpatients. N. Engl. J. Med., 2022, 386(4), 305-315.
[http://dx.doi.org/10.1056/NEJMoa2116846] [PMID: 34937145]
[106]
Horby, P.; Mafham, M.; Linsell, L.; Bell, J.L.; Staplin, N.; Emberson, J.R.; Wiselka, M.; Ustianowski, A.; Elmahi, E.; Prudon, B.; Whitehouse, T.; Felton, T.; Williams, J.; Faccenda, J.; Underwood, J.; Baillie, J.K.; Chappell, L.C.; Faust, S.N.; Jaki, T.; Jeffery, K.; Lim, W.S.; Montgomery, A.; Rowan, K.; Tarning, J.; Watson, J.A.; White, N.J.; Juszczak, E.; Haynes, R.; Landray, M.J. Effect of hydroxychloroquine in hospitalized patients with Covid-19. N. Engl. J. Med., 2020, 383(21), 2030-2040.
[http://dx.doi.org/10.1056/NEJMoa2022926] [PMID: 33031652]
[107]
Mitjà, O.; Corbacho-Monné, M.; Ubals, M.; Alemany, A.; Suñer, C.; Tebé, C.; Tobias, A.; Peñafiel, J.; Ballana, E.; Pérez, C.A.; Admella, P.; Riera-Martí, N.; Laporte, P.; Mitjà, J.; Clua, M.; Bertran, L.; Sarquella, M.; Gavilán, S.; Ara, J.; Argimon, J.M.; Cuatrecasas, G.; Cañadas, P.; Elizalde-Torrent, A.; Fabregat, R.; Farré, M.; Forcada, A.; Flores-Mateo, G.; López, C.; Muntada, E.; Nadal, N.; Narejos, S.; Nieto, A.; Prat, N.; Puig, J.; Quiñones, C.; Ramírez-Viaplana, F.; Reyes-Urueña, J.; Riveira-Muñoz, E.; Ruiz, L.; Sanz, S.; Sentís, A.; Sierra, A.; Velasco, C.; Vivanco-Hidalgo, R.M.; Zamora, J.; Casabona, J.; Vall-Mayans, M.; González-Beiras, C.; Clotet, B. A Cluster-randomized trial of hydroxychloroquine for prevention of Covid-19. N. Engl. J. Med., 2021, 384(5), 417-427.
[http://dx.doi.org/10.1056/NEJMoa2021801] [PMID: 33289973]
[108]
Boulware, D.R.; Pullen, M.F.; Bangdiwala, A.S.; Pastick, K.A.; Lofgren, S.M.; Okafor, E.C.; Skipper, C.P.; Nascene, A.A.; Nicol, M.R.; Abassi, M.; Engen, N.W.; Cheng, M.P.; LaBar, D.; Lother, S.A.; MacKenzie, L.J.; Drobot, G.; Marten, N.; Zarychanski, R.; Kelly, L.E.; Schwartz, I.S.; McDonald, E.G.; Rajasingham, R.; Lee, T.C.; Hullsiek, K.H. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N. Engl. J. Med., 2020, 383(6), 517-525.
[http://dx.doi.org/10.1056/NEJMoa2016638] [PMID: 32492293]
[109]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[110]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178, 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[111]
López-Medina, E.; López, P.; Hurtado, I.C.; Dávalos, D.M.; Ramirez, O.; Martínez, E.; Díazgranados, J.A.; Oñate, J.M.; Chavarriaga, H.; Herrera, S.; Parra, B.; Libreros, G.; Jaramillo, R.; Avendaño, A.C.; Toro, D.F.; Torres, M.; Lesmes, M.C.; Rios, C.A.; Caicedo, I. Effect of ivermectin on time to resolution of symptoms among adults with mild COVID-19. JAMA, 2021, 325(14), 1426-1435.
[http://dx.doi.org/10.1001/jama.2021.3071] [PMID: 33662102]
[112]
Baum, A.; Ajithdoss, D.; Copin, R.; Zhou, A.; Lanza, K.; Negron, N.; Ni, M.; Wei, Y.; Mohammadi, K.; Musser, B.; Atwal, G.S.; Oyejide, A.; Goez-Gazi, Y.; Dutton, J.; Clemmons, E.; Staples, H.M.; Bartley, C.; Klaffke, B.; Alfson, K.; Gazi, M.; Gonzalez, O.; Dick, E., Jr; Carrion, R., Jr; Pessaint, L.; Porto, M.; Cook, A.; Brown, R.; Ali, V.; Greenhouse, J.; Taylor, T.; Andersen, H.; Lewis, M.G.; Stahl, N.; Murphy, A.J.; Yancopoulos, G.D.; Kyratsous, C.A. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science, 2020, 370(6520), 1110-1115.
[http://dx.doi.org/10.1126/science.abe2402] [PMID: 33037066]
[113]
Rabaan, A.A.; Tirupathi, R.; Sule, A.A.; Aldali, J.; Mutair, A.A.; Alhumaid, S.; Muzaheed; Gupta, N.; Koritala, T.; Adhikari, R.; Bilal, M.; Dhawan, M.; Tiwari, R.; Mitra, S.; Emran, T.B.; Dhama, K. Viral dynamics and real-time RT-PCR Ct values correlation with disease severity in COVID-19. Diagnostics, 2021, 11(6), 1091.
[http://dx.doi.org/10.3390/diagnostics11061091] [PMID: 34203738]
[114]
Garcia-Beltran, W.F.; Lam, E.C.; St Denis, K.; Nitido, A.D.; Garcia, Z.H.; Hauser, B.M.; Feldman, J.; Pavlovic, M.N.; Gregory, D.J.; Poznansky, M.C.; Sigal, A.; Schmidt, A.G.; Iafrate, A.J.; Naranbhai, V.; Balazs, A.B. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell, 2021, 184(9), 2372-2383.e9.
[http://dx.doi.org/10.1016/j.cell.2021.03.013] [PMID: 33743213]
[115]
Conceicao, C.; Thakur, N.; Human, S.; Kelly, J.T.; Logan, L.; Bialy, D.; Bhat, S.; Stevenson-Leggett, P.; Zagrajek, A.K.; Hollinghurst, P.; Varga, M.; Tsirigoti, C.; Tully, M.; Chiu, C.; Moffat, K.; Silesian, A.P.; Hammond, J.A.; Maier, H.J.; Bickerton, E.; Shelton, H.; Dietrich, I.; Graham, S.C.; Bailey, D. The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol., 2020, 18(12), e3001016.
[http://dx.doi.org/10.1371/journal.pbio.3001016] [PMID: 33347434]
[116]
Krammer, F. SARS-CoV-2 vaccines in development. Nature, 2020, 586(7830), 516-527.
[http://dx.doi.org/10.1038/s41586-020-2798-3] [PMID: 32967006]
[117]
Creech, C.B.; Walker, S.C.; Samuels, R.J. SARS-CoV-2 vaccines. JAMA, 2021, 325(13), 1318-1320.
[http://dx.doi.org/10.1001/jama.2021.3199] [PMID: 33635317]
[118]
Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 2015, 72, 4-15.
[http://dx.doi.org/10.1016/j.peptides.2015.04.012] [PMID: 25908411]
[119]
Corominas, J.; Garriga, C.; Prenafeta, A.; Moros, A.; Cañete, M.; Barreiro, A.; González-González, L.; Madrenas, L.; Güell, I.; Clotet, B.; Izquierdo-Useros, N.; Raïch-Regué, D.; Gallemí, M.; Blanco, J.; Pradenas, E.; Trinité, B.; Prado, J.G.; Blanch-Lombarte, O.; Pérez-Caballero, R.; Plana, M.; Esteban, I.; Pastor-Quiñones, C.; Núñez-Costa, X.; Taleb, R.A.; McSkimming, P.; Soriano, A.; Nava, J.; Anagua, J.O.; Ramos, R.; Lluch, R.M.; Comes, A.C.; Romero, S.O.; Gomez, X.M.; Sans-Pola, C.; Moltó, J.; Benet, S.; Bailón, L.; Arribas, J.R.; Borobia, A.M.; Parada, J.Q.; Navarro-Pérez, J.; Forner Giner, M.J.; Lucas, R.O.; Jiménez, M.M.V.; Compán, S.O.; Alvarez-Mon, M.; Troncoso, D.; Arana-Arri, E.; Meijide, S.; Imaz-Ayo, N.; García, P.M.; de la Villa Martínez, S.; Fernández, S.R.; Prat, T.; Torroella, È.; Ferrer, L. Safety and immunogenicity of the protein-based PHH-1V compared to BNT162b2 as a heterologous SARS-CoV-2 booster vaccine in adults vaccinated against COVID-19: a multicentre, randomised, double-blind, non-inferiority phase IIb trial. Lancet Reg. Health Eur., 2023, 28, 100613.
[http://dx.doi.org/10.1016/j.lanepe.2023.100613] [PMID: 37131861]
[120]
Ratajczak, P.; Banach, Z.; Kopciuch, D.; Paczkowska, A.; Zaprutko, T.; Krawczyk, J.; Maciuszek-Bartkowska, B.; Kus, K. Tozinameran (Pfizer, BioNTech) and elasomeran (Moderna) efficacy in COVID-19—A systematic review of randomised controlled trial studies. Healthcare, 2023, 11(11), 1532.
[http://dx.doi.org/10.3390/healthcare11111532] [PMID: 37297673]
[121]
Knoll, M.D.; Wonodi, C. Oxford–AstraZeneca COVID-19 vaccine efficacy. Lancet, 2021, 397(10269), 72-74.
[http://dx.doi.org/10.1016/S0140-6736(20)32623-4] [PMID: 33306990]
[122]
Sah, R.; Shrestha, S.; Mehta, R.; Sah, S.K.; Rabaan, A.A.; Dhama, K.; Rodriguez-Morales, A.J. AZD1222 (Covishield) vaccination for COVID-19: Experiences, challenges, and solutions in Nepal. Travel Med. Infect. Dis., 2021, 40, 101989.
[http://dx.doi.org/10.1016/j.tmaid.2021.101989] [PMID: 33578045]
[123]
Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Van Dromme, I.; Spiessens, B.; Vingerhoets, J.; Custers, J.; Scheper, G.; Robb, M.L.; Treanor, J.; Ryser, M.F.; Barouch, D.H.; Swann, E.; Marovich, M.A.; Neuzil, K.M.; Corey, L.; Stoddard, J.; Hardt, K.; Ruiz-Guiñazú, J.; Le Gars, M.; Schuitemaker, H.; Van Hoof, J.; Struyf, F.; Douoguih, M. Final analysis of efficacy and safety of single-dose Ad26.COV2.S. N. Engl. J. Med., 2022, 386(9), 847-860.
[http://dx.doi.org/10.1056/NEJMoa2117608] [PMID: 35139271]
[124]
Carreño, J.M.; Singh, G.; Tcheou, J.; Srivastava, K.; Gleason, C.; Muramatsu, H.; Desai, P.; Aberg, J.A.; Miller, R.L.; study group, P.A.R.I.S.; Pardi, N.; Simon, V.; Krammer, F. mRNA-1273 but not BNT162b2 induces antibodies against polyethylene glycol (PEG) contained in mRNA-based vaccine formulations. Vaccine, 2022, 40(42), 6114-6124.
[http://dx.doi.org/10.1016/j.vaccine.2022.08.024] [PMID: 36115801]
[125]
Mok, C.K.P.; Chen, C.; Zhao, S.; Sun, Y.; Yiu, K.; Chan, T.O.; Lai, H.L.; Lai, K.C.; Lau, K.M.; Ling, K.C.; Chan, K.K.P.; Ng, S.S.; Ko, F.W.; Peiris, M.; Hui, D.S. Omicron BA.1-specific T-cell responses in adults vaccinated with CoronaVac or BNT162b2 in Hong Kong: an observational cohort study. Lancet Microbe, 2023, 4(6), e418-e430.
[http://dx.doi.org/10.1016/S2666-5247(23)00006-X] [PMID: 37086735]
[126]
Sahay, R.R.; Yadav, P.D.; Nandapurkar, A.; Dhawde, R.; Suryawanshi, A.; Patil, D.Y.; Shete, A.M.; Sapkal, G.N.; Kulkarni, M.; Gurav, Y.K.; Deshpande, G.R.; Ghodke, J.S.; Jain, R.; Hawale, R.; Kalele, K.; Yemul, J.; Gawande, P.; Abraham, P. Evaluation of immunogenicity post two doses of inactivated SARS-CoV-2 vaccine, Covaxin after six months. Hum. Vaccin. Immunother., 2022, 18(7), 2156753.
[http://dx.doi.org/10.1080/21645515.2022.2156753] [PMID: 36576223]
[127]
Rydyznski Moderbacher, C.; Kim, C.; Mateus, J.; Plested, J.; Zhu, M.; Cloney-Clark, S.; Weiskopf, D.; Sette, A.; Fries, L.; Glenn, G.; Crotty, S. NVX-CoV2373 vaccination induces functional SARS-CoV-2–specific CD4+ and CD8+ T cell responses. J. Clin. Invest., 2022, 132(19), e160898.
[http://dx.doi.org/10.1172/JCI160898] [PMID: 35943810]
[128]
Parums, D.V. Editorial: First approval of the protein-based adjuvanted nuvaxovid (NVX-CoV2373) novavax vaccine for SARS-CoV-2 could increase vaccine uptake and provide immune protection from viral variants. Med. Sci. Monit., 2022, 28, e936523.
[http://dx.doi.org/10.12659/MSM.936523] [PMID: 35228506]
[129]
Jin, P.; Guo, X.; Chen, W.; Ma, S.; Pan, H.; Dai, L.; Du, P.; Wang, L.; Jin, L.; Chen, Y.; Shi, F.; Liu, J.; Xu, X.; Zhang, Y.; Gao, G.F.; Chen, C.; Feng, J.; Li, J.; Zhu, F. Safety and immunogenicity of heterologous boost immunization with an adenovirus type-5-vectored and protein-subunit-based COVID-19 vaccine (Convidecia/ZF2001): A randomized, observer-blinded, placebo-controlled trial. PLoS Med., 2022, 19(5), e1003953.
[http://dx.doi.org/10.1371/journal.pmed.1003953] [PMID: 35617368]
[130]
Yegorov, S.; Kadyrova, I.; Negmetzhanov, B.; Kolesnikova, Y.; Kolesnichenko, S.; Korshukov, I.; Baiken, Y.; Matkarimov, B.; Miller, M.S.; Hortelano, G.H.; Babenko, D. Sputnik-V reactogenicity and immunogenicity in the blood and mucosa: A prospective cohort study. Sci. Rep., 2022, 12(1), 13207.
[http://dx.doi.org/10.1038/s41598-022-17514-3] [PMID: 35915123]
[131]
Sridhar, S.; Joaquin, A.; Bonaparte, M.I.; Bueso, A.; Chabanon, A.L.; Chen, A.; Chicz, R.M.; Diemert, D.; Essink, B.J.; Fu, B.; Grunenberg, N.A.; Janosczyk, H.; Keefer, M.C.; Rivera M, D.M.; Meng, Y.; Michael, N.L.; Munsiff, S.S.; Ogbuagu, O.; Raabe, V.N.; Severance, R.; Rivas, E.; Romanyak, N.; Rouphael, N.G.; Schuerman, L.; Sher, L.D.; Walsh, S.R.; White, J.; von Barbier, D.; de Bruyn, G.; Canter, R.; Grillet, M.H.; Keshtkar-Jahromi, M.; Koutsoukos, M.; Lopez, D.; Masotti, R.; Mendoza, S.; Moreau, C.; Ceregido, M.A.; Ramirez, S.; Said, A.; Tavares-Da-Silva, F.; Shi, J.; Tong, T.; Treanor, J.; Diazgranados, C.A.; Savarino, S. Safety and immunogenicity of an AS03-adjuvanted SARS-CoV-2 recombinant protein vaccine (CoV2 preS dTM) in healthy adults: Interim findings from a phase 2, randomised, dose-finding, multicentre study. Lancet Infect. Dis., 2022, 22(5), 636-648.
[http://dx.doi.org/10.1016/S1473-3099(21)00764-7] [PMID: 35090638]
[132]
Bravo, L.; Smolenov, I.; Han, H.H.; Li, P.; Hosain, R.; Rockhold, F.; Clemens, S.A.C.; Roa, C., Jr; Borja-Tabora, C.; Quinsaat, A.; Lopez, P.; López-Medina, E.; Brochado, L.; Hernández, E.A.; Reynales, H.; Medina, T.; Velasquez, H.; Toloza, L.B.; Rodriguez, E.J.; de Salazar, D.I.M.; Rodríguez, C.A.; Sprinz, E.; Cerbino-Neto, J.; Luz, K.G.; Schwarzbold, A.V.; Paiva, M.S.; Carlos, J.; Montellano, M.E.B.; de Los Reyes, M.R.A.; Yu, C.Y.; Alberto, E.R.; Panaligan, M.M.; Salvani-Bautista, M.; Buntinx, E.; Hites, M.; Martinot, J.B.; Bhorat, Q.E.; Badat, A.; Baccarini, C.; Hu, B.; Jurgens, J.; Engelbrecht, J.; Ambrosino, D.; Richmond, P.; Siber, G.; Liang, J.; Clemens, R. Efficacy of the adjuvanted subunit protein COVID-19 vaccine, SCB-2019: A phase 2 and 3 multicentre, double-blind, randomised, placebo-controlled trial. Lancet, 2022, 399(10323), 461-472.
[http://dx.doi.org/10.1016/S0140-6736(22)00055-1] [PMID: 35065705]
[133]
Abdoli, A.; Aalizadeh, R.; Aminianfar, H.; Kianmehr, Z.; Teimoori, A.; Azimi, E.; Emamipour, N.; Eghtedardoost, M.; Siavashi, V.; Jamshidi, H.; Hosseinpour, M.; Taqavian, M.; Jalili, H. Safety and potency of BIV1-CovIran inactivated vaccine candidate for SARS-CoV-2: A preclinical study. Rev. Med. Virol., 2022, 32(3), e2305.
[http://dx.doi.org/10.1002/rmv.2305] [PMID: 34699647]
[134]
Más-Bermejo, P.I.; Dickinson-Meneses, F.O.; Almenares-Rodríguez, K.; Sánchez-Valdés, L.; Guinovart-Díaz, R.; Vidal-Ledo, M.; Galbán-García, E.; Olivera-Nodarse, Y.; Morgado-Vega, I.; Dueñas-Carrera, S.; Pujol, M.; Hernández-Bernal, F.; Limonta-Fernández, M.; Guillén-Nieto, G.; Muzio-González, V.L.; Ayala-Ávila, M. Cuban Abdala vaccine: Effectiveness in preventing severe disease and death from COVID-19 in Havana, Cuba; A cohort study. Lancet Regional Health - Americas, 2022, 16, 100366.
[http://dx.doi.org/10.1016/j.lana.2022.100366] [PMID: 36185968]
[135]
Larkin, H.D. Novavax COVID-19 vaccine booster authorized. JAMA, 2022, 328(21), 2101.
[http://dx.doi.org/10.1001/jama.2022.20028] [PMID: 36472611]
[136]
Jaggaiahgari, S.; Munigela, A.; Mitnala, S.; Gujjarlapudi, D.; Simhadri, V.; D, N.R. Heterologous booster dose with CORBEVAX following primary vaccination with COVISHIELD Enhances protection against SARS-CoV-2. Vaccines, 2022, 10(12), 2146.
[http://dx.doi.org/10.3390/vaccines10122146] [PMID: 36560556]
[137]
Song, J.Y.; Choi, W.S.; Heo, J.Y.; Lee, J.S.; Jung, D.S.; Kim, S.W.; Park, K.H.; Eom, J.S.; Jeong, S.J.; Lee, J.; Kwon, K.T.; Choi, H.J.; Sohn, J.W.; Kim, Y.K.; Noh, J.Y.; Kim, W.J.; Roman, F.; Ceregido, M.A.; Solmi, F.; Philippot, A.; Walls, A.C.; Carter, L.; Veesler, D.; King, N.P.; Kim, H.; Ryu, J.H.; Lee, S.J.; Park, Y.W.; Park, H.K.; Cheong, H.J. Safety and immunogenicity of a SARS-CoV-2 recombinant protein nanoparticle vaccine (GBP510) adjuvanted with AS03: A randomised, placebo-controlled, observer-blinded phase 1/2 trial. EClinical Med., 2022, 51, 101569.
[http://dx.doi.org/10.1016/j.eclinm.2022.101569] [PMID: 35879941]
[138]
Nguyen, T.P.; Do, Q.; Phan, L.T.; Dinh, D.V.; Khong, H.; Hoang, L.V.; Nguyen, T.V.; Pham, H.N.; Chu, M.V.; Nguyen, T.T.; Pham, Q.D.; Le, T.M.; Trang, T.N.T.; Dinh, T.T.; Vo, T.V.; Vu, T.T.; Nguyen, Q.B.P.; Phan, V.T.; Nguyen, L.V.; Nguyen, G.T.; Tran, P.M.; Nghiem, T.D.; Tran, T.V.; Nguyen, T.G.; Tran, T.Q.; Nguyen, L.T.; Do, A.T.; Nguyen, D.D.; Ho, S.A.; Nguyen, V.T.; Pham, D.T.; Tran, H.B.; Vu, S.T.; Hoang, S.X.; Do, T.M.; Ngoc, H.V.; Nguyen, X.T.; Le, G.Q.; Tran, T.; Cao, T.M.; Dao, H.M.; Nguyen, T.T.T.; Doan, U.Y.; Le, V.T.T.; Tran, L.P.; Nguyen, N.M.; Nguyen, N.T.; Pham, H.T.T.; Nguyen, Q.H.; Nguyen, H.T.; Nguyen, H.L.K.; Tran, V.T.; Tran, M.T.N.; Nguyen, T.T.T.; Ha, P.T.; Huynh, H.T.; Nguyen, K.D.; Thuan, U.T.; Doan, C.C.; Do, S.M. Safety and immunogenicity of Nanocovax, a SARS-CoV-2 recombinant spike protein vaccine: Interim results of a double-blind, randomised controlled phase 1 and 2 trial. Lancet Regional Health - Western Pacific, 2022, 24, 100474.
[http://dx.doi.org/10.1016/j.lanwpc.2022.100474] [PMID: 35602004]
[139]
Dolgin, E. CureVac COVID vaccine let-down spotlights mRNA design challenges. Nature, 2021, 594(7864), 483.
[http://dx.doi.org/10.1038/d41586-021-01661-0] [PMID: 34145413]
[140]
Hager, K.J.; Pérez Marc, G.; Gobeil, P.; Diaz, R.S.; Heizer, G.; Llapur, C.; Makarkov, A.I.; Vasconcellos, E.; Pillet, S.; Riera, F.; Saxena, P.; Geller Wolff, P.; Bhutada, K.; Wallace, G.; Aazami, H.; Jones, C.E.; Polack, F.P.; Ferrara, L.; Atkins, J.; Boulay, I.; Dhaliwall, J.; Charland, N.; Couture, M.M.J.; Jiang-Wright, J.; Landry, N.; Lapointe, S.; Lorin, A.; Mahmood, A.; Moulton, L.H.; Pahmer, E.; Parent, J.; Séguin, A.; Tran, L.; Breuer, T.; Ceregido, M.A.; Koutsoukos, M.; Roman, F.; Namba, J.; D’Aoust, M.A.; Trepanier, S.; Kimura, Y.; Ward, B.J. Efficacy and safety of a recombinant plant-based adjuvanted Covid-19 vaccine. N. Engl. J. Med., 2022, 386(22), 2084-2096.
[http://dx.doi.org/10.1056/NEJMoa2201300] [PMID: 35507508]
[141]
Pilapitiya, D.; Wheatley, A.K.; Tan, H.X. Mucosal vaccines for SARS-CoV-2: triumph of hope over experience. EBioMedicine, 2023, 92, 104585.
[http://dx.doi.org/10.1016/j.ebiom.2023.104585] [PMID: 37146404]
[142]
Wang, C.Y.; Hwang, K.P.; Kuo, H.K.; Peng, W.J.; Shen, Y.H.; Kuo, B.S.; Huang, J.H.; Liu, H.; Ho, Y.H.; Lin, F.; Ding, S.; Liu, Z.; Wu, H.T.; Huang, C.T.; Lee, Y.J.; Liu, M.C.; Yang, Y.C.; Lu, P.L.; Tsai, H.C.; Lee, C.H.; Shi, Z.Y.; Liu, C.E.; Liao, C.H.; Chang, F.Y.; Chen, H.C.; Wang, F.D.; Hou, K.L.; Cheng, J.; Wang, M.S.; Yang, Y.T.; Chiu, H.C.; Jiang, M.H.; Shih, H.Y.; Shen, H.Y.; Chang, P.Y.; Lan, Y.R.; Chen, C.T.; Lin, Y.L.; Liang, J.J.; Liao, C.C.; Chou, Y.C.; Morris, M.K.; Hanson, C.V.; Guirakhoo, F.; Hellerstein, M.; Yu, H.J.; King, C.C.; Kemp, T.; Heppner, D.G.; Monath, T.P. A multitope SARS-CoV-2 vaccine provides long-lasting B cell and T cell immunity against Delta and Omicron variants. J. Clin. Invest., 2022, 132(10), e157707.
[http://dx.doi.org/10.1172/JCI157707] [PMID: 35316221]
[143]
Hashimoto, M.; Nagata, N.; Homma, T.; Maeda, H.; Dohi, K.; Seki, N.M.; Yoshihara, K.; Iwata-Yoshikawa, N.; Shiwa-Sudo, N.; Sakai, Y.; Shirakura, M.; Kishida, N.; Arita, T.; Suzuki, Y.; Watanabe, S.; Asanuma, H.; Sonoyama, T.; Suzuki, T.; Omoto, S.; Hasegawa, H. Immunogenicity and protective efficacy of SARS-CoV-2 recombinant S-protein vaccine S-268019-b in cynomolgus monkeys. Vaccine, 2022, 40(31), 4231-4241.
[http://dx.doi.org/10.1016/j.vaccine.2022.05.081] [PMID: 35691872]
[144]
Janssen, Y.F.; Feitsma, E.A.; Boersma, H.H.; Alleva, D.G.; Lancaster, T.M.; Sathiyaseelan, T.; Murikipudi, S.; Delpero, A.R.; Scully, M.M.; Ragupathy, R.; Kotha, S.; Haworth, J.R.; Shah, N.J.; Rao, V.; Nagre, S.; Ronca, S.E.; Green, F.M.; Aminetzah, A.; Sollie, F.; Kruijff, S.; Brom, M.; van Dam, G.M.; Zion, T.C. Phase I interim results of a phase I/II study of the IgG-Fc fusion COVID-19 subunit vaccine, AKS-452. Vaccine, 2022, 40(9), 1253-1260.
[http://dx.doi.org/10.1016/j.vaccine.2022.01.043] [PMID: 35115195]
[145]
Torales, J.; Cuenca-Torres, O.; Barrios, L.; Armoa-Garcia, L.; Estigarribia, G.; Sanabria, G.; Lin, M.Y.; Antonio Estrada, J.; Estephan, L.; Cheng, H.Y.; Chen, C.; Janssen, R.; Lien, C.E. An evaluation of the safety and immunogenicity of MVC-COV1901: Results of an interim analysis of a phase III, parallel group, randomized, double-blind, active-controlled immunobridging study in Paraguay. Vaccine, 2023, 41(1), 109-118.
[http://dx.doi.org/10.1016/j.vaccine.2022.10.030] [PMID: 36404171]
[146]
Lazarus, R.; Taucher, C.; Brown, C.; Čorbic Ramljak, I.; Danon, L.; Dubischar, K.; Duncan, C.J.A.; Eder-Lingelbach, S.; Faust, S.N.; Green, C.; Gokani, K.; Hochreiter, R.; Wright, J.K.; Kwon, D.; Middleditch, A.; Munro, A.P.S.; Naker, K.; Penciu, F.; Price, D.; Querton, B.; Riaz, T.; Ross-Russell, A.; Sanchez-Gonzalez, A.; Wardle, H.; Warren, S.; Finn, A. Safety and immunogenicity of the inactivated whole-virus adjuvanted COVID-19 vaccine VLA2001: A randomized, dose escalation, double-blind phase 1/2 clinical trial in healthy adults. J. Infect., 2022, 85(3), 306-317.
[http://dx.doi.org/10.1016/j.jinf.2022.06.009] [PMID: 35718205]
[147]
Banihashemi, S.R.; Es-haghi, A.; Fallah Mehrabadi, M.H.; Nofeli, M.; Mokarram, A.R.; Ranjbar, A.; Salman, M.; Hajimoradi, M.; Razaz, S.H.; Taghdiri, M.; Bagheri, M.; Dadar, M.; Hassan, Z.M.; Eslampanah, M.; Salehi, Z.; Lotfi, M.; Khorasani, A.; Rahmani, F. Safety and efficacy of combined intramuscular/intranasal RAZI-COV PARS vaccine candidate against SARS-CoV-2: A preclinical study in several animal models. Front. Immunol., 2022, 13, 836745.
[http://dx.doi.org/10.3389/fimmu.2022.836745] [PMID: 35693788]
[148]
Hannawi, S.; Saifeldin, L.; Abuquta, A.; Alamadi, A.; Mahmoud, S.A.; Hassan, A.; Liu, D.; Yan, L.; Xie, L. Safety and immunogenicity of a bivalent SARS-CoV-2 protein booster vaccine, SCTV01C, in adults previously vaccinated with mRNA vaccine: A randomized, double-blind, placebo-controlled phase 1/2 clinical trial. EBioMedicine, 2023, 87, 104386.
[http://dx.doi.org/10.1016/j.ebiom.2022.104386] [PMID: 36470077]
[149]
Wang, J.; Mai, X.; He, Y.; Zhu, C.; Zhou, D. IgG1-dominant antibody response induced by recombinant trimeric SARS-CoV-2 spike protein with PIKA adjuvant. Vaccines, 2023, 11(4), 827.
[http://dx.doi.org/10.3390/vaccines11040827] [PMID: 37112739]
[150]
Low, J.G.; de Alwis, R.; Chen, S.; Kalimuddin, S.; Leong, Y.S.; Mah, T.K.L.; Yuen, N.; Tan, H.C.; Zhang, S.L.; Sim, J.X.Y.; Chan, Y.F.Z.; Syenina, A.; Yee, J.X.; Ong, E.Z.; Sekulovich, R.; Sullivan, B.B.; Lindert, K.; Sullivan, S.M.; Chivukula, P.; Hughes, S.G.; Ooi, E.E. A phase I/II randomized, double-blinded, placebo-controlled trial of a self-amplifying Covid-19 mRNA vaccine. NPJ Vaccines, 2022, 7(1), 161.
[http://dx.doi.org/10.1038/s41541-022-00590-x] [PMID: 36513697]
[151]
Tabarsi, P.; Anjidani, N.; Shahpari, R.; Roshanzamir, K.; Fallah, N.; Andre, G.; Petrovsky, N.; Barati, S. Immunogenicity and safety of SpikoGen®, an adjuvanted recombinant SARS-CoV-2 spike protein vaccine as a homologous and heterologous booster vaccination: A randomized placebo-controlled trial. Immunology, 2022, 167(3), 340-353.
[http://dx.doi.org/10.1111/imm.13540] [PMID: 35758850]
[152]
Sunagar, R.; Prasad, S.D.; Ella, R.; Vadrevu, K.M. Preclinical evaluation of safety and immunogenicity of a primary series intranasal COVID-19 vaccine candidate (BBV154) and humoral immunogenicity evaluation of a heterologous prime-boost strategy with COVAXIN (BBV152). Front. Immunol., 2022, 13, 1063679.
[http://dx.doi.org/10.3389/fimmu.2022.1063679] [PMID: 36569867]
[153]
Kaabi, N.A.; Yang, Y.K.; Du, L.F.; Xu, K.; Shao, S.; Liang, Y.; Kang, Y.; Su, J.G.; Zhang, J.; Yang, T.; Hussein, S.; ElDein, M.S.; Yang, S.S.; Lei, W.; Gao, X.J.; Jiang, Z.; Cong, X.; Tan, Y.; Wang, H.; Li, M.; Mekki, H.M.; Zaher, W.; Mahmoud, S.; Zhang, X.; Qu, C.; Liu, D.Y.; Zhang, J.; Yang, M.; Eltantawy, I.; Hou, J.W.; Lei, Z.H.; Xiao, P.; Wang, Z.N.; Yin, J.L.; Mao, X.Y.; Zhang, J.; Qu, L.; Zhang, Y.T.; Yang, X.M.; Wu, G.; Li, Q.M. Safety and immunogenicity of a hybrid-type vaccine booster in BBIBP-CorV recipients in a randomized phase 2 trial. Nat. Commun., 2022, 13(1), 3654.
[http://dx.doi.org/10.1038/s41467-022-31379-0] [PMID: 35760812]
[154]
Zhang, Z.; He, Q.; Zhao, W.; Li, Y.; Yang, J.; Hu, Z.; Chen, X.; Peng, H.; Fu, Y.X.; Chen, L.; Lu, L. A heterologous V-01 or variant-matched bivalent V-01D-351 booster following primary series of inactivated vaccine enhances the neutralizing capacity against SARS-CoV-2 delta and omicron strains. J. Clin. Med., 2022, 11(14), 4164.
[http://dx.doi.org/10.3390/jcm11144164] [PMID: 35887928]
[155]
Pajon, R.; Doria-Rose, N.A.; Shen, X.; Schmidt, S.D.; O’Dell, S.; McDanal, C.; Feng, W.; Tong, J.; Eaton, A.; Maglinao, M.; Tang, H.; Manning, K.E.; Edara, V.V.; Lai, L.; Ellis, M.; Moore, K.M.; Floyd, K.; Foster, S.L.; Posavad, C.M.; Atmar, R.L.; Lyke, K.E.; Zhou, T.; Wang, L.; Zhang, Y.; Gaudinski, M.R.; Black, W.P.; Gordon, I.; Guech, M.; Ledgerwood, J.E.; Misasi, J.N.; Widge, A.; Sullivan, N.J.; Roberts, P.C.; Beigel, J.H.; Korber, B.; Baden, L.R.; El Sahly, H.; Chalkias, S.; Zhou, H.; Feng, J.; Girard, B.; Das, R.; Aunins, A.; Edwards, D.K.; Suthar, M.S.; Mascola, J.R.; Montefiori, D.C. SARS-CoV-2 omicron variant neutralization after mRNA-1273 booster vaccination. N. Engl. J. Med., 2022, 386(11), 1088-1091.
[http://dx.doi.org/10.1056/NEJMc2119912] [PMID: 35081298]
[156]
Tan, NH; Geers, D; Sablerolles, RSG; Rietdijk, WJR; Goorhuis, A; Postma, DF; Visser, LG; Bogers, S; van Dijk, LLA; Gommers, L; van Leeuwen, LPM; Boerma, A; Nijhof, SH; van Dort, KA; Koopmans, MPG; Dalm, VASH; Lafeber, M; Kootstra, NA; Huckriede, ALW; van Baarle, D; Zaeck, LM Immunogenicity of bivalent omicron (BA.1) booster vaccination after different priming regimens in health-care workers in the Netherlands (SWITCH ON): Results from the direct boost group of an open-label, multicentre, randomised controlled trial. Lancet Infect Dis, 2023, 23(8), 901-913.
[http://dx.doi.org/10.1016/S1473-3099(23)00140-8]