Nanomedicine as a Better Therapeutic Approach: An Overview

Page: [169 - 177] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

The fields of nanotechnology and nanomedicine have undergone a revolution. There has been a striking rise in authorized nanomedicines since 1980. Apart from functioning as therapeutic agents, they also act as carriers for delivering various active pharmaceuticals to target organs. The ultimate goal of nanomedicine has always been the generation of translational technologies that can improve current therapies. Nanocrystals, nanotubes, liposomes, exosomes, solid lipid nanoparticles, polymeric nanoparticles, and metallic and magnetic nanoparticles are examples of nanostructures that are now in the market as well as in ongoing research. The preparation of these nanomaterials requires consideration of a number of difficulties. Only a few of these nanomaterials were successful in obtaining marketing permission after passing all required toxicological and ethical evaluations and making them affordable to users and, at the same time, profitable to investors. Cancer, central nervous system (CNS) diseases, and cardiovascular (CVS) diseases represented the primary targets of nanotechnology applied to medicine. Therefore, this review article is focused on providing a summary of several nano-based delivery systems, including their limitations and prospects in different therapeutic fields.

Graphical Abstract

[1]
Kemp JA, Kwon YJ. Cancer nanotechnology: Current status and perspectives. Nano Converg 2021; 8(1): 34.
[http://dx.doi.org/10.1186/s40580-021-00282-7] [PMID: 34727233]
[2]
Wu LP, Wang D, Li Z. Grand challenges in nanomedicine. Mater Sci Eng C 2020; 106: 110302.
[http://dx.doi.org/10.1016/j.msec.2019.110302] [PMID: 31753337]
[3]
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Control Release 2015; 200: 138-57.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[4]
Halwani AA. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics 2022; 14(1): 106.
[http://dx.doi.org/10.3390/pharmaceutics14010106 ] [PMID: 35057002]
[5]
Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J 2012; 14(2): 282-95.
[http://dx.doi.org/10.1208/s12248-012-9339-4] [PMID: 22407288]
[6]
Falagan-Lotsch P, Grzincic EM, Murphy CJ. New advances in nanotechnology-based diagnosis and therapeutics for breast cancer: an assessment of active-targeting inorganic nanoplatforms. Bioconjug Chem 2017; 28(1): 135-52.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00591 ] [PMID: 27973767]
[7]
Caracciolo G, Vali H, Moore A, Mahmoudi M. Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today 2019; 27: 6-10.
[http://dx.doi.org/10.1016/j.nantod.2019.06.001]
[8]
Goel S, Ni D, Cai W. Harnessing the power of nanotechnology for enhanced radiation therapy. ACS Nano 2017; 11(6): 5233-7.
[http://dx.doi.org/10.1021/acsnano.7b03675] [PMID: 28621524]
[9]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[10]
Aziz T, Ullah A, Fan H, et al. Cellulose nanocrystals applications in health, medicine and catalysis. J Polym Environ 2021; 29(7): 2062-71.
[http://dx.doi.org/10.1007/s10924-021-02045-1]
[11]
Parodi A, Buzaeva P, Nigovora D, et al. Nanomedicine for increasing the oral bioavailability of cancer treatments. J Nanobiotechnology 2021; 19(1): 354.
[http://dx.doi.org/10.1186/s12951-021-01100-2] [PMID: 34717658]
[12]
Haider M, Elsherbeny A, Pittalà V, et al. Nanomedicine strategies for management of drug resistance in lung cancer. Int J Mol Sci 2022; 23(3): 1853.
[http://dx.doi.org/10.3390/ijms23031853] [PMID: 35163777]
[13]
Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021; 332: 127-47.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.016] [PMID: 33609621]
[14]
Shi M, Gu A, Tu H, et al. Comparing nanoparticle polymeric micellar paclitaxel and solvent-based paclitaxel as first-line treatment of advanced non-small-cell lung cancer: An open-label, randomized, multicenter, phase III trial. Ann Oncol 2021; 32(1): 85-96.
[http://dx.doi.org/10.1016/j.annonc.2020.10.479] [PMID: 33130217]
[15]
Nano-SMART: Nanoparticles with MR guided SBRT in centrally located lung tumors and pancreatic cancer. Available online: https://ClinicalTrials.gov/show/NCT04789486
[16]
Topotecan hydrochloride or cyclodextrin-based polymer-camptothecin CRLX101 in treating patients with recurrent small cell lung cancer. Available online: https://ClinicalTrials.gov/show/NCT01803269
[17]
Trial of EP0057, a nanoparticle camptothecin with olaparib in people with relapsed/refractory small cell lung cancer. Available online: https://ClinicalTrials.gov/show/NCT02769962
[18]
Chakroun RW, Zhang P, Lin R, Schiapparelli P, Quinones-Hinojosa A, Cui H. Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 10(1): e1479.
[http://dx.doi.org/10.1002/wnan.1479] [PMID: 28544801]
[19]
Elnaggar Y, Etman S, Abdelmonsif D, Abdallah O. Novel piperine-loaded tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: Pharmaceutical, biological, and toxicological studies. Int J Nanomedicine 2015; 10: 5459-73.
[http://dx.doi.org/10.2147/IJN.S87336] [PMID: 26346130]
[20]
Brar B, Ranjan K, Palria A, et al. Nanotechnology in colorectal cancer for precision diagnosis and therapy Front nanotechnol 2021; 16(3): 699266.
[21]
Study investigating the ability of plant exosomes to deliver curcumin to normal and colon cancer tissue Available online: https://ClinicalTrials.gov/show/NCT01294072
[22]
Hamaguchi T, Tsuji A, Yamaguchi K, et al. A phase II study of NK012, a polymeric micelle formulation of SN-38, in unresectable, metastatic or recurrent colorectal cancer patients. Cancer Chemother Pharmacol 2018; 82(6): 1021-9.
[http://dx.doi.org/10.1007/s00280-018-3693-6] [PMID: 30284603]
[23]
Kaushik A, Jayant RD, Bhardwaj V, Nair M. Personalized nanomedicine for CNS diseases. Drug Discov Today 2018; 23(5): 1007-15.
[http://dx.doi.org/10.1016/j.drudis.2017.11.010] [PMID: 29155026]
[24]
Nair M, Jayant RD, Kaushik A, Sagar V. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev 2016; 103: 202-17.
[http://dx.doi.org/10.1016/j.addr.2016.02.008] [PMID: 26944096]
[25]
Tian X, Fan T, Zhao W, et al. Recent advances in the development of nanomedicines for the treatment of ischemic stroke. Bioact Mater 2021; 6(9): 2854-69.
[http://dx.doi.org/10.1016/j.bioactmat.2021.01.023 ] [PMID: 33718667]
[26]
Jagaran K, Singh M. Nanomedicine for neurodegenerative disorders: Focus on alzheimer’s and parkinson’s diseases. Int J Mol Sci 2021; 22(16): 9082.
[http://dx.doi.org/10.3390/ijms22169082] [PMID: 34445784]
[27]
Jayaraj R, Chandramohan V, Namasivayam E. Nanomedicine for parkinson disease: Current status and future perspective. Int J Pharm Bio Sci 2013; 4(692): e704.
[28]
Manners N, Priya V, Mehata A, et al. Theranostic nanomedicines for the treatment of cardiovascular and related diseases: current strategies and future perspectives. Pharmaceuticals 2022; 15(4): 441.
[http://dx.doi.org/10.3390/ph15040441] [PMID: 35455438]
[29]
Martín Giménez VM, Kassuha DE, Manucha W. Nanomedicine applied to cardiovascular diseases: Latest developments. Ther Adv Cardiovasc Dis 2017; 11(4): 133-42.
[http://dx.doi.org/10.1177/1753944717692293] [PMID: 28198204]
[30]
Kim MG, Park JY, Shon Y, Kim G, Shim G, Oh YK. Nanotechnology and vaccine development. AJPS 2014; 9(5): 227-35.
[31]
Lo YL, Huang XS, Chen HY, Huang YC, Liao ZX, Wang LF. ROP and ATRP fabricated redox sensitive micelles based on PCL-SS-PMAA diblock copolymers to co-deliver PTX and CDDP for lung cancer therapy. Colloids Surf B Biointerfaces 2021; 198: 111443.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111443] [PMID: 33203600]
[32]
Li J, Zhang Z, Deng H, Zheng Z. Cinobufagin-loaded and folic acid-modified polydopamine nanomedicine combined with photothermal therapy for the treatment of lung cancer. Front Chem 2021; 9(9): 637754.
[http://dx.doi.org/10.3389/fchem.2021.637754] [PMID: 33855009]
[33]
Hamzawy MA, Abo-youssef AM, Salem HF, Mohammed SA. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Deliv 2017; 24(1): 599-607.
[http://dx.doi.org/10.1080/10717544.2016.1247924 ] [PMID: 28240047]
[34]
Kamazani FM. Sotoodehnejad nematalahi F, Siadat SD, Pornour M, Sheikhpour M. A success targeted nano delivery to lung cancer cells with multi-walled carbon nanotubes conjugated to bromocriptine. Sci Rep 2021; 11(1): 24419.
[http://dx.doi.org/10.1038/s41598-021-03031-2] [PMID: 34952904]
[35]
Yuan X, Ji W, Chen S, et al. A novel paclitaxel-loaded poly(d,l-lactide-co-glycolide)-Tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment. Int J Nanomedicine 2016; 11: 2119-31.
[PMID: 27307727]
[36]
Lakkadwala S, Singh J. Dual functionalized 5-fluorouracil liposomes as highly efficient nanomedicine for glioblastoma treatment as assessed in an in vitro brain tumor model. J Pharm Sci 2018; 107(11): 2902-13.
[http://dx.doi.org/10.1016/j.xphs.2018.07.020] [PMID: 30055226]
[37]
Feng Q, Shen Y, Fu Y, et al. Self-assembly of gold nanoparticles shows microenvironment-mediated dynamic switching and enhanced brain tumor targeting. Theranostics 2017; 7(7): 1875-89.
[http://dx.doi.org/10.7150/thno.18985] [PMID: 28638474]
[38]
Chen YC, Chiang CF, Wu SK, Chen LF, Hsieh WY, Lin WL. Targeting microbubbles-carrying TGFβ1 inhibitor combined with ultrasound sonication induce BBB/BTB disruption to enhance nanomedicine treatment for brain tumors. J Control Release 2015; 211(211): 53-62.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.288] [PMID: 26047759]
[39]
Koziara JM, Lockman PR, Allen DD, Mumper RJ. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 2004; 99(2): 259-69.
[http://dx.doi.org/10.1016/j.jconrel.2004.07.006] [PMID: 15380635]
[40]
Hettiarachchi SD, Graham RM, Mintz KJ, et al. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale 2019; 11(13): 6192-205.
[http://dx.doi.org/10.1039/C8NR08970A] [PMID: 30874284]
[41]
Zou H, Li L, Garcia Carcedo I, Xu ZP, Monteiro M, Gu W. Synergistic inhibition of colon cancer cell growth with nanoemulsion-loaded paclitaxel and PI3K/mTOR dual inhibitor BEZ235 through apoptosis. Int J Nanomedicine 2016; 11: 1947-58.
[PMID: 27226714]
[42]
Chiu HI, Lim V. Wheat germ agglutinin-conjugated disulfide cross-linked alginate nanoparticles as a docetaxel carrier for colon cancer therapy. Int J Nanomedicine 2021; 16: 2995-3020.
[http://dx.doi.org/10.2147/IJN.S302238] [PMID: 33911862]
[43]
Yu Z, Li X, Duan J, Yang XD. Targeted treatment of colon cancer with aptamer-guided albumin nanoparticles loaded with docetaxel. Int J Nanomedicine 2020; 15: 6737-48.
[http://dx.doi.org/10.2147/IJN.S267177] [PMID: 32982230]
[44]
Klippstein R, Wang JTW, El-Gogary RI, et al. Passively targeted curcumin‐loaded pegylated PLGA nanocapsules for colon cancer therapy in vivo. Small 2015; 11(36): 4704-22.
[http://dx.doi.org/10.1002/smll.201403799] [PMID: 26140363]
[45]
Ortiz R, Cabeza L, Arias JL, et al. Poly (butylcyanoacrylate) and poly (ε-caprolactone) nanoparticles loaded with 5-fluorouracil increase the cytotoxic effect of the drug in experimental colon cancer. AAPS J 2015; 17(4): 918-29.
[http://dx.doi.org/10.1208/s12248-015-9761-5] [PMID: 25894746]
[46]
Wilson B, Samanta MK, Muthu MS, Vinothapooshan G. Design and evaluation of chitosan nanoparticles as novel drug carrier for the delivery of rivastigmine to treat Alzheimer’s disease. Ther Deliv 2011; 2(5): 599-609.
[http://dx.doi.org/10.4155/tde.11.21] [PMID: 22833977]
[47]
Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci 2015; 104(10): 3544-56.
[http://dx.doi.org/10.1002/jps.24557]
[48]
Mathew A, Fukuda T, Nagaoka Y, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 2012; 7(3): e32616.
[http://dx.doi.org/10.1371/journal.pone.0032616] [PMID: 22403681]
[49]
Baysal I, Yabanoglu-Ciftci S, Tunc-Sarisozen Y, Ulubayram K, Ucar G. Interaction of selegiline-loaded PLGA-b-PEG nanoparticles with beta-amyloid fibrils. J Neural Transm 2013; 120(6): 903-10.
[http://dx.doi.org/10.1007/s00702-013-0992-2] [PMID: 23420173]
[50]
Lu L, Wang Y, Zhang F, et al. mri‐visible siRNA nanomedicine directing neuronal differentiation of neural stem cells in stroke. Adv Funct Mater 2018; 28(14): 1706769.
[http://dx.doi.org/10.1002/adfm.201706769]
[51]
Song MM, Chen J, Ye SM, et al. Targeted delivery of edaravone by liposomes for the treatment of ischemic stroke. Nanomedicine 2022; 17(11): 741-52.
[http://dx.doi.org/10.2217/nnm-2021-0490] [PMID: 35506304]
[52]
Kakkar AK, Mueller I, Bassand JP, et al. Risk profiles and antithrombotic treatment of patients newly diagnosed with atrial fibrillation at risk of stroke: Perspectives from the international, observational, prospective GARFIELD registry. PLoS One 2013; 8(5): e63479.
[http://dx.doi.org/10.1371/journal.pone.0063479] [PMID: 23704912]
[53]
Ghosh S, Derle A, Ahire M, et al. Phytochemical analysis and free radical scavenging activity of medicinal plants Gnidia glauca and Dioscorea bulbifera. PLoS One 2013; 8(12): e82529.
[http://dx.doi.org/10.1371/journal.pone.0082529] [PMID: 24367520]
[54]
Zhao Y, Xin Z, Li N, et al. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism. Free Radic Biol Med 2018; 124: 1-11.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.082 ] [PMID: 29807160]
[55]
Barcia E, Boeva L, García-García L, et al. Nanotechnology-based drug delivery of ropinirole for Parkinson’s disease. Drug Deliv 2017; 24(1): 1112-23.
[http://dx.doi.org/10.1080/10717544.2017.1359862 ] [PMID: 28782388]
[56]
Ji B, Wang M, Gao D, et al. Combining nanoscale magnetic nimodipine liposomes with magnetic resonance image for Parkinson’s disease targeting therapy. Nanomedicine 2017; 12(3): 237-53.
[http://dx.doi.org/10.2217/nnm-2016-0267] [PMID: 28093036]
[57]
Bi C, Wang A, Chu Y, et al. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int J Nanomedicine 2016; 11: 6547-59.
[http://dx.doi.org/10.2147/IJN.S120939] [PMID: 27994458]
[58]
Sharma S, Lohan S, Murthy RSR. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev Ind Pharm 2014; 40(7): 869-78.
[http://dx.doi.org/10.3109/03639045.2013.789051] [PMID: 23600649]
[59]
Esposito E, Mariani P, Ravani L, et al. Nanoparticulate lipid dispersions for bromocriptine delivery: Characterization and in vivo study. Eur J Pharm Biopharm 2012; 80(2): 306-14.
[http://dx.doi.org/10.1016/j.ejpb.2011.10.015] [PMID: 22061262]
[60]
Czyzynska-Cichon I, Janik-Hazuka M, Szafraniec-Szczęsny J, et al. Low dose curcumin administered in hyaluronic acid-based nanocapsules induces hypotensive effect in hypertensive rats. Int J Nanomedicine 2021; 16: 1377-90.
[http://dx.doi.org/10.2147/IJN.S291945] [PMID: 33658778]
[61]
Beck-Broichsitter M, Hecker A, Kosanovic D, et al. Prolonged vasodilatory response to nanoencapsulated sildenafil in pulmonary hypertension. Nanomedicine 2016; 12(1): 63-8.
[http://dx.doi.org/10.1016/j.nano.2015.08.009] [PMID: 26393885]
[62]
Hamilton K, Yazdanian M, Audus K. Contribution of efflux pump activity to the delivery of pulmonary therapeutics. Curr Drug Metab 2002; 3(1): 1-12.
[http://dx.doi.org/10.2174/1389200023338170] [PMID: 11876574]
[63]
Sun F, Wang G, Pradhan A, et al. Nanoparticle delivery of STAT3 alleviates pulmonary hypertension in a mouse model of alveolar capillary dysplasia. Circulation 2021; 144(7): 539-55.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.121.053980] [PMID: 34111939]
[64]
Mohamed NA, Abou-Saleh H, Kameno Y, et al. Studies on metal–organic framework (MOF) nanomedicine preparations of sildenafil for the future treatment of pulmonary arterial hypertension. Sci Rep 2021; 11(1): 4336.
[http://dx.doi.org/10.1038/s41598-021-83423-6] [PMID: 33619326]
[65]
Xue Y, Zeng G, Cheng J, Hu J, Zhang M, Li Y. Engineered macrophage membrane‐enveloped nanomedicine for ameliorating myocardial infarction in a mouse model. Bioeng Transl Med 2021; 6(2): e10197.
[http://dx.doi.org/10.1002/btm2.10197] [PMID: 34027086]
[66]
Qiu J, Cai G, Liu X, Ma D. αvβ3 integrin receptor specific peptide modified, salvianolic acid B and panax notoginsenoside loaded nanomedicine for the combination therapy of acute myocardial ischemia. Biomed Pharmacother 2017; 96: 1418-26.
[http://dx.doi.org/10.1016/j.biopha.2017.10.086] [PMID: 29079344]
[67]
Zhang S, Li J, Hu S, Wu F, Zhang X. Triphenylphosphonium and D-α-tocopheryl polyethylene glycol 1000 succinate-modified, tanshinone IIA-loaded lipid-polymeric nanocarriers for the targeted therapy of myocardial infarction. Int J Nanomedicine 2018; 13: 4045-57.
[http://dx.doi.org/10.2147/IJN.S165590] [PMID: 30022826]
[68]
Tokutome M, Matoba T, Nakano Y, et al. Peroxisome proliferator-activated receptor-gamma targeting nanomedicine promotes cardiac healing after acute myocardial infarction by skewing monocyte/macrophage polarization in preclinical animal models. Cardiovasc Res 2019; 115(2): 419-31.
[http://dx.doi.org/10.1093/cvr/cvy200] [PMID: 30084995]
[69]
Geng T, Song ZY, Xing JX, Wang BX, Dai SP, Xu ZS. Exosome derived from coronary serum of patients with myocardial infarction promotes angiogenesis through the miRNA-143/IGF-IR pathway. Int J Nanomedicine 2020; 15: 2647-58.
[http://dx.doi.org/10.2147/IJN.S242908] [PMID: 32368046]
[70]
Pautler M, Brenner S. Nanomedicine: Promises and challenges for the future of public health. Int J Nanomedicine 2010; 5: 803-9.
[PMID: 21042425]
[71]
Aziz T, Ullah A, Ali A, et al. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field. J Appl Polym Sci 2022; 139(29): e52624.
[http://dx.doi.org/10.1002/app.52624]
[72]
Targuma S, Njobeh PB, Ndungu PG. Current applications of magnetic nanomaterials for extraction of mycotoxins, pesticides, and pharmaceuticals in food commodities. Molecules 2021; 26(14): 4284.
[http://dx.doi.org/10.3390/molecules26144284] [PMID: 34299560]
[73]
Ojha A, Tiwary D, Oraon R, Singh P. Degradations of endocrine-disrupting chemicals and pharmaceutical compounds in wastewater with carbon-based nanomaterials: A critical review. Environ Sci Pollut Res Int 2021; 28(24): 30573-94.
[http://dx.doi.org/10.1007/s11356-021-13939-x] [PMID: 33909248]
[74]
Thiagarajan V, Alex SA, Seenivasan R, Chandrasekaran N, Mukherjee A. Interactive effects of micro/nanoplastics and nanomaterials/pharmaceuticals: Their ecotoxicological consequences in the aquatic systems. Aquat Toxicol 2021; 232: 105747.
[http://dx.doi.org/10.1016/j.aquatox.2021.105747] [PMID: 33493974]
[75]
Ullah R, Azam A, Aziz T, et al. Peacock feathers extract use as template for synthesis of Ag and Au nanoparticles and their biological applications. Waste Biomass Valoriz 2022; 13(1): 659-66.
[http://dx.doi.org/10.1007/s12649-021-01537-4]
[76]
Stavis SM, Fagan JA, Stopa M, Liddle JA. Nanoparticle manufacturing–heterogeneity through processes to products. ACS Appl Nano Mater 2018; 1(9): 4358-85.
[http://dx.doi.org/10.1021/acsanm.8b01239]