Review on Phytoremediation: Toxic Heavy Metal Removal

Page: [147 - 161] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Among the environmental contaminants in water, heavy metals and other pollutants are becoming a common occurrence. To solve this issue, the process of phytoremediation was utilized to clear up polluted media. Heavy metal and other pollution contamination of water is becoming more common, which has prompted a conversation that goes beyond heavy metals. These "other pollutants" include a wide range of materials, such as nutrients, suspended particles, bacteria, and organic compounds like pesticides, medicines, and industrial chemicals. There are several removal approaches available to address this complex issue. The removal of specific compounds and suspended materials is the goal of physical techniques like coagulation and chemical treatments like filtering. Biological treatments use natural mechanisms to break down organic contaminants and nutrients, such as bacteria or plants. Reactive agents are used in advanced oxidation procedures like UV irradiation and ozonation to break down pollutants. Technologies, including reverse osmosis and distillation, as well as ion exchange and adsorption, are essential for eliminating contaminants from water sources. The review shows applying the phytoremediation technique with ornamental plants that have the ability to absorb and store such heavy metals in their roots and leaves. The methods were used to determine the intake and the location of accumulation in these plants discussed, respectively. To compare the levels of the heavy metals accumulated in the plant, samples were digested, dried, and subjected to several phytoremediation procedures. The use of biological remediation has drawn a lot of interest recently because of its inexpensive long-term application costs and environmental friendliness. The use of ornamental plants in phytoremediation has received little attention, and the effects of heavy metals on ornamental plants have not been extensively studied as well. Remediation of the heavy metals mediated by ornamental plants can simultaneously eliminate toxins and improve the site's appearance. The current purification techniques used to remove contaminants from wastewater are not only exceedingly expensive, but they also have a detrimental effect on the environment. The environmentally friendly process known as phytoremediation offers a cost-effective and ecologically sound alternative to the present, very expensive cleanup techniques. Some ornamental plants are suited to ingesting heavy metals and other pollutants where the maximal concentration can be determined. This method effectively removes, detoxifies, or immobilizes heavy metals using aquatic plants and ornamental plants. Review highlights include current understanding of heavy metal toxicity to ornamental plants, benefits of their application, ways to increase ornamental plants' tolerance with increased heavy metals absorption, field problems, and potential applications in the future. The assessment has been focused on the interdisciplinary aspects and understanding that this approach brings to the sustainable treatment of heavy metals. The goal of this analysis was to evaluate phytoremediation's status as an innovative technique and to discuss its potential and utility in the treatment of highly polluted water.

Graphical Abstract

[1]
Oni, B.A.; Oziegbe, O.; Olawole, O.O. Significance of biochar application to the environment and economy. Ann. Agric. Sci., 2019, 64(2), 222-236.
[http://dx.doi.org/10.1016/j.aoas.2019.12.006]
[2]
Dembitsky, V.M.; Rezanka, T. Natural occurrence of arseno compounds in plants, lichens, fungi, algal species, and microorganisms. Plant Sci., 2003, 165(6), 1177-1192.
[http://dx.doi.org/10.1016/j.plantsci.2003.08.007]
[3]
Woodcock, N. An Introduction to Global Environmental Issues; Routledge: London, New York, 1998.
[http://dx.doi.org/10.1017/S0016756898388986]
[4]
Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci., 2020, 11, 359.
[http://dx.doi.org/10.3389/fpls.2020.00359] [PMID: 32425957]
[5]
McGrath, S.P.; Zhao, F.J. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol., 2003, 14(3), 277-282.
[http://dx.doi.org/10.1016/S0958-1669(03)00060-0] [PMID: 12849780]
[6]
Nedelkoska, T.V.; Doran, P.M. Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Miner. Eng., 2000, 13(5), 549-561.
[http://dx.doi.org/10.1016/S0892-6875(00)00035-2]
[7]
Volker, S. The use of innovative remediation technologies in brownfield redevelopment projects. In: 2nd International Conference on Managing Urban Land. Towards more effective and sustainable brownfield revitalisation policies, SAXONIA Standortentwicklungs- und verwaltungsgesellschaft mbH and Land Quality Press Nottingham, 2007.
[8]
DalCorso, G.; Fasani, E.; Manara, A.; Visioli, G.; Furini, A. Heavy metal pollutions: State of the art and innovation in phytoremediation. Int. J. Mol. Sci., 2019, 20(14), 3412.
[http://dx.doi.org/10.3390/ijms20143412] [PMID: 31336773]
[9]
Saxena, P.K. Phytoremediation of heavy metal contaminated and polluted soils. In: Heavy Metal Stress in Plants; Springer: Berlin, Heidelberg, 1999; pp. 305-329.
[http://dx.doi.org/10.1007/978-3-662-07745-0_14]
[10]
Raskin, I.; Smith, R.D.; Salt, D.E. Phytoremediation of metals: Using plants to remove pollutants from the environment. Curr. Opin. Biotechnol., 1997, 8(2), 221-226.
[http://dx.doi.org/10.1016/S0958-1669(97)80106-1] [PMID: 9079727]
[11]
Sas-Nowosielska, A.; Kucharski, R.; Malkowski, E. Feasibility studies for phytoremediation of metal-contaminated soil. In: Soil Biology; Springer: Berlin, Heidelberg, 2005; pp. 161-177.
[http://dx.doi.org/10.1007/3-540-28904-6_7]
[12]
Langner, O.; Dotsch, R.; Bijlstra, G.; Wigboldus, D.H.J.; Hawk, S.T.; van Knippenberg, A. Presentation and validation of the radboud faces database. Cogn. Emotion, 2010, 24(8), 1377-1388.
[http://dx.doi.org/10.1080/02699930903485076]
[13]
Wang, K.; Huang, H.; Zhu, Z.; Li, T.; He, Z.; Yang, X.; Alva, A. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Int. J. Phytoremediation, 2013, 15(3), 283-298.
[http://dx.doi.org/10.1080/15226514.2012.694501] [PMID: 23488013]
[14]
Wenzel, S.E.; Barnes, P.J.; Bleecker, E.R.; Bousquet, J.; Busse, W.; Dahlén, S.E.; Holgate, S.T.; Meyers, D.A.; Rabe, K.F.; Antczak, A.; Baker, J.; Horvath, I.; Mark, Z.; Bernstein, D.; Kerwin, E.; Schlenker-Herceg, R.; Lo, K.H.; Watt, R.; Barnathan, E.S.; Chanez, P. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-α blockade in severe persistent asthma. Am. J. Respir. Crit. Care Med., 2009, 179(7), 549-558.
[http://dx.doi.org/10.1164/rccm.200809-1512OC] [PMID: 19136369]
[15]
Praveen, R.; Nagalakshmi, R. Review on bioremediation and phytoremediation techniques of heavy metals in contaminated soil from dump site. Mater. Today Proc., 2022, 68, 1562-1567.
[http://dx.doi.org/10.1016/j.matpr.2022.07.190]
[16]
Chaney, R.L.; Malik, M.; Li, Y.M.; Brown, S.L.; Brewer, E.P.; Angle, J.S.; Baker, A.J.M. Phytoremediation of soil metals. Curr. Opin. Biotechnol., 1997, 8(3), 279-284.
[http://dx.doi.org/10.1016/S0958-1669(97)80004-3] [PMID: 9206007]
[17]
Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng., 2011, 1-31.
[http://dx.doi.org/10.1155/2011/939161]
[18]
Salt, D.E.; Smith, R.D.; Raskin, I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49(1), 643-668.
[http://dx.doi.org/10.1146/annurev.arplant.49.1.643] [PMID: 15012249]
[19]
Raskin, I.; Kumar, P.B.A.N.; Dushenkov, S.; Salt, D.E. Bioconcentration of heavy metals by plants. Curr. Opin. Biotechnol., 1994, 5(3), 285-290.
[http://dx.doi.org/10.1016/0958-1669(94)90030-2]
[20]
Dushenkov, V.; Kumar, P.B.A.N.; Motto, H.; Raskin, I. Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environ. Sci. Technol., 1995, 29(5), 1239-1245.
[http://dx.doi.org/10.1021/es00005a015] [PMID: 22192017]
[21]
Gleba, D.; Borisjuk, N.V.; Borisjuk, L.G.; Kneer, R.; Poulev, A.; Skarzhinskaya, M.; Dushenkov, S.; Logendra, S.; Gleba, Y.Y.; Raskin, I. Use of plant roots for phytoremediation and molecular farming. Proc. Natl. Acad. Sci., 1999, 96(11), 5973-5977.
[http://dx.doi.org/10.1073/pnas.96.11.5973] [PMID: 10339526]
[22]
Salt, D.E.; Blaylock, M.; Kumar, N.P.B.A.; Dushenkov, V.; Ensley, B.D.; Chet, I.; Raskin, I. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Nat. Biotechnol., 1995, 13(5), 468-474.
[http://dx.doi.org/10.1038/nbt0595-468] [PMID: 9634787]
[23]
Garbisu, C.; Alkorta, I. Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresour. Technol., 2001, 77(3), 229-236.
[http://dx.doi.org/10.1016/S0960-8524(00)00108-5] [PMID: 11272009]
[24]
Risk, B.C.T. Risk based concentration table. united states environmental protection agency philadelphia. 2023. Available from: http://www.sciepub.com/reference/13120 (Accessed August 6, 2023).
[25]
Raskin, I.; Ensley, B.D. Eds; Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment; John Wiley & Sons, Inc., 2000, pp. 53-70.
[26]
Cunningham, S.D.; Berti, W.R.; Huang, J.W. Phytoremediation of contaminated soils. Trends Biotechnol., 1995, 13(9), 393-397.
[http://dx.doi.org/10.1016/S0167-7799(00)88987-8]
[27]
Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf., 2019, 174, 714-727.
[http://dx.doi.org/10.1016/j.ecoenv.2019.02.068] [PMID: 30878808]
[28]
Sharma, P.; Pandey, S. Status of phytoremediation in world scenario. Int. J. Environ. Bioremediat. Biodegrad., 2014, 2(4), 178-191.
[http://dx.doi.org/10.12691/ijebb-2-4-5]
[29]
Limmer, M.; Burken, J. Phytovolatilization of organic contaminants. Environ. Sci. Technol., 2016, 50(13), 6632-6643.
[http://dx.doi.org/10.1021/acs.est.5b04113] [PMID: 27249664]
[30]
Sinha, R.K.; Yang, G.; Alexander, C.; Mage, R.G. De novo expression of MECA‐79 glycoprotein‐determinant on developing B lymphocytes in gut‐associated lymphoid tissues. Immunology, 2006, 119(4), 461-469.
[http://dx.doi.org/10.1111/j.1365-2567.2006.02457.x] [PMID: 17177829]
[31]
Burken, J.G.; Schnoor, J.L. Phytoremediation: Plant uptake of atrazine and role of root exudates. J. Environ. Eng., 1996, 122(11), 958-963.
[http://dx.doi.org/10.1061/(ASCE)0733-9372(1996)122:11(958)]
[32]
Rodriguez, L.; Lopez-Bellido, F.J.; Carnicer, A.; Recreo, F.; Tallos, A.; Monteagudo, J.M. Mercury recovery from soils by phytoremediation. Environ. Chem., 2005, 197-204.
[http://dx.doi.org/10.1007/3-540-26531-7_18]
[33]
Prasad, M.N.V.; De Oliveira Freitas, H.M. Metal hyperaccumulation in plants - Biodiversity prospecting for phytoremediation technology. Electron. J. Biotechnol., 2003, 6(3)
[http://dx.doi.org/10.2225/vol6-issue3-fulltext-6]
[34]
Traunfeld, J.H.; Clement, D.L. Lead in Garden Soils. In: Home and Garden; Maryland Cooperative Extension: College Park, MD, 2001.
[35]
Merkl, N.; Schultze-Kraft, R.; Infante, C. Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut., 2005, 165(1-4), 195-209.
[http://dx.doi.org/10.1007/s11270-005-4979-y]
[36]
Lobring, L.B.; Potter, B.B. Determination of mercury in tissues by cold vapor atomic absorption spectrometry. In: Methods for the Determination of Metals in Environmental Samples; , 1996; pp. 363-375.
[http://dx.doi.org/10.1016/B978-0-8155-1398-8.50020-3]
[37]
Flame Emission Spectroscopy - Science Method. Available from: https://www.researchgate.net/topic/Flame-Emission-Spectroscopy (Accessed August 24, 2023).
[38]
Analytical techniques for analysis of heavy metals. Available from: https://www.odinity.com/analytical-techniques-analysis-heavy-metals/ (Accessed August 24, 2023).
[39]
Morita, M.; Edmonds, J.S. Determination of arsenic species in biological and environmental samples (Technical Report). Pure Appl. Chem., 1992, 64(4), 575-590.
[http://dx.doi.org/10.1351/pac199264040575]
[40]
Kaushal, J.; Mahajan, P.; Kaur, N. A review on application of phytoremediation technique for eradication of synthetic dyes by using ornamental plants. Environ. Sci. Pollut. Res. Int., 2021, 28(48), 67970-67989.
[http://dx.doi.org/10.1007/s11356-021-16672-7] [PMID: 34636019]
[41]
Liu, J.; Xin, X.; Zhou, Q. Phytoremediation of contaminated soils using ornamental plants. Environ. Rev., 2018, 26(1), 43-54.
[http://dx.doi.org/10.1139/er-2017-0022]
[42]
Parra, R.; Ulery, A.L.; Elless, M.P.; Blaylock, M.J. Transient phytoextraction agents: Establishing criteria for the use of chelants in phytoextraction of recalcitrant metals. Int. J. Phytoremediation, 2008, 10(5), 415-429.
[http://dx.doi.org/10.1080/15226510802100564] [PMID: 19260223]
[43]
Kuleff, I.; Djingova, R.; Kostadinov, K.; Todorovsky, D. Instrumental neutron activation analysis of trace elements in quartz. J. Radioanal. Chem., 1981, 62(1-2), 187-194.
[http://dx.doi.org/10.1007/BF02517352]
[44]
Chibuike, G.U.; Obiora, S.C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/752708]
[45]
Mclntyre, T.; Lewis, G.M. The advancement of pytoremediation as an innovative environmental technology for stabilization, remediation, or restoration of contaminated sites in Canada: A discussion paper. J. Soil Contamin., 1997, 6(3), 227-241.
[http://dx.doi.org/10.1080/15320389709383562]
[46]
Bhattacharya, T.; Banerjee, D.K.; Gopal, B. Heavy metal uptake by Scirpus Littoralis Schrad. from fly ash dosed and metal spiked soils. Environ. Monit. Assess., 2006, 121(1-3), 363-380.
[http://dx.doi.org/10.1007/s10661-005-9133-1] [PMID: 16738776]
[47]
Chandra, R.; Bharagava, R.N.; Yadav, S.; Mohan, D. Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. J. Hazard. Mater., 2009, 162(2-3), 1514-1521.
[http://dx.doi.org/10.1016/j.jhazmat.2008.06.040] [PMID: 18650002]
[48]
Jiang, W.; Liu, D. Effects of PB2+ on root growth, cell division, and nucleolus of Brassica juncea L. Isr. J. Plant Sci., 1999, 47(3), 153-156.
[http://dx.doi.org/10.1080/07929978.1999.10676767]
[49]
Singh, S.; Sinha, S. Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol. Environ. Saf., 2005, 62(1), 118-127.
[http://dx.doi.org/10.1016/j.ecoenv.2004.12.026] [PMID: 15978297]
[50]
Cho-Ruk, K.; Kurukote, J.; Supprung, P.; Vetayasupo, S. Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnology, 2005, 5(1), 1-4.
[http://dx.doi.org/10.3923/biotech.2006.1.4]
[51]
Liu, D.; Jiang, W.; Liu, C.; Xin, C.; Hou, W. Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard. [Brassica juncea (L.)]. Bioresour. Technol., 2000, 71(3), 273-277.
[http://dx.doi.org/10.1016/S0960-8524(99)00082-6]
[52]
Gohari, K. Assessing the Intensity of Tolerance to Lead and Its Effect on Amount. Available from: https://www.semanticscholar.org/paper/ Assessing-the-Intensity-of-Tolerance-to-Lead-and-on-Gohari-Habib-Zadeh/65e4452b1ebcdaa1fc02796b33cc6caa5ba3ae91 (Accessed September 19, 2023).
[53]
Gupta, M.; Sharma, P.; Sarin, N.B.; Sinha, A.K. Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere, 2009, 74(9), 1201-1208.
[http://dx.doi.org/10.1016/j.chemosphere.2008.11.023] [PMID: 19101007]
[54]
Bennett, L.E.; Burkhead, J.L.; Hale, K.L.; Terry, N.; Pilon, M.; Pilon-Smits, E.A.H. Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J. Environ. Qual., 2003, 32(2), 432-440.
[http://dx.doi.org/10.2134/jeq2003.0432] [PMID: 12708665]
[55]
Hammer, D.; Kayser, A.; Keller, C. Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use Manage., 2003, 19(3), 187-192.
[http://dx.doi.org/10.1111/j.1475-2743.2003.tb00303.x]
[56]
Kayser, A.; Wenger, K.; Keller, A.; Attinger, W.; Felix, H.R.; Gupta, S.K.; Schulin, R. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments. Environ. Sci. Technol., 2000, 34(9), 1778-1783.
[http://dx.doi.org/10.1021/es990697s]
[57]
Hamon, R.E.; Holm, P.E.; Lorenz, S.E.; McGrath, S.P.; Christensen, T.H. Metal uptake by plants from sludge-amended soils: Caution is required in the plateau interpretation. Plant Soil, 1999, 216(1/2), 53-64.
[http://dx.doi.org/10.1023/A:1004780720809]
[58]
Lorenz, S.E.; Hamon, R.E.; Holm, P.E.; Domingues, H.C.; Sequeira, E.M.; Christensen, T.H.; McGrath, S.P. Cadmium and zinc in plants and soil solutions from contaminated soils. Plant Soil, 1997, 189(1), 21-31.
[http://dx.doi.org/10.1023/A:1004214923372]
[59]
Liphadzi, M.S.; Kirkham, M.B.; Mankin, K.R.; Paulsen, G.M. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant Soil, 2003, 257(1), 171-182.
[http://dx.doi.org/10.1023/A:1026294830323]
[60]
Huang, J.W.; Chen, J.; Berti, W.R.; Cunningham, S.D. Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol., 1997, 31(3), 800-805.
[http://dx.doi.org/10.1021/es9604828]
[61]
Proceedings of the VII. Alps-Adria Scientific Workshop, 28 April- 2 May 2008, Stara Lesna, Slovakia. Part II. Cereal Res. Commun., 2008, 36(Suppl. 5), 675-1394.
[http://dx.doi.org/10.1556/CRC.36.2008.Suppl.2]
[62]
El-Hadidi, E.; Taha, A.; Abo El-Ezz, S. Phytoremediation of some polluted soils by sudan grass (Sorghum Sodanese L.). Bull. Faculty Eng. Mansoura Univ., 2020, 40(1), 68-76.
[http://dx.doi.org/10.21608/bfemu.2020.96401]
[63]
Pulford, I.D.; Riddell-Black, D.; Stewart, C. Heavy metal uptake by willow clones from sewage sludge-treated soil: The potential for phytoremediation. Int. J. Phytoremediation, 2002, 4(1), 59-72.
[http://dx.doi.org/10.1080/15226510208500073]
[64]
Riddell-Black, D. Heavy metal uptake by fast growing willow species. Available from: https://www.osti.gov/etdeweb/biblio/94619 (Accessed September 23, 2023).
[65]
Roy, S.; Labelle, S.; Mehta, P.; Mihoc, A.; Fortin, N.; Masson, C.; Leblanc, R.; Châteauneuf, G.; Sura, C.; Gallipeau, C.; Olsen, C.; Delisle, S.; Labrecque, M.; Greer, C.W. Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant Soil, 2005, 272(1-2), 277-290.
[http://dx.doi.org/10.1007/s11104-004-5295-9]
[66]
Blaylock, M.J.; Salt, D.E.; Dushenkov, S.; Zakharova, O.; Gussman, C.; Kapulnik, Y.; Ensley, B.D.; Raskin, I. Enhanced accumulation of pb in indian mustard by soil-applied chelating agents. Environ. Sci. Technol., 1997, 31(3), 860-865.
[http://dx.doi.org/10.1021/es960552a]
[67]
Del Río, M.; Font, R.; Fernández‐Martínez, J.M.; Carlos, J. Field trials of brassica carinata and brassica juncea in polluted soils of the guadiamar river area. Fresenius Environ. Bull., 2000, 9, 328-332.
[68]
Rydlová, J.; Vosátka, M. Effect of Glomus intraradices isolated from Pb-contaminated soil on Pb uptake byAgrostis capillaris is changed by its cultivation in a metal-free substrate. Folia Geobot., 2003, 38(2), 155-165.
[http://dx.doi.org/10.1007/BF02803148]
[69]
Diaz, G.; Azcon-Aguilar, C.; Honrubia, M. Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of lygeumspartum and anthyllis cytisoides. Plant Soil, 1996, 180(2), 241-249.
[http://dx.doi.org/10.1007/BF00015307]
[70]
Salido, A.L.; Hasty, K.L.; Lim, J.M.; Butcher, D.J. Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int. J. Phytoremediation, 2003, 5(2), 89-103.
[http://dx.doi.org/10.1080/713610173] [PMID: 12929493]
[71]
Wu, J.; Hsu, F.C.; Cunningham, S.D.; Chelate-Assisted, P.B. Phytoextraction: PB availability, uptake, and translocation constraints. Environm. Sci. Technol., 1999, 33(11), 1898-1904.
[http://dx.doi.org/10.1021/es9809253]
[72]
Sharma, S. Study on impact of heavy metal accumulation in Brachythecium populeum (Hedw.). B.S.G. Ecol. Indic., 2009, 9(4), 807-811.
[http://dx.doi.org/10.1016/j.ecolind.2008.08.007]
[73]
Goodman, G.T.; Roberts, T.M. Plants and soils as indicators of metals in the air. Nature, 1971, 231(5301), 287-292.
[http://dx.doi.org/10.1038/231287a0] [PMID: 4930976]
[74]
Ebrahimpour, M.; Mushrifah, I. Heavy metal concentrations (Cd, Cu and Pb) in five aquatic plant species in Tasik Chini, Malaysia. Environ. Geol., 2008, 54(4), 689-698.
[http://dx.doi.org/10.1007/s00254-007-0838-z]
[75]
Feng, R.; Wei, C.; Tu, S.; Sun, X. Interactive effects of selenium and arsenic on their uptake by Pteris vittata L. under hydroponic conditions. Environ. Exp. Bot., 2009, 65(2-3), 363-368.
[http://dx.doi.org/10.1016/j.envexpbot.2008.11.013]
[76]
Srivastava, M.; Ma, L.Q.; Cotruvo, J.A. Uptake and distribution of selenium in different fern species. Int. J. Phytoremediation, 2005, 7(1), 33-42.
[http://dx.doi.org/10.1080/16226510590915792] [PMID: 15943242]
[77]
Wang, H.B.; Ye, Z.H.; Shu, W.S.; Li, W.C.; Wong, M.H.; Lan, C.Y. Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern China: field surveys. Int. J. Phytoremediation, 2006, 8(1), 1-11.
[http://dx.doi.org/10.1080/16226510500214517] [PMID: 16615304]
[78]
Moreno, F.N.; Anderson, C.W.N.; Stewart, R.B.; Robinson, B.H. Phytofiltration of mercury-contaminated water: Volatilisation and plant-accumulation aspects. Environ. Exp. Bot., 2008, 62(1), 78-85.
[http://dx.doi.org/10.1016/j.envexpbot.2007.07.007]
[79]
Greger, M.; Wang, Y.; Neuschütz, C. Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. Environ. Pollut., 2005, 134(2), 201-208.
[http://dx.doi.org/10.1016/j.envpol.2004.08.007] [PMID: 15589647]
[80]
Rodríguez, E.; Peralta-Videa, J.R.; Israr, M.; Sahi, S.V.; Pelayo, H.; Sánchez-Salcido, B.; Gardea-Torresdey, J.L. Effect of mercury and gold on growth, nutrient uptake, and anatomical changes in Chilopsis linearis. Environ. Exp. Bot., 2009, 65(2-3), 253-262.
[http://dx.doi.org/10.1016/j.envexpbot.2008.09.014]
[81]
Meyers, D.E.R.; Auchterlonie, G.J.; Webb, R.I.; Wood, B. Uptake and localisation of lead in the root system of Brassica juncea. Environ. Pollut., 2008, 153(2), 323-332.
[http://dx.doi.org/10.1016/j.envpol.2007.08.029] [PMID: 18191314]
[82]
Beauford, W.; Barber, J.; Barringer, A.R. Uptake and distribution of mercury within higher plants. Physiol. Plant., 1977, 39(4), 261-265.
[http://dx.doi.org/10.1111/j.1399-3054.1977.tb01880.x]
[83]
Zhu, Y.L.; Zayed, A.M.; Qian, J-H.; de Souza, M.; Terry, N. Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J. Environ. Qual., 1999, 28(1), 339-344.
[http://dx.doi.org/10.2134/jeq1999.00472425002800010042x]
[84]
Skinner, K.; Wright, N.; Porter-Goff, E. Mercury uptake and accumulation by four species of aquatic plants. Environ. Pollut., 2007, 145(1), 234-237.
[http://dx.doi.org/10.1016/j.envpol.2006.03.017] [PMID: 16781033]
[85]
Tu, S.; Ma, L.Q.; Fayiga, A.O.; Zillioux, E.J. Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L. Int. J. Phytoremediation, 2004, 6(1), 35-47.
[http://dx.doi.org/10.1080/16226510490439972] [PMID: 15224774]
[86]
Ma, L.Q.; Komar, K.M.; Tu, C.; Zhang, W.; Cai, Y.; Kennelley, E.D. A fern that hyperaccumulates arsenic. Nature, 2001, 409(6820), 579-579.
[http://dx.doi.org/10.1038/35054664] [PMID: 11214308]
[87]
Srivastava, M.; Ma, L.Q.; Rathinasabapathi, B.; Srivastava, P. Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L. Bioresour. Technol., 2009, 100(3), 1115-1121.
[http://dx.doi.org/10.1016/j.biortech.2008.08.026] [PMID: 18823776]
[88]
Rakhshaee, R.; Giahi, M.; Pourahmad, A. Studying effect of cell wall’s carboxyl-carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution. J. Hazard. Mater., 2009, 163(1), 165-173.
[http://dx.doi.org/10.1016/j.jhazmat.2008.06.074] [PMID: 18722059]
[89]
Jain, S.; Vasudevan, P.; Jha, N. Azolla pinnata r.br. and lemna minor l. for removal of lead and zinc from polluted water. Water Res., 1990, 24(2), 177-183.
[http://dx.doi.org/10.1016/0043-1354(90)90100-K]
[90]
Watson, C.; Pulford, I.D.; Riddell-Black, D. Development of a hydroponic screening technique to assess heavy metal resistance in willow (Salix). Int. J. Phytoremediation, 2003, 5(4), 333-349.
[http://dx.doi.org/10.1080/15226510309359041] [PMID: 14750561]
[91]
Pilon-Smits, E. Phytoremediation. Annu. Rev. Plant Biol., 2005, 56(1), 15-39.
[http://dx.doi.org/10.1146/annurev.arplant.56.032604.144214] [PMID: 15862088]
[92]
Lee, J.H. An overview of phytoremediation technology and its applications to environmental pollution control. KSBB J., 2012, 27(5), 281-288.
[http://dx.doi.org/10.7841/ksbbj.2012.27.5.281]
[93]
Gerhardt, K.E.; Huang, X.D.; Glick, B.R.; Greenberg, B.M. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci., 2009, 176(1), 20-30.
[http://dx.doi.org/10.1016/j.plantsci.2008.09.014]
[94]
Lone, M.I.; He, Z.; Stoffella, P.J.; Yang, X. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. J. Zhejiang Univ. Sci. B, 2008, 9(3), 210-220.
[http://dx.doi.org/10.1631/jzus.B0710633] [PMID: 18357623]
[95]
Lebrun, M. Phytoremediation of Toxic Metals. Using Plants to Clean Up the Environment; Raskin, I.; Ensley, B., Eds.; John Wiley & Sons, Inc.: New York, 2000, p. 304.
[http://dx.doi.org/10.1016/S0168-9452(01)00353-3]
[96]
Pinho, S.; Ladeiro, B. Phytotoxicity by lead as heavy metal focus on oxidative stress. J. Bot., 2012, 2012, 1-10.
[http://dx.doi.org/10.1155/2012/369572]
[97]
Cunningham, S.D.; Ow, D.W. Promises and prospects of phytoremediation. Plant Physiol., 1996, 110(3), 715-719.
[http://dx.doi.org/10.1104/pp.110.3.715] [PMID: 12226213]
[98]
Karki, G. Phytoremediation: Classification, mechanisms, applications and limitations 2020. Available from: https://www.onlinebiologynotes.com/phytoremediation-classification-mechanisms-applications-and-limitations/ (Accessed September 7, 2023).
[99]
Venkateswara Raju, C.; Hwan Cho, C.; Mohana Rani, G.; Manju, V.; Umapathi, R.; Suk Huh, Y. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coordin. Chem. Rev., 2023, 476, 214920.
[http://dx.doi.org/10.1016/j.ccr.2022.214920]
[100]
Reddicherla, U. Sowing kernels for food safety: Importance of rapid on-site detction of pesticide residues in agricultural foods. Food Front., 2022, 3(4), 666-676.
[http://dx.doi.org/10.1002/fft2.166]
[101]
Umapathi, R.; Venkateswara Raju, C.; Majid Ghoreishian, S.; Mohana Rani, G.; Kumar, K.; Oh, M-H.; Pil Park, J.; Suk Huh, Y. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coordin. Chem. Rev., 2022, 470, 214708.
[http://dx.doi.org/10.1016/j.ccr.2022.214708]
[102]
Marx, Í.M.G. Emerging trends of electrochemical sensors in food analysis. Electrochem, 2023, 4(1), 42-46.
[http://dx.doi.org/10.3390/electrochem4010004]