An Update of Extracellular Vesicle Involvement in Different Steps of Cancer Metastasis and Targeting Strategies

Page: [4495 - 4509] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Cancer metastasis is the deadliest event in tumorigenesis. Despite extensive research, there are still unsolved challenges regarding early metastasis detection and targeting strategies. Extracellular vesicles (EVs) and their impact on tumorigenic-related events are in the eye of current investigations. EVs represent a plethora of biomarkers and information, and they are considered key determinants in tumor progression and for tumor prognosis and monitoring. EVs are one of the key mediators for inter-cellular communications between tumor cells and their nearby stroma. They are involved in different steps of metastasis from invasion toward formation of pre-metastatic niches (PMNs), and final growth and colonization of tumor cells in desired organ/s of the target. Membrane components of EVs and their cargo can be traced for the identification of tumor metastasis, and their targeting is a promising strategy in cancer therapy. In this review, we aimed to discuss the current understanding of EV-based metastatic predilection in cancer, providing updated information about EV involvement in different metastatic steps and suggesting some strategies to hamper this devastating condition.

[1]
Hsu, Y.L.; Huang, M.S.; Hung, J.Y.; Chang, W.A.; Tsai, Y.M.; Pan, Y.C.; Lin, Y.S.; Tsai, H.P.; Kuo, P.L. Bone-marrow-derived cell-released extracellular vesicle miR-92a regulates hepatic pre-metastatic niche in lung cancer. Oncogene, 2020, 39(4), 739-753.
[http://dx.doi.org/10.1038/s41388-019-1024-y] [PMID: 31558801]
[2]
Majidpoor, J.; Mortezaee, K. Steps in metastasis: An updated review. Med. Oncol., 2021, 38(1), 3.
[http://dx.doi.org/10.1007/s12032-020-01447-w] [PMID: 33394200]
[3]
Mortezaee, K. Organ tropism in solid tumor metastasis: An updated review. Future Oncol., 2021, 17(15), 1943-1961.
[http://dx.doi.org/10.2217/fon-2020-1103] [PMID: 33728946]
[4]
Crescitelli, R.; Lässer, C.; Lötvall, J. Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat. Protoc., 2021, 16(3), 1548-1580.
[http://dx.doi.org/10.1038/s41596-020-00466-1] [PMID: 33495626]
[5]
Chen, W.; Zuo, F.; Zhang, K.; Xia, T.; Lei, W.; Zhang, Z.; Bao, L.; You, Y. Exosomal MIF derived from nasopharyngeal carcinoma promotes metastasis by repressing ferroptosis of macrophages. Front. Cell Dev. Biol., 2021, 9, 791187.
[http://dx.doi.org/10.3389/fcell.2021.791187] [PMID: 35036405]
[6]
Adams, S.D. Centrosome amplification mediates small extracellular vesicle secretion via lysosome disruption. Curr. Biol., 2021, 31(7), 1403-1416. e7
[http://dx.doi.org/10.1016/j.cub.2021.01.028]
[7]
Zomer, A.; Maynard, C.; Verweij, F.J.; Kamermans, A.; Schäfer, R.; Beerling, E.; Schiffelers, R.M.; de Wit, E.; Berenguer, J.; Ellenbroek, S.I.J.; Wurdinger, T.; Pegtel, D.M.; van Rheenen, J. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell, 2015, 161(5), 1046-1057.
[http://dx.doi.org/10.1016/j.cell.2015.04.042] [PMID: 26000481]
[8]
Treps, L.; Edmond, S.; Harford-Wright, E.; Galan-Moya, E.M.; Schmitt, A.; Azzi, S.; Citerne, A.; Bidère, N.; Ricard, D.; Gavard, J. Extracellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma. Oncogene, 2016, 35(20), 2615-2623.
[http://dx.doi.org/10.1038/onc.2015.317] [PMID: 26364614]
[9]
Nishida-Aoki, N.; Tominaga, N.; Takeshita, F.; Sonoda, H.; Yoshioka, Y.; Ochiya, T. Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis. Mol. Ther., 2017, 25(1), 181-191.
[http://dx.doi.org/10.1016/j.ymthe.2016.10.009] [PMID: 28129113]
[10]
Clark, R.T. Imaging flow cytometry enhances particle detection sensitivity for extracellular vesicle analysis. Nat. Methods, 2015, 12(4), i-ii.
[http://dx.doi.org/10.1038/nmeth.f.380] [PMID: 25751143]
[11]
Mathieu, M.; Névo, N.; Jouve, M.; Valenzuela, J.I.; Maurin, M.; Verweij, F.J.; Palmulli, R.; Lankar, D.; Dingli, F.; Loew, D.; Rubinstein, E.; Boncompain, G.; Perez, F.; Théry, C. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun., 2021, 12(1), 4389.
[http://dx.doi.org/10.1038/s41467-021-24384-2] [PMID: 34282141]
[12]
Luga, V.; Zhang, L.; Viloria-Petit, A.M.; Ogunjimi, A.A.; Inanlou, M.R.; Chiu, E.; Buchanan, M.; Hosein, A.N.; Basik, M.; Wrana, J.L. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell, 2012, 151(7), 1542-1556.
[http://dx.doi.org/10.1016/j.cell.2012.11.024] [PMID: 23260141]
[13]
Andreu, Z.; Yáñez-Mó, M. Tetraspanins in extracellular vesicle formation and function. Front. Immunol., 2014, 5, 442.
[http://dx.doi.org/10.3389/fimmu.2014.00442] [PMID: 25278937]
[14]
Al-Nedawi, K.; Meehan, B.; Micallef, J.; Lhotak, V.; May, L.; Guha, A.; Rak, J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol., 2008, 10(5), 619-624.
[http://dx.doi.org/10.1038/ncb1725] [PMID: 18425114]
[15]
Balaj, L.; Lessard, R.; Dai, L.; Cho, Y.J.; Pomeroy, S.L.; Breakefield, X.O.; Skog, J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun., 2011, 2(1), 180.
[http://dx.doi.org/10.1038/ncomms1180] [PMID: 21285958]
[16]
Fan, S.J.; Kroeger, B.; Marie, P.P.; Bridges, E.M.; Mason, J.D.; McCormick, K.; Zois, C.E.; Sheldon, H.; Khalid Alham, N.; Johnson, E.; Ellis, M.; Stefana, M.I.; Mendes, C.C.; Wainwright, S.M.; Cunningham, C.; Hamdy, F.C.; Morris, J.F.; Harris, A.L.; Wilson, C.; Goberdhan, D.C.I. Glutamine deprivation alters the origin and function of cancer cell exosomes. EMBO J., 2020, 39(16), e103009.
[http://dx.doi.org/10.15252/embj.2019103009] [PMID: 32720716]
[17]
Takahashi, A.; Okada, R.; Nagao, K.; Kawamata, Y.; Hanyu, A.; Yoshimoto, S.; Takasugi, M.; Watanabe, S.; Kanemaki, M.T.; Obuse, C.; Hara, E. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat. Commun., 2017, 8(1), 15287.
[http://dx.doi.org/10.1038/ncomms15287] [PMID: 28508895]
[18]
Takasugi, M.; Okada, R.; Takahashi, A.; Virya Chen, D.; Watanabe, S.; Hara, E. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat. Commun., 2017, 8(1), 15729.
[http://dx.doi.org/10.1038/ncomms15728] [PMID: 28585531]
[19]
Samuel, M.; Fonseka, P.; Sanwlani, R.; Gangoda, L.; Chee, S.H.; Keerthikumar, S.; Spurling, A.; Chitti, S.V.; Zanker, D.; Ang, C.S.; Atukorala, I.; Kang, T.; Shahi, S.; Marzan, A.L.; Nedeva, C.; Vennin, C.; Lucas, M.C.; Cheng, L.; Herrmann, D.; Pathan, M.; Chisanga, D.; Warren, S.C.; Zhao, K.; Abraham, N.; Anand, S.; Boukouris, S.; Adda, C.G.; Jiang, L.; Shekhar, T.M.; Baschuk, N.; Hawkins, C.J.; Johnston, A.J.; Orian, J.M.; Hoogenraad, N.J.; Poon, I.K.; Hill, A.F.; Jois, M.; Timpson, P.; Parker, B.S.; Mathivanan, S. Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis. Nat. Commun., 2021, 12(1), 3950.
[http://dx.doi.org/10.1038/s41467-021-24273-8] [PMID: 34168137]
[20]
Liu, Y.; Fan, J.; Xu, T.; Ahmadinejad, N.; Hess, K.; Lin, S.H.; Zhang, J.; Liu, X.; Liu, L.; Ning, B.; Liao, Z.; Hu, T.Y. Extracellular vesicle tetraspanin-8 level predicts distant metastasis in non–small cell lung cancer after concurrent chemoradiation. Sci. Adv., 2020, 6(11), eaaz6162.
[http://dx.doi.org/10.1126/sciadv.aaz6162] [PMID: 32195353]
[21]
Sun, J.; Lu, Z.; Fu, W.; Lu, K.; Gu, X.; Xu, F.; Dai, J.; Yang, Y.; Jiang, J. Exosome-derived ADAM17 promotes liver metastasis in colorectal Cancer. Front. Pharmacol., 2021, 12, 734351.
[http://dx.doi.org/10.3389/fphar.2021.734351] [PMID: 34650435]
[22]
Cardeñes, B.; Clares, I.; Toribio, V.; Pascual, L.; López-Martín, S.; Torres-Gomez, A.; Sainz de la Cuesta, R.; Lafuente, E.M.; López-Cabrera, M.; Yáñez-Mó, M.; Cabañas, C. Cellular integrin α5β1 and exosomal ADAM17 mediate the binding and uptake of exosomes produced by colorectal carcinoma cells. Int. J. Mol. Sci., 2021, 22(18), 9938.
[http://dx.doi.org/10.3390/ijms22189938] [PMID: 34576100]
[23]
Kawakami, K.; Fujita, Y.; Kato, T.; Mizutani, K.; Kameyama, K.; Tsumoto, H.; Miura, Y.; Deguchi, T.; Ito, M. Integrin β4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance. Int. J. Oncol., 2015, 47(1), 384-390.
[http://dx.doi.org/10.3892/ijo.2015.3011] [PMID: 25997717]
[24]
Du, W.W.; Li, X.; Ma, J.; Fang, L.; Wu, N.; Li, F.; Dhaliwal, P.; Yang, W.; Yee, A.J.; Yang, B.B. Promotion of tumor progression by exosome transmission of circular RNA circSKA3. Mol. Ther. Nucleic Acids, 2022, 27, 276-292.
[http://dx.doi.org/10.1016/j.omtn.2021.11.027] [PMID: 35024241]
[25]
Skog, J.; Würdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Curry, W.T., Jr; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O.; Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol., 2008, 10(12), 1470-1476.
[http://dx.doi.org/10.1038/ncb1800] [PMID: 19011622]
[26]
Sung, B.H.; Ketova, T.; Hoshino, D.; Zijlstra, A.; Weaver, A.M. Directional cell movement through tissues is controlled by exosome secretion. Nat. Commun., 2015, 6(1), 7164.
[http://dx.doi.org/10.1038/ncomms8164] [PMID: 25968605]
[27]
Pegoraro, A.; De Marchi, E.; Ferracin, M.; Orioli, E.; Zanoni, M.; Bassi, C.; Tesei, A.; Capece, M.; Dika, E.; Negrini, M.; Di Virgilio, F.; Adinolfi, E. P2X7 promotes metastatic spreading and triggers release of miRNA-containing exosomes and microvesicles from melanoma cells. Cell Death Dis., 2021, 12(12), 1088.
[http://dx.doi.org/10.1038/s41419-021-04378-0] [PMID: 34789738]
[28]
Wu, J.; Xie, Q.; Liu, Y.; Gao, Y.; Qu, Z.; Mo, L.; Xu, Y.; Chen, R.; Shi, L. A small vimentin-binding molecule blocks cancer exosome release and reduces cancer cell mobility. Front. Pharmacol., 2021, 12, 627394.
[http://dx.doi.org/10.3389/fphar.2021.627394] [PMID: 34305581]
[29]
Mortezaee, K. Redox tolerance and metabolic reprogramming in solid tumors. Cell Biol. Int., 2021, 45(2), 273-286.
[http://dx.doi.org/10.1002/cbin.11506] [PMID: 33236822]
[30]
Yang, K.; Zhang, F.; Luo, B.; Qu, Z. CAFs-derived small extracellular vesicles circN4BP2L2 promotes proliferation and metastasis of colorectal cancer via miR-664b-3p/HMGB3 pathway. Cancer Biol. Ther., 2022, 23(1), 404-416.
[http://dx.doi.org/10.1080/15384047.2022.2072164] [PMID: 35722996]
[31]
Shi, Z.; Jiang, T.; Cao, B.; Sun, X.; Liu, J. CAF-derived exosomes deliver LINC01410 to promote epithelial-mesenchymal transition of esophageal squamous cell carcinoma. Exp. Cell Res., 2022, 412(2), 113033.
[http://dx.doi.org/10.1016/j.yexcr.2022.113033] [PMID: 35041823]
[32]
Yan, Z.; Sheng, Z.; Zheng, Y.; Feng, R.; Xiao, Q.; Shi, L.; Li, H.; Yin, C.; Luo, H.; Hao, C.; Wang, W.; Zhang, B. Cancer-associated fibroblast-derived exosomal miR-18b promotes breast cancer invasion and metastasis by regulating TCEAL7. Cell Death Dis., 2021, 12(12), 1120.
[http://dx.doi.org/10.1038/s41419-021-04409-w] [PMID: 34853307]
[33]
Mortezaee, K.; Majidpoor, J.; Kharazinejad, E. Epithelial-mesenchymal transition in cancer stemness and heterogeneity: Updated. Med. Oncol., 2022, 39(12), 193.
[http://dx.doi.org/10.1007/s12032-022-01801-0] [PMID: 36071302]
[34]
Song, J.W.; Zhu, J.; Wu, X.X.; Tu, T.; Huang, J.Q.; Chen, G.Z.; Liang, L.Y.; Zhou, C.H.; Xu, X.; Gong, L.Y. GOLPH3/CKAP4 promotes metastasis and tumorigenicity by enhancing the secretion of exosomal WNT3A in non-small-cell lung cancer. Cell Death Dis., 2021, 12(11), 976.
[http://dx.doi.org/10.1038/s41419-021-04265-8] [PMID: 34671013]
[35]
Franzen, C.A.; Blackwell, R.H.; Todorovic, V.; Greco, K.A.; Foreman, K.E.; Flanigan, R.C.; Kuo, P.C.; Gupta, G.N. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogenesis, 2015, 4(8), e163-e163.
[http://dx.doi.org/10.1038/oncsis.2015.21] [PMID: 26280654]
[36]
Hu, C.; Zhang, Y.; Zhang, M.; Li, T.; Zheng, X.; Guo, Q.; Zhang, X. Exosomal Cripto-1 serves as a potential biomarker for perihilar cholangiocarcinoma. Front. Oncol., 2021, 11, 730615.
[http://dx.doi.org/10.3389/fonc.2021.730615] [PMID: 34434900]
[37]
Ono, K.; Sogawa, C.; Kawai, H.; Tran, M.T.; Taha, E.A.; Lu, Y.; Oo, M.W.; Okusha, Y.; Okamura, H.; Ibaragi, S.; Takigawa, M.; Kozaki, K.I.; Nagatsuka, H.; Sasaki, A.; Okamoto, K.; Calderwood, S.K.; Eguchi, T. Triple knockdown of CDC37, HSP90-alpha and HSP90-beta diminishes extracellular vesicles-driven malignancy events and macrophage M2 polarization in oral cancer. J. Extracell. Vesicles, 2020, 9(1), 1769373.
[http://dx.doi.org/10.1080/20013078.2020.1769373] [PMID: 33144925]
[38]
Bai, J.; Zhang, X.; Shi, D.; Xiang, Z.; Wang, S.; Yang, C.; Liu, Q.; Huang, S.; Fang, Y.; Zhang, W.; Song, J.; Xiong, B. Exosomal miR-128-3p promotes epithelial-to-mesenchymal transition in colorectal cancer cells by targeting FOXO4 via TGF-β/SMAD and JAK/STAT3 signaling. Front. Cell Dev. Biol., 2021, 9, 568738.
[http://dx.doi.org/10.3389/fcell.2021.568738] [PMID: 33634112]
[39]
Kim, H.S.; Kim, J.S.; Park, N.R.; Nam, H.; Sung, P.S.; Bae, S.H.; Choi, J.Y.; Yoon, S.K.; Hur, W.; Jang, J.W. Exosomal miR-125b exerts anti-metastatic properties and predicts early metastasis of hepatocellular carcinoma. Front. Oncol., 2021, 11, 637247.
[http://dx.doi.org/10.3389/fonc.2021.637247] [PMID: 34386414]
[40]
Yang, Z.; Wang, W.; Zhao, L.; Wang, X.; Gimple, R.C.; Xu, L.; Wang, Y.; Rich, J.N.; Zhou, S. Plasma cells shape the mesenchymal identity of ovarian cancers through transfer of exosome-derived microRNAs. Sci. Adv., 2021, 7(9), eabb0737.
[http://dx.doi.org/10.1126/sciadv.abb0737] [PMID: 33627414]
[41]
Lin, X.M.; Wang, Z.J.; Lin, Y.X.; Chen, H. Decreased exosome-delivered miR-486-5p is responsible for the peritoneal metastasis of gastric cancer cells by promoting EMT progress. World J. Surg. Oncol., 2021, 19(1), 312.
[http://dx.doi.org/10.1186/s12957-021-02381-5] [PMID: 34686196]
[42]
Qin, W.; Wang, L.; Tian, H.; Wu, X.; Xiao, C.; Pan, Y.; Fan, M.; Tai, Y.; Liu, W.; Zhang, Q.; Yang, Y. CAF-derived exosomes transmitted Gremlin-1 promotes cancer progression and decreases the sensitivity of hepatoma cells to sorafenib. Mol. Carcinog., 2022, 61(8), 764-775.
[http://dx.doi.org/10.1002/mc.23416] [PMID: 35638711]
[43]
Liu, W.; Wang, B.; Duan, A.; Shen, K.; Zhang, Q.; Tang, X.; Wei, Y.; Tang, J.; Zhang, S. Exosomal transfer of miR-769-5p promotes osteosarcoma proliferation and metastasis by targeting DUSP16. Cancer Cell Int., 2021, 21(1), 541.
[http://dx.doi.org/10.1186/s12935-021-02257-4] [PMID: 34663350]
[44]
La Camera, G.; Gelsomino, L.; Malivindi, R.; Barone, I.; Panza, S.; De Rose, D.; Giordano, F.; D’Esposito, V.; Formisano, P.; Bonofiglio, D.; Andò, S.; Giordano, C.; Catalano, S. Adipocyte-derived extracellular vesicles promote breast cancer cell malignancy through HIF-1α activity. Cancer Lett., 2021, 521, 155-168.
[http://dx.doi.org/10.1016/j.canlet.2021.08.021] [PMID: 34425186]
[45]
Wu, Q.; Li, J.; Li, Z.; Sun, S.; Zhu, S.; Wang, L.; Wu, J.; Yuan, J.; Zhang, Y.; Sun, S.; Wang, C. Retracted article: Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. J. Exp. Clin. Cancer Res., 2019, 38(1), 223.
[http://dx.doi.org/10.1186/s13046-019-1210-3] [PMID: 31138258]
[46]
Zhou, W.; Fong, M.Y.; Min, Y.; Somlo, G.; Liu, L.; Palomares, M.R.; Yu, Y.; Chow, A.; O’Connor, S.T.F.; Chin, A.R.; Yen, Y.; Wang, Y.; Marcusson, E.G.; Chu, P.; Wu, J.; Wu, X.; Li, A.X.; Li, Z.; Gao, H.; Ren, X.; Boldin, M.P.; Lin, P.C.; Wang, S.E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 2014, 25(4), 501-515.
[http://dx.doi.org/10.1016/j.ccr.2014.03.007] [PMID: 24735924]
[47]
Mortezaee, K. Normalization in tumor ecosystem: Opportunities and challenges. Cell Biol. Int., 2021, 45(10), 2017-2030.
[http://dx.doi.org/10.1002/cbin.11655] [PMID: 34189798]
[48]
Kim, D.H.; Park, H.; Choi, Y.J.; Kang, M.H.; Kim, T.K.; Pack, C.G.; Choi, C.M.; Lee, J.C.; Rho, J.K. Exosomal miR-1260b derived from non-small cell lung cancer promotes tumor metastasis through the inhibition of HIPK2. Cell Death Dis., 2021, 12(8), 747.
[http://dx.doi.org/10.1038/s41419-021-04024-9] [PMID: 34321461]
[49]
Mao, S.; Zheng, S.; Lu, Z.; Wang, X.; Wang, Y.; Zhang, G.; Xu, H.; Huang, J.; Lei, Y.; Liu, C.; Sun, N.; He, J. Exosomal miR-375-3p breaks vascular barrier and promotes small cell lung cancer metastasis by targeting claudin-1. Transl. Lung Cancer Res., 2021, 10(7), 3155-3172.
[http://dx.doi.org/10.21037/tlcr-21-356] [PMID: 34430355]
[50]
Dou, R.; Liu, K.; Yang, C.; Zheng, J.; Shi, D.; Lin, X.; Wei, C.; Zhang, C.; Fang, Y.; Huang, S.; Song, J.; Wang, S.; Xiong, B. EMT-cancer cells-derived exosomal miR-27b-3p promotes circulating tumour cells-mediated metastasis by modulating vascular permeability in colorectal cancer. Clin. Transl. Med., 2021, 11(12), e595.
[http://dx.doi.org/10.1002/ctm2.595] [PMID: 34936736]
[51]
Hara, T. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell, 2021, 39(6), 779-792. e11
[http://dx.doi.org/10.1016/j.ccell.2021.05.002]
[52]
Wu, D.; Deng, S.; Li, L.; Liu, T.; Zhang, T.; Li, J.; Yu, Y.; Xu, Y. TGF-β1-mediated exosomal lnc-MMP2-2 increases blood–brain barrier permeability via the miRNA-1207-5p/EPB41L5 axis to promote non-small cell lung cancer brain metastasis. Cell Death Dis., 2021, 12(8), 721.
[http://dx.doi.org/10.1038/s41419-021-04004-z] [PMID: 34285192]
[53]
Kobayashi, M.; Fujiwara, K.; Takahashi, K.; Yoshioka, Y.; Ochiya, T.; Podyma-Inoue, K.A.; Watabe, T. Transforming growth factor-β-induced secretion of extracellular vesicles from oral cancer cells evokes endothelial barrier instability via endothelial-mesenchymal transition. Inflamm. Regen., 2022, 42(1), 38.
[http://dx.doi.org/10.1186/s41232-022-00225-7] [PMID: 36057626]
[54]
Ekström, E.J.; Bergenfelz, C.; von Bülow, V.; Serifler, F.; Carlemalm, E.; Jönsson, G.; Andersson, T.; Leandersson, K. WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Mol. Cancer, 2014, 13(1), 88.
[http://dx.doi.org/10.1186/1476-4598-13-88] [PMID: 24766647]
[55]
Zheng, H.; Chen, C.; Luo, Y.; Yu, M.; He, W.; An, M.; Gao, B.; Kong, Y.; Ya, Y.; Lin, Y.; Li, Y.; Xie, K.; Huang, J.; Lin, T. Tumor-derived exosomal BCYRN1 activates WNT5A/VEGF-C/VEGFR3 feedforward loop to drive lymphatic metastasis of bladder cancer. Clin. Transl. Med., 2021, 11(7), e497.
[http://dx.doi.org/10.1002/ctm2.497] [PMID: 34323412]
[56]
Liu, T.; Li, P.; Li, J.; Qi, Q.; Sun, Z.; Shi, S.; Xie, Y.; Liu, S.; Wang, Y.; Du, L.; Wang, C. Exosomal and intracellular miR-320b promotes lymphatic metastasis in esophageal squamous cell carcinoma. Mol. Ther. Oncolytics, 2021, 23, 163-180.
[http://dx.doi.org/10.1016/j.omto.2021.09.003] [PMID: 34729394]
[57]
Godlewski, J.; Ferrer-Luna, R.; Rooj, A.K.; Mineo, M.; Ricklefs, F.; Takeda, Y.S.; Nowicki, M.O.; Salińska, E.; Nakano, I.; Lee, H.; Weissleder, R.; Beroukhim, R.; Chiocca, E.A.; Bronisz, A. MicroRNA signatures and molecular subtypes of glioblastoma: The role of extracellular transfer. Stem Cell Reports, 2017, 8(6), 1497-1505.
[http://dx.doi.org/10.1016/j.stemcr.2017.04.024] [PMID: 28528698]
[58]
Wang, S.; Zhang, Z.; Gao, Q. Transfer of microRNA-25 by colorectal cancer cell-derived extracellular vesicles facilitates colorectal cancer development and metastasis. Mol. Ther. Nucleic Acids, 2021, 23, 552-564.
[http://dx.doi.org/10.1016/j.omtn.2020.11.018] [PMID: 33510943]
[59]
Rodrigues, G.; Hoshino, A.; Kenific, C.M.; Matei, I.R.; Steiner, L.; Freitas, D.; Kim, H.S.; Oxley, P.R.; Scandariato, I.; Casanova-Salas, I.; Dai, J.; Badwe, C.R.; Gril, B.; Tešić Mark, M.; Dill, B.D.; Molina, H.; Zhang, H.; Benito-Martin, A.; Bojmar, L.; Ararso, Y.; Offer, K.; LaPlant, Q.; Buehring, W.; Wang, H.; Jiang, X.; Lu, T.M.; Liu, Y.; Sabari, J.K.; Shin, S.J.; Narula, N.; Ginter, P.S.; Rajasekhar, V.K.; Healey, J.H.; Meylan, E.; Costa-Silva, B.; Wang, S.E.; Rafii, S.; Altorki, N.K.; Rudin, C.M.; Jones, D.R.; Steeg, P.S.; Peinado, H.; Ghajar, C.M.; Bromberg, J.; de Sousa, M.; Pisapia, D.; Lyden, D. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat. Cell Biol., 2019, 21(11), 1403-1412.
[http://dx.doi.org/10.1038/s41556-019-0404-4] [PMID: 31685984]
[60]
Chatterjee, S.; Chatterjee, A.; Jana, S.; Dey, S.; Roy, H.; Das, M.K.; Alam, J.; Adhikary, A.; Chowdhury, A.; Biswas, A.; Manna, D.; Bhattacharyya, A. Transforming growth factor beta orchestrates PD-L1 enrichment in tumor-derived exosomes and mediates CD8+ T-cell dysfunction regulating early phosphorylation of TCR signalome in breast cancer. Carcinogenesis, 2021, 42(1), 38-47.
[http://dx.doi.org/10.1093/carcin/bgaa092] [PMID: 32832992]
[61]
Liu, J.; Wu, S.; Zheng, X.; Zheng, P.; Fu, Y.; Wu, C.; Lu, B.; Ju, J.; Jiang, J. Immune suppressed tumor microenvironment by exosomes derived from gastric cancer cells via modulating immune functions. Sci. Rep., 2020, 10(1), 14749.
[http://dx.doi.org/10.1038/s41598-020-71573-y] [PMID: 32901082]
[62]
Mortezaee, K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci., 2021, 277, 119627.
[http://dx.doi.org/10.1016/j.lfs.2021.119627] [PMID: 34004256]
[63]
Chen, J.; Song, Y.; Miao, F.; Chen, G.; Zhu, Y.; Wu, N.; Pang, L.; Chen, Z.; Chen, X. PDL1-positive exosomes suppress antitumor immunity by inducing tumor-specific CD8 + T cell exhaustion during metastasis. Cancer Sci., 2021, 112(9), 3437-3454.
[http://dx.doi.org/10.1111/cas.15033] [PMID: 34152672]
[64]
Farhood, B.; Najafi, M.; Salehi, E.; Hashemi Goradel, N.; Nashtaei, M.S.; Khanlarkhani, N.; Mortezaee, K. Disruption of the redox balance with either oxidative or anti-oxidative overloading as a promising target for cancer therapy. J. Cell. Biochem., 2019, 120(1), 71-76.
[http://dx.doi.org/10.1002/jcb.27594] [PMID: 30203529]
[65]
Yen, E-Y.; Miaw, S.C.; Yu, J.S.; Lai, I.R. Exosomal TGF-β1 is correlated with lymphatic metastasis of gastric cancers. Am. J. Cancer Res., 2017, 7(11), 2199-2208.
[PMID: 29218244]
[66]
Feng, L.; Weng, J.; Yao, C.; Wang, R.; Wang, N.; Zhang, Y.; Tanaka, Y.; Su, L. Extracellular vesicles derived from SIPA1high breast cancer cells enhance macrophage infiltration and cancer metastasis through Myosin-9. Biology, 2022, 11(4), 543.
[http://dx.doi.org/10.3390/biology11040543] [PMID: 35453742]
[67]
Wang, F.; Niu, Y.; Chen, K.; Yuan, X.; Qin, Y.; Zheng, F.; Cui, Z.; Lu, W.; Wu, Y.; Xia, D. Extracellular Vesicle–Packaged circATP2B4 mediates M2 macrophage polarization via miR-532-3p/SREBF1 axis to promote epithelial ovarian cancer metastasis. Cancer Immunol. Res., 2023, 11(2), 199-216.
[http://dx.doi.org/10.1158/2326-6066.CIR-22-0410] [PMID: 36512324]
[68]
Chen, J.; Zhang, K.; Zhi, Y.; Wu, Y.; Chen, B.; Bai, J.; Wang, X. Tumor-derived exosomal miR-19b-3p facilitates M2 macrophage polarization and exosomal LINC00273 secretion to promote lung adenocarcinoma metastasis via Hippo pathway. Clin. Transl. Med., 2021, 11(9), e478.
[http://dx.doi.org/10.1002/ctm2.478] [PMID: 34586722]
[69]
Wei, K.; Ma, Z.; Yang, F.; Zhao, X.; Jiang, W.; Pan, C.; Li, Z.; Pan, X.; He, Z.; Xu, J.; Wu, W.; Xia, Y.; Chen, L. M2 macrophage-derived exosomes promote lung adenocarcinoma progression by delivering miR-942. Cancer Lett., 2022, 526, 205-216.
[http://dx.doi.org/10.1016/j.canlet.2021.10.045] [PMID: 34838826]
[70]
Liu, W.; Long, Q.; Zhang, W.; Zeng, D.; Hu, B.; Liu, S.; Chen, L. miRNA-221-3p derived from M2-polarized tumor-associated macrophage exosomes aggravates the growth and metastasis of osteosarcoma through SOCS3/JAK2/STAT3 axis. Aging, 2021, 13(15), 19760-19775.
[http://dx.doi.org/10.18632/aging.203388] [PMID: 34388111]
[71]
Rabe, D.C.; Walker, N.D.; Rustandy, F.D.; Wallace, J.; Lee, J.; Stott, S.L.; Rosner, M.R. Tumor extracellular vesicles regulate macrophage-driven metastasis through CCL5. Cancers, 2021, 13(14), 3459.
[http://dx.doi.org/10.3390/cancers13143459] [PMID: 34298673]
[72]
Li, H.; Yang, P.; Wang, J.; Zhang, J.; Ma, Q.; Jiang, Y.; Wu, Y.; Han, T.; Xiang, D. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. J. Hematol. Oncol., 2022, 15(1), 2.
[http://dx.doi.org/10.1186/s13045-021-01223-x] [PMID: 34991659]
[73]
Friedmann Angeli, J.P.; Schneider, M.; Proneth, B.; Tyurina, Y.Y.; Tyurin, V.A.; Hammond, V.J.; Herbach, N.; Aichler, M.; Walch, A.; Eggenhofer, E.; Basavarajappa, D.; Rådmark, O.; Kobayashi, S.; Seibt, T.; Beck, H.; Neff, F.; Esposito, I.; Wanke, R.; Förster, H.; Yefremova, O.; Heinrichmeyer, M.; Bornkamm, G.W.; Geissler, E.K.; Thomas, S.B.; Stockwell, B.R.; O’Donnell, V.B.; Kagan, V.E.; Schick, J.A.; Conrad, M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol., 2014, 16(12), 1180-1191.
[http://dx.doi.org/10.1038/ncb3064] [PMID: 25402683]
[74]
Gonda, A.; Zhao, N.; Shah, J.V.; Siebert, J.N.; Gunda, S.; Inan, B.; Kwon, M.; Libutti, S.K.; Moghe, P.V.; Francis, N.L.; Ganapathy, V. Extracellular vesicle molecular signatures characterize metastatic dynamicity in ovarian cancer. Front. Oncol., 2021, 11, 718408.
[http://dx.doi.org/10.3389/fonc.2021.718408] [PMID: 34868914]
[75]
Costa-Silva, B.; Aiello, N.M.; Ocean, A.J.; Singh, S.; Zhang, H.; Thakur, B.K.; Becker, A.; Hoshino, A.; Mark, M.T.; Molina, H.; Xiang, J.; Zhang, T.; Theilen, T.M.; García-Santos, G.; Williams, C.; Ararso, Y.; Huang, Y.; Rodrigues, G.; Shen, T.L.; Labori, K.J.; Lothe, I.M.B.; Kure, E.H.; Hernandez, J.; Doussot, A.; Ebbesen, S.H.; Grandgenett, P.M.; Hollingsworth, M.A.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Schwartz, R.E.; Matei, I.; Peinado, H.; Stanger, B.Z.; Bromberg, J.; Lyden, D. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol., 2015, 17(6), 816-826.
[http://dx.doi.org/10.1038/ncb3169] [PMID: 25985394]
[76]
Gao, L.; Nie, X.; Gou, R.; Hu, Y.; Dong, H.; Li, X.; Lin, B. Exosomal ANXA2 derived from ovarian cancer cells regulates epithelial-mesenchymal plasticity of human peritoneal mesothelial cells. J. Cell. Mol. Med., 2021, 25(23), 10916-10929.
[http://dx.doi.org/10.1111/jcmm.16983] [PMID: 34725902]
[77]
Yang, X.; Zhang, Y.; Zhang, Y.; Li, H.; Li, L.; Wu, Y.; Chen, X.; Qiu, L.; Han, J.; Wang, Z. Colorectal cancer-derived extracellular vesicles induce liver premetastatic immunosuppressive niche formation to promote tumor early liver metastasis. Signal Transduct. Target. Ther., 2023, 8(1), 102.
[http://dx.doi.org/10.1038/s41392-023-01384-w] [PMID: 36878919]
[78]
Brassart, B.; Da Silva, J.; Donet, M.; Seurat, E.; Hague, F.; Terryn, C.; Velard, F.; Michel, J.; Ouadid-Ahidouch, H.; Monboisse, J.C.; Hinek, A.; Maquart, F.X.; Ramont, L.; Brassart-Pasco, S. Tumour cell blebbing and extracellular vesicle shedding: Key role of matrikines and ribosomal protein SA. Br. J. Cancer, 2019, 120(4), 453-465.
[http://dx.doi.org/10.1038/s41416-019-0382-0] [PMID: 30739912]
[79]
Zhang, P.; Wu, X.; Gardashova, G.; Yang, Y.; Zhang, Y.; Xu, L.; Zeng, Y. Molecular and functional extracellular vesicle analysis using nanopatterned microchips monitors tumor progression and metastasis. Sci. Transl. Med., 2020, 12(547), eaaz2878.
[http://dx.doi.org/10.1126/scitranslmed.aaz2878] [PMID: 32522804]
[80]
Zhao, A.; Zhao, Z.; Liu, W.; Cui, X.; Wang, N.; Wang, Y.; Wang, Y.; Sun, L.; Xue, H.; Wu, L.; Cui, S.; Yang, Y.; Bai, R. Carcinoma-associated fibroblasts promote the proliferation and metastasis of osteosarcoma by transferring exosomal LncRNA SNHG17. Am. J. Transl. Res., 2021, 13(9), 10094-10111.
[PMID: 34650683]
[81]
Cai, Z.; Yang, F.; Yu, L.; Yu, Z.; Jiang, L.; Wang, Q.; Yang, Y.; Wang, L.; Cao, X.; Wang, J. Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J. Immunol., 2012, 188(12), 5954-5961.
[http://dx.doi.org/10.4049/jimmunol.1103466] [PMID: 22573809]
[82]
Shinde, A.; Paez, J.S.; Libring, S.; Hopkins, K.; Solorio, L.; Wendt, M.K. Transglutaminase-2 facilitates extracellular vesicle-mediated establishment of the metastatic niche. Oncogenesis, 2020, 9(2), 16.
[http://dx.doi.org/10.1038/s41389-020-0204-5] [PMID: 32054828]
[83]
Wen, S.W.; Sceneay, J.; Lima, L.G.; Wong, C.S.F.; Becker, M.; Krumeich, S.; Lobb, R.J.; Castillo, V.; Wong, K.N.; Ellis, S.; Parker, B.S.; Möller, A. The biodistribution and immune suppressive effects of breast cancer–derived exosomes. Cancer Res., 2016, 76(23), 6816-6827.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0868] [PMID: 27760789]
[84]
Jiang, C.; Li, X.; Sun, B.; Zhang, N.; Li, J.; Yue, S.; Hu, X. Extracellular vesicles promotes liver metastasis of lung cancer by ALAHM increasing hepatocellular secretion of HGF. iScience, 2022, 25(3), 103984.
[http://dx.doi.org/10.1016/j.isci.2022.103984] [PMID: 35281743]
[85]
Zhang, C.; Wang, X.Y.; Zhang, P.; He, T.C.; Han, J.H.; Zhang, R.; Lin, J.; Fan, J.; Lu, L.; Zhu, W.W.; Jia, H.L.; Zhang, J.B.; Chen, J.H. Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis., 2022, 13(1), 57.
[http://dx.doi.org/10.1038/s41419-022-04506-4] [PMID: 35027547]
[86]
Zou, Z.; Dai, R.; Deng, N.; Su, W.; Liu, P. Exosomal miR-1275 secreted by prostate cancer cells modulates osteoblast proliferation and activity by targeting the SIRT2/RUNX2 cascade. Cell Transplant., 2021, 30
[http://dx.doi.org/10.1177/09636897211052977] [PMID: 34689576]
[87]
Probert, C.; Dottorini, T.; Speakman, A.; Hunt, S.; Nafee, T.; Fazeli, A.; Wood, S.; Brown, J.E.; James, V. Communication of prostate cancer cells with bone cells via extracellular vesicle RNA; A potential mechanism of metastasis. Oncogene, 2019, 38(10), 1751-1763.
[http://dx.doi.org/10.1038/s41388-018-0540-5] [PMID: 30353168]
[88]
Rode, M.P.; Silva, A.H.; Cisilotto, J.; Rosolen, D.; Creczynski-Pasa, T.B. miR-425-5p as an exosomal biomarker for metastatic prostate cancer. Cell. Signal., 2021, 87, 110113.
[http://dx.doi.org/10.1016/j.cellsig.2021.110113] [PMID: 34371055]
[89]
Mo, C.; Huang, B.; Zhuang, J.; Jiang, S.; Guo, S.; Mao, X. LncRNA nuclear-enriched abundant transcript 1 shuttled by prostate cancer cells-secreted exosomes initiates osteoblastic phenotypes in the bone metastatic microenvironment via miR-205-5p/runt-related transcription factor 2/splicing factor proline- and glutamine-rich/polypyrimidine tract-binding protein 2 axis. Clin. Transl. Med., 2021, 11(8), e493.
[http://dx.doi.org/10.1002/ctm2.493] [PMID: 34459124]
[90]
Li, X-Q. Extracellular vesicle-packaged CDH11 and ITGA5 induce the premetastatic niche for bone colonization of breast cancer cells. Cancer Res., 2022, 82(8), 1560-1574.
[91]
Jianjiao, N. Tumour-derived exosomal lncRNA-SOX2OT promotes bone metastasis of non-small cell lung cancer by targeting the miRNA-194-5p/RAC1 signalling axis in osteoclasts. Cell Death Dis., 2021, 12(7)
[92]
Wu, K.; Feng, J.; Lyu, F.; Xing, F.; Sharma, S.; Liu, Y.; Wu, S.Y.; Zhao, D.; Tyagi, A.; Deshpande, R.P.; Pei, X.; Ruiz, M.G.; Takahashi, H.; Tsuzuki, S.; Kimura, T.; Mo, Y.; Shiozawa, Y.; Singh, R.; Watabe, K. Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer. Nat. Commun., 2021, 12(1), 5196.
[http://dx.doi.org/10.1038/s41467-021-25473-y] [PMID: 34465793]
[93]
Li, C.H.; Palanisamy, K.; Li, X.; Yu, S.H.; Wang, I.K.; Li, C.Y.; Sun, K.T. Exosomal tumor necrosis factor-α from hepatocellular cancer cells (Huh-7) promote osteoclast differentiation. J. Cell. Biochem., 2021, 122(11), 1749-1760.
[http://dx.doi.org/10.1002/jcb.30127] [PMID: 34383347]
[94]
Wang, M.; Zhao, M.; Guo, Q.; Lou, J.; Wang, L. Non-small cell lung cancer cell–derived exosomal miR-17-5p promotes osteoclast differentiation by targeting PTEN. Exp. Cell Res., 2021, 408(1), 112834.
[http://dx.doi.org/10.1016/j.yexcr.2021.112834] [PMID: 34537206]
[95]
Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; Singh, S.; Williams, C.; Soplop, N.; Uryu, K.; Pharmer, L.; King, T.; Bojmar, L.; Davies, A.E.; Ararso, Y.; Zhang, T.; Zhang, H.; Hernandez, J.; Weiss, J.M.; Dumont-Cole, V.D.; Kramer, K.; Wexler, L.H.; Narendran, A.; Schwartz, G.K.; Healey, J.H.; Sandstrom, P.; Jørgen Labori, K.; Kure, E.H.; Grandgenett, P.M.; Hollingsworth, M.A.; de Sousa, M.; Kaur, S.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Brady, M.S.; Fodstad, O.; Muller, V.; Pantel, K.; Minn, A.J.; Bissell, M.J.; Garcia, B.A.; Kang, Y.; Rajasekhar, V.K.; Ghajar, C.M.; Matei, I.; Peinado, H.; Bromberg, J.; Lyden, D. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578), 329-335.
[http://dx.doi.org/10.1038/nature15756] [PMID: 26524530]
[96]
Koide, R.; Hirane, N.; Kambe, D.; Yokoi, Y.; Otaki, M.; Nishimura, S.I. Antiadhesive nanosome elicits role of glycocalyx of tumor cell-derived exosomes in the organotropic cancer metastasis. Biomaterials, 2022, 280, 121314.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121314] [PMID: 34906850]
[97]
Najafi, S.; Majidpoor, J.; Mortezaee, K. Extracellular vesicle–based drug delivery in cancer immunotherapy. Drug Deliv. Transl. Res., 2023, 13(11), 2790-2806.
[http://dx.doi.org/10.1007/s13346-023-01370-3] [PMID: 37261603]
[98]
Tian, W.; Yang, X.; Yang, H.; Lv, M.; Sun, X.; Zhou, B. Exosomal miR-338-3p suppresses non-small-cell lung cancer cells metastasis by inhibiting CHL1 through the MAPK signaling pathway. Cell Death Dis., 2021, 12(11), 1030.
[http://dx.doi.org/10.1038/s41419-021-04314-2] [PMID: 34718336]
[99]
Wen, H.; Liu, Z.; Tang, J.; Bu, L. MiR-185-5p targets RAB35 gene to regulate tumor cell-derived exosomes-mediated proliferation, migration and invasion of non-small cell lung cancer cells. Aging, 2021, 13(17), 21435-21450.
[http://dx.doi.org/10.18632/aging.203483] [PMID: 34500436]
[100]
Lopatina, T.; Grange, C.; Cavallari, C.; Navarro-Tableros, V.; Lombardo, G.; Rosso, A.; Cedrino, M.; Pomatto, M.A.C.; Koni, M.; Veneziano, F.; Castellano, I.; Camussi, G.; Brizzi, M.F. Targeting IL-3Rα on tumor-derived endothelial cells blunts metastatic spread of triple-negative breast cancer via extracellular vesicle reprogramming. Oncogenesis, 2020, 9(10), 90.
[http://dx.doi.org/10.1038/s41389-020-00274-y] [PMID: 33040091]
[101]
Wei, L.; Wang, G.; Yang, C.; Zhang, Y.; Chen, Y.; Zhong, C.; Li, Q. MicroRNA-550a-3-5p controls the brain metastasis of lung cancer by directly targeting YAP1. Cancer Cell Int., 2021, 21(1), 491.
[http://dx.doi.org/10.1186/s12935-021-02197-z] [PMID: 34530822]
[102]
Wang, M.; Cai, W.; Yang, A.J.; Wang, C.Y.; Zhang, C.L.; Liu, W.; Xie, X.F.; Gong, Y.Y.; Zhao, Y.Y.; Wu, W.C.; Zhou, Q.; Zhao, C.Y.; Dong, J.F.; Li, M. Gastric cancer cell-derived extracellular vesicles disrupt endothelial integrity and promote metastasis. Cancer Lett., 2022, 545, 215827.
[http://dx.doi.org/10.1016/j.canlet.2022.215827] [PMID: 35842018]
[103]
Wang, S.; Li, F.; Ye, T.; Wang, J.; Lyu, C.; Qing, S.; Ding, Z.; Gao, X.; Jia, R.; Yu, D.; Ren, J.; Wei, W.; Ma, G. Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci. Transl. Med., 2021, 13(615), eabb6981.
[http://dx.doi.org/10.1126/scitranslmed.abb6981] [PMID: 34644149]
[104]
Tang, K.; Zhang, Y.; Zhang, H.; Xu, P.; Liu, J.; Ma, J.; Lv, M.; Li, D.; Katirai, F.; Shen, G.X.; Zhang, G.; Feng, Z.H.; Ye, D.; Huang, B. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat. Commun., 2012, 3(1), 1282.
[http://dx.doi.org/10.1038/ncomms2282] [PMID: 23250412]
[105]
Hu, S.; Ma, J.; Su, C.; Chen, Y.; Shu, Y.; Qi, Z.; Zhang, B.; Shi, G.; Zhang, Y.; Zhang, Y.; Huang, A.; Kuang, Y.; Cheng, P. Engineered exosome-like nanovesicles suppress tumor growth by reprogramming tumor microenvironment and promoting tumor ferroptosis. Acta Biomater., 2021, 135, 567-581.
[http://dx.doi.org/10.1016/j.actbio.2021.09.003] [PMID: 34506976]
[106]
Najafi, S.; Mortezaee, K. Advances in dendritic cell vaccination therapy of cancer. Biomed. Pharmacother., 2023, 164, 114954.
[http://dx.doi.org/10.1016/j.biopha.2023.114954] [PMID: 37257227]
[107]
Zhang, D.X.; Dang, X.T.T.; Vu, L.T.; Lim, C.M.H.; Yeo, E.Y.M.; Lam, B.W.S.; Leong, S.M.; Omar, N.; Putti, T.C.; Yeh, Y.C.; Ma, V.; Luo, J.Y.; Cho, W.C.; Chen, G.; Lee, V.K.M.; Grimson, A.; Le, M.T.N. αvβ1 integrin is enriched in extracellular vesicles of metastatic breast cancer cells: A mechanism mediated by galectin-3. J. Extracell. Vesicles, 2022, 11(8), e12234.
[http://dx.doi.org/10.1002/jev2.12234] [PMID: 35923105]
[108]
Peng, B.; Nguyen, T.M.; Jayasinghe, M.K.; Gao, C.; Pham, T.T.; Vu, L.T.; Yeo, E.Y.M.; Yap, G.; Wang, L.; Goh, B.C.; Tam, W.L.; Luo, D.; Le, M.T.N. Robust delivery of RIG-I agonists using extracellular vesicles for anti-cancer immunotherapy. J. Extracell. Vesicles, 2022, 11(4), e12187.
[http://dx.doi.org/10.1002/jev2.12187] [PMID: 35430766]
[109]
Pan, R.; He, T.; Zhang, K.; Zhu, L.; Lin, J.; Chen, P.; Liu, X.; Huang, H.; Zhou, D.; Li, W.; Yang, S.; Ye, G. Tumor-targeting extracellular vesicles loaded with siS100A4 for suppressing postoperative breast cancer metastasis. Cell. Mol. Bioeng., 2023, 16(2), 117-125.
[http://dx.doi.org/10.1007/s12195-022-00757-5] [PMID: 37096069]