Association of COVID with Mycosis in General

Article ID: e190124225866 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: The COVID-19 pandemic caused by SARS-CoV-2 is a respiratory disease which created havoc worldwide, was accompanied by another peculiar, otherwise rare, secondary fungal infection Mucormycosis which was observed at exceptionally high incidence in India during the second wave of COVID-19. The article explores possible links between the two infectious diseases to understand a higher-than-normal occurrence of Mucormycosis in COVID-19 patients. Coronavirus enters the patients through ACE-2 and many other receptors like- NRP-1, TfR, CD-126, and CD-26. Virus bind to cells possessing these receptors and affect their proper functioning, disturbing homeostatic metabolism and resulting in conditions like hyperglycemia, Diabetic Ketoacidosis (DKA), low serum pH, iron overload, anemia, hypoxia, and immunosuppression as explained in the article. All these outcomes provide a very supportive environment for the attack and spread of Mucormycosis fungi. The major receptor for Mucormycosis in humans is the GRP-78. Its expression is upregulated by coronavirus entry and by hyperferritinemia, hyperglycemia, and acidic conditions prevalent in COVID patients, thus providing an easy entry for the fungal species. Upregulation of GRP-78 furthermore damages pancreatic β-cells and intensifies hyperglycemia, showing quite a synergic relationship. Inordinate rise of Mucormycosis cases in India might be explained by facts like- India possessing a large proportion of diabetic patients, emergence of a very deadly strain of coronavirus- Delta strain, higher doses of steroids and antibodies used to treat patients against this strain, overburdened health care services, sudden much higher need of oxygen supply and use of industrial oxygen could explain the Mucormycosis outbreak observed in India during the second wave of COVID-19.

Objective: The present review discusses the functional interdependence between COVID-19 and Mucormycosis and summarizes the possible synergic links between COVID and Mucormycosis.

Conclusion: The receptors and metabolic pathways affected by COVID-19 result in severe physiological conditions- hyperglycemia, DKA, anemia, iron overload, immunosuppression, and hypoxia. All these conditions not only increase the expression of GRP-78, the major receptor for entry of fungi but also play a crucial role in providing quality media for Mucormycosis fungus to establish and grow. Hence explains the fungal epidemic observed in India during the second wave of COVID-19 in India.

Graphical Abstract

[1]
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005 ] [PMID: 32257431]
[2]
Available from: https://covid19.who.int/
[3]
Zhang D, Meyron-Holtz E, Rouault TA. Renal iron metabolism: Transferrin iron delivery and the role of iron regulatory proteins. J Am Soc Nephrol 2007; 18(2): 401-6.
[http://dx.doi.org/10.1681/ASN.2006080908] [PMID: 17229905]
[4]
Novelli G, Colona V, Pandolfi P. A focus on the spread of the delta variant of SARS-CoV-2 in India. Indian J Med Res 2021; 153(5): 537-41.
[http://dx.doi.org/10.4103/ijmr.ijmr_1353_21] [PMID: 34259195]
[5]
Karuna T, Garg R, Kumar S, et al. Clinico–epidemio-microbiological exploratory review among COVID-19 patients with secondary infection in Central India. Infect Drug Resist 2022; 15: 1667-76.
[http://dx.doi.org/10.2147/IDR.S355742] [PMID: 35422635]
[6]
García-Carnero LC, Mora-Montes HM. Mucormycosis and COVID-19-associated mucormycosis: Insights of a deadly but neglected mycosis. J Fungi 2022; 8(5): 445.
[http://dx.doi.org/10.3390/jof8050445] [PMID: 35628701]
[7]
Rao VUS, Arakeri G, Madikeri G, Shah A, Oeppen RS, Brennan PA. COVID-19 associated mucormycosis (CAM) in India: A formidable challenge. Br J Oral Maxillofac Surg 2021; 59(9): 1095-8.
[http://dx.doi.org/10.1016/j.bjoms.2021.06.013 ] [PMID: 34507870]
[8]
Ravindra K, Ahlawat A. Five probable factors responsible for the COVID-associated mucormycosis outbreak in India. Int J Infect Dis 2021; 112: 278-80.
[http://dx.doi.org/10.1016/j.ijid.2021.09.057] [PMID: 34592439]
[9]
Perlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol 2009; 7(6): 439-50.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[10]
Payne S. Family coronaviridae. Viruses 2017; 149.
[11]
Abdelrahman Z, Li M, Wang X. Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza a respiratory viruses. Front Immunol 2020; 11: 552909.
[http://dx.doi.org/10.3389/fimmu.2020.552909] [PMID: 33013925]
[12]
Jacob Machado D, Scott R, Guirales S, Janies DA. Fundamental evolution of all Orthocoronavirinae including three deadly lineages descendent from Chiroptera-hosted coronaviruses: SARS-CoV, MERS-CoV and SARS-CoV-2. Cladistics 2021; 37(5): 461-88.
[http://dx.doi.org/10.1111/cla.12454] [PMID: 34570933]
[13]
Boopathi S, Poma AB, Kolandaivel P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn 2021; 39(9): 3409-18.
[PMID: 32306836]
[14]
Satarker S, Nampoothiri M. Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch Med Res 2020; 51(6): 482-91.
[http://dx.doi.org/10.1016/j.arcmed.2020.05.012] [PMID: 32493627]
[15]
Rastogi M, Pandey N, Shukla A, Singh SK. SARS coronavirus 2: From genome to infectome. Respir Res 2020; 21(1): 318.
[http://dx.doi.org/10.1186/s12931-020-01581-z] [PMID: 33261606]
[16]
Li B, Deng A, Li K, et al. Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant. Nat Commun 2022; 13(1): 460.
[http://dx.doi.org/10.1038/s41467-022-28089-y] [PMID: 35075154]
[17]
Pasrija R, Naime M. The deregulated immune reaction and cytokines release storm (CRS) in COVID-19 disease. Int Immunopharmacol 2021; 90: 107225.
[http://dx.doi.org/10.1016/j.intimp.2020.107225] [PMID: 33302033]
[18]
Majila K, Lal S, Ahmad MF. COVID-19 pandemic: An overview of its origin, current status, and ongoing clinical trials. Coronaviruses 2022; 3(3): e130921191206.
[http://dx.doi.org/10.2174/2666796702666210208143656]
[19]
Cherian S, Potdar V, Jadhav S, et al. SARS-CoV-2 spike mutations, L452R, T478K, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. Microorganisms 2021; 9(7): 1542.
[http://dx.doi.org/10.3390/microorganisms9071542 ] [PMID: 34361977]
[20]
Shiehzadegan S, Alaghemand N, Fox M, Venketaraman V. Analysis of the delta variant B.1.617.2 COVID-19. Clin Pract 2021; 11(4): 778-84.
[http://dx.doi.org/10.3390/clinpract11040093] [PMID: 34698149]
[21]
Tian D, Sun Y, Zhou J, Ye Q. The global epidemic of the SARS-CoV-2 delta variant, key spike mutations and immune escape. Front Immunol 2021; 12: 751778.
[http://dx.doi.org/10.3389/fimmu.2021.751778] [PMID: 34917076]
[22]
Joshi N, Tyagi A, Nigam S. Molecular level dissection of critical spike mutations in SARS-CoV-2 variants of concern (VOCs): A simplified review. ChemistrySelect 2021; 6(31): 7981-98.
[http://dx.doi.org/10.1002/slct.202102074] [PMID: 34541298]
[23]
Teyssou E, Delagrèverie H, Visseaux B, et al. The Delta SARS-CoV-2 variant has a higher viral load than the beta and the historical variants in nasopharyngeal samples from newly diagnosed COVID-19 patients. J Infect 2021; 83(4): e1-3.
[http://dx.doi.org/10.1016/j.jinf.2021.08.027] [PMID: 34419559]
[24]
Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of COVID-19 vaccines against the B. 1.617. 2 (Delta) variant. N Engl J Med 2021; 385(7): 585-94.
[http://dx.doi.org/10.1056/NEJMoa2108891] [PMID: 34289274]
[25]
Bian L, Gao Q, Gao F, et al. Impact of the Delta variant on vaccine efficacy and response strategies. Expert Rev Vaccines 2021; 20(10): 1201-9.
[http://dx.doi.org/10.1080/14760584.2021.1976153 ] [PMID: 34488546]
[26]
Luo CH, Morris CP, Sachithanandham J, et al. Infection with the SARS-CoV-2 delta variant is associated with higher infectious virus loads compared to the alpha variant in both unvaccinated and vaccinated individuals. MedRxiv 2021.
[http://dx.doi.org/10.1101/2021.08.15.21262077]
[27]
Liu Y, Rocklöv J. The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. J Travel Med 2021; 28(7): taab124.
[http://dx.doi.org/10.1093/jtm/taab124] [PMID: 34369565]
[28]
Modes ME, Directo MP, Melgar M, et al. Clinical characteristics and outcomes among adults hospitalized with laboratory-confirmed SARS-CoV-2 infection during periods of B. 1.617. 2 (Delta) and B. 1.1. 529 (Omicron) variant predominance-one hospital, California, July 15–September 23, 2021, and December 21, 2021–January 27, 2022. MMWR Morb Mortal Wkly Rep 2022; 71(6): 217-23.
[http://dx.doi.org/10.15585/mmwr.mm7106e2] [PMID: 35143466]
[29]
Dragoni F, Schiaroli E, Micheli V, et al. Impact of SARS-CoV-2 omicron BA.1 and delta AY.4.2 variants on the neutralization by sera of patients treated with different authorized monoclonal antibodies. Clin Microbiol Infect 2022; 28(7): 1037-9.
[http://dx.doi.org/10.1016/j.cmi.2022.03.005] [PMID: 35304279]
[30]
Ibrahim IM, Abdelmalek DH, Elfiky AA. GRP78: A cell’s response to stress. Life Sci 2019; 226: 156-63.
[http://dx.doi.org/10.1016/j.lfs.2019.04.022] [PMID: 30978349]
[31]
JY Ong J CY Chan A, Sharma AK, Sharma S, Sharma VK. The mucormycosis epidemic within COVID-19 pandemic-lessons from India. Brain Behav Immun 2021; 97: 4-5.
[http://dx.doi.org/10.1016/j.bbi.2021.08.005] [PMID: 34371133]
[32]
Gokulshankar S, Mohanty BK. COVID-19 and black fungus. Asian J Med Health Sci 2021; 4(1): 138.
[33]
Mahalaxmi I, Jayaramayya K, Venkatesan D, et al. Mucormycosis: An opportunistic pathogen during COVID-19. Environ Res 2021; 201: 111643.
[http://dx.doi.org/10.1016/j.envres.2021.111643] [PMID: 34237335]
[34]
Sen M, Honavar SG, Bansal R, et al. Epidemiology, clinical profile, management, and outcome of COVID-19-associated rhino-orbital-cerebral mucormycosis in 2826 patients in India-Collaborative OPAI-IJO Study on Mucormycosis in COVID-19 (COSMIC), Report 1. Indian J Ophthalmol 2021; 69(7): 1670-92.
[http://dx.doi.org/10.4103/ijo.IJO_1565_21] [PMID: 34156034]
[35]
Singh AK, Singh R, Joshi SR, Misra A. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India. Diabetes Metab Syndr 2021; 15(4): 102146.
[http://dx.doi.org/10.1016/j.dsx.2021.05.019] [PMID: 34192610]
[37]
Malabadi RB, Kolkar KP, Meti NT, Chalannavar RK. Outbreak of Coronavirus (SARS-CoV-2) Delta variant (B.1.617.2) and Delta Plus (AY. 1) with fungal infections, mucormycosis: Herbal medicine treatment. Int J Innov Sci Res 2021; 8(6): 59-70.
[http://dx.doi.org/10.51244/IJRSI.2021.8603]
[38]
Kulkarni R, Pujari SS, Gupta D, et al. Cerebrovascular involvement in mucormycosis in COVID-19 pandemic. J Stroke Cerebrovasc Dis 2022; 31(2): 106231.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.106231] [PMID: 34890962]
[39]
Bhandari J, Thada PK, Nagalli S. Rhinocerebral mucormycosis. In: StatPearls. StatPearls Publishing: Treasure Island, (FL) 2023.
[40]
Elango D, Palanisamy PR. COVID-19 associated mucormycosis: A review. J Family Med Prim Care 2022; 11(2): 418-23.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_1186_21] [PMID: 35360784]
[41]
Mayi BS, Leibowitz JA, Woods AT, Ammon KA, Liu AE, Raja A. The role of neuropilin-1 in COVID-19. PLoS Pathog 2021; 17(1): e1009153.
[http://dx.doi.org/10.1371/journal.ppat.1009153] [PMID: 33395426]
[42]
Tang X, Yang M, Duan Z, et al. Transferrin receptor is another receptor for SARS-CoV-2 entry. BioRxiv 2020.
[http://dx.doi.org/10.1101/2020.10.23.350348]
[43]
Wu CT, Lidsky PV, Xiao Y, et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab 2021; 33(8): 1565-1576.e5.
[http://dx.doi.org/10.1016/j.cmet.2021.05.013] [PMID: 34081912]
[44]
Shirakawa J. Pancreatic β-cell fate in subjects with COVID-19. J Diabetes Investig 2021; 12(12): 2126-8.
[http://dx.doi.org/10.1111/jdi.13671] [PMID: 34529355]
[45]
Abramczyk U. Nowaczyński M, Słomczyński A, Wojnicz P, Zatyka P, Kuzan A. Consequences of COVID-19 for the Pancreas. Int J Mol Sci 2022; 23(2): 864.
[http://dx.doi.org/10.3390/ijms23020864] [PMID: 35055050]
[46]
Zeinivand M. jamali-Raeufy N, Zavvari F. The beneficial role of Hepcidin peptide inhibitor in improved the symptoms of COVID-19 in diabetics: anti-inflammatory and potential therapeutic effects. J Diabetes Metab Disord 2022; 21(2): 1797-807.
[http://dx.doi.org/10.1007/s40200-022-01053-9] [PMID: 35812243]
[47]
Telek E, Ujfalusi Z, Kemenesi G, et al. A possible way to relate the effects of SARS-CoV-2-induced changes in transferrin to severe COVID-19-associated diseases. Int J Mol Sci 2022; 23(11): 6189.
[http://dx.doi.org/10.3390/ijms23116189] [PMID: 35682873]
[48]
Gómez-Pastora J, Weigand M, Kim J, et al. Hyperferritinemia in critically ill COVID-19 patients - is ferritin the product of inflammation or a pathogenic mediator? Clin Chim Acta 2020; 509: 249-51.
[http://dx.doi.org/10.1016/j.cca.2020.06.033] [PMID: 32579952]
[49]
Habib HM, Ibrahim S, Zaim A, Ibrahim WH. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother 2021; 136: 111228.
[http://dx.doi.org/10.1016/j.biopha.2021.111228] [PMID: 33454595]
[50]
Bhadania S, Bhalodiya N, Sethi Y, et al. Hyperferritinemia and the extent of mucormycosis in COVID-19 patients. Cureus 2021; 13(12): e20569.
[http://dx.doi.org/10.7759/cureus.20569] [PMID: 35103148]
[51]
Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract 2020; 10(2): 1271.
[http://dx.doi.org/10.4081/cp.2020.1271] [PMID: 32509258]
[52]
Wang M, Wey S, Zhang Y, Ye R, Lee AS. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal 2009; 11(9): 2307-16.
[http://dx.doi.org/10.1089/ars.2009.2485] [PMID: 19309259]
[53]
Liu M, Spellberg B, Phan QT, et al. The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. J Clin Invest 2010; 120(6): 1914-24.
[http://dx.doi.org/10.1172/JCI42164] [PMID: 20484814]
[54]
Khadke S, Khadke V, Tomar S, et al. A review of COVID-19-associated mucormycosis in India. Int J Community Med Public Health 2022; 9(5): 2297.
[http://dx.doi.org/10.18203/2394-6040.ijcmph20221255]
[55]
Jose A, Singh S, Roychoudhury A, Kholakiya Y, Arya S, Roychoudhury S. Current understanding in the pathophysiology of SARS-CoV-2-associated rhino-orbito-cerebral mucormycosis: A comprehensive review. J Maxillofac Oral Surg 2021; 20(3): 373-80.
[http://dx.doi.org/10.1007/s12663-021-01604-2] [PMID: 34155426]
[56]
Gumashta J, Gumashta R. COVID-19 associated mucormycosis: Is GRP78 a possible link? J Infect Public Health 2021; 14(10): 1351-7.
[http://dx.doi.org/10.1016/j.jiph.2021.09.004] [PMID: 34538732]
[57]
Baldin C, Ibrahim AS. Molecular mechanisms of mucormycosis-the bitter and the sweet. PLoS Pathog 2017; 13(8): e1006408.
[http://dx.doi.org/10.1371/journal.ppat.1006408 ] [PMID: 28771587]
[58]
Taneri PE, Gómez-Ochoa SA, Llanaj E, et al. Anemia and iron metabolism in COVID-19: A systematic review and meta-analysis. Eur J Epidemiol 2020; 35(8): 763-73.
[http://dx.doi.org/10.1007/s10654-020-00678-5] [PMID: 32816244]
[59]
Kronstein-Wiedemann R, Stadtmüller M, Traikov S, et al. SARS-CoV-2 Infects red blood cell progenitors and dysregulates hemoglobin and iron metabolism. Stem Cell Rev Rep 2022; 18(5): 1809-21.
[http://dx.doi.org/10.1007/s12015-021-10322-8] [PMID: 35181867]
[60]
Sánchez Díaz JS, Peniche Moguel KG, González Escudero EA, et al. Glycosylated hemoglobin as a predictor of mortality in severe pneumonia by COVID-19. Expert Rev Respir Med 2021; 15(8): 1077-82.
[http://dx.doi.org/10.1080/17476348.2021.1926988 ] [PMID: 33955309]
[61]
Wang Z, Du Z, Zhu F. Glycosylated hemoglobin is associated with systemic inflammation, hypercoagulability, and prognosis of COVID-19 patients. Diabetes Res Clin Pract 2020; 164: 108214.
[http://dx.doi.org/10.1016/j.diabres.2020.108214] [PMID: 32416121]
[62]
Wang J, Meng W. COVID-19 and diabetes: The contributions of hyperglycemia. J Mol Cell Biol 2021; 12(12): 958-62.
[http://dx.doi.org/10.1093/jmcb/mjaa054] [PMID: 33002109]
[63]
Fathi N, Rezaei N. Lymphopenia in COVID-19: Therapeutic opportunities. Cell Biol Int 2020; 44(9): 1792-7.
[http://dx.doi.org/10.1002/cbin.11403] [PMID: 32458561]
[64]
Guarnotta V, Amodei R, Giordano C. Metabolic comorbidities of adrenal insufficiency: Focus on steroid replacement therapy and chronopharmacology. Curr Opin Pharmacol 2021; 60: 123-32.
[http://dx.doi.org/10.1016/j.coph.2021.07.003] [PMID: 34416524]
[65]
Gopalaswamy R, Subbian S. Corticosteroids for COVID-19 therapy: Potential implications on tuberculosis. Int J Mol Sci 2021; 22(7): 3773.
[http://dx.doi.org/10.3390/ijms22073773] [PMID: 33917321]
[66]
Jamal M, Bangash HI, Habiba M, et al. Immune dysregulation and system pathology in COVID-19. Virulence 2021; 12(1): 918-36.
[http://dx.doi.org/10.1080/21505594.2021.1898790 ] [PMID: 33757410]
[67]
García LF. Immune response, inflammation, and the clinical spectrum of COVID-19. Front Immunol 2020; 11: 1441.
[http://dx.doi.org/10.3389/fimmu.2020.01441] [PMID: 32612615]
[68]
Kuchi Bhotla H, Balasubramanian B, Meyyazhagan A, et al. Opportunistic mycoses in COVID-19 patients/survivors: Epidemic inside a pandemic. J Infect Public Health 2021; 14(11): 1720-6.
[http://dx.doi.org/10.1016/j.jiph.2021.10.010] [PMID: 34700291]
[69]
Descotes J. Immunotoxicity of monoclonal antibodies. MAbs 2009; 1(2): 104-1.
[http://dx.doi.org/10.4161/mabs.1.2.7909]
[70]
Bernardo L, Del Sesto S, Giordano L, et al. Severe prolonged neutropenia following administration of tocilizumab in a patient affected by COVID-19: A case report and brief review of the literature. Drugs Ther Perspect 2020; 36(12): 568-72.
[http://dx.doi.org/10.1007/s40267-020-00777-z] [PMID: 32952393]
[71]
Charan J, Dutta S, Kaur R, et al. Tocilizumab in COVID-19: A study of adverse drug events reported in the WHO database. Expert Opin Drug Saf 2021; 20(9): 1125-36.
[http://dx.doi.org/10.1080/14740338.2021.1946513 ] [PMID: 34162299]
[72]
Prakash H, Skiada A, Paul RA, Chakrabarti A, Rudramurthy SM. Connecting the dots: Interplay of pathogenic mechanisms between COVID-19 disease and mucormycosis. J Fungi 2021; 7(8): 616.
[http://dx.doi.org/10.3390/jof7080616] [PMID: 34436155]
[73]
Panta P. Additional insights on COVID-associated mucormycosis. Br J Oral Maxillofac Surg 2022; 60(4): e531-2.
[http://dx.doi.org/10.1016/j.bjoms.2021.09.020] [PMID: 35120786]
[74]
Bhogireddy R, Krishnamurthy V, Jabaris SSL, Pullaiah CP, Manohar S. Is Mucormycosis an inevitable complication of COVID-19 in India? Braz J Infect Dis 2021; 25(3): 101597.
[http://dx.doi.org/10.1016/j.bjid.2021.101597] [PMID: 34289382]
[75]
Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer. Cancer Cell 2019; 35(6): 830-49.
[http://dx.doi.org/10.1016/j.ccell.2019.04.002] [PMID: 31105042]
[76]
Sun Y, Chen P, Zhai B, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother 2020; 127: 110108.
[http://dx.doi.org/10.1016/j.biopha.2020.110108] [PMID: 32234642]
[77]
Vargas-Vargas M, Cortés-Rojo C. Ferritin levels and COVID-19. Rev Panam Salud Publica 2020; 44: 1.
[http://dx.doi.org/10.26633/RPSP.2020.72] [PMID: 32547616]
[78]
Edeas M, Saleh J, Peyssonnaux C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis 2020; 97: 303-5.
[http://dx.doi.org/10.1016/j.ijid.2020.05.110] [PMID: 32497811]
[79]
Cheng L, Li H, Li L, et al. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Clin Lab Anal 2020; 34(10): e23618.
[http://dx.doi.org/10.1002/jcla.23618] [PMID: 33078400]
[80]
Skaria J, John TM, Varkey S, Kontoyiannis DP. Are unique regional factors the missing link in India’s COVID-19-associated mucormycosis crisis? MBio 2022; 13(2): e00473-22.
[http://dx.doi.org/10.1128/mbio.00473-22] [PMID: 35357212]
[81]
Muthu V, Agarwal R, Chakrabarti A. COVID-19, mucormycosis, and the cow: Damned lies! Indian J Med Microbiol 2023; 44: 100382.
[http://dx.doi.org/10.1016/j.ijmmb.2023.100382] [PMID: 37356841]
[82]
Kathirvel S, Muthu V, Rudramurthy SM, Kaur H, Chakrabarti A, Agarwal R. Could cattle dung burning have contributed to the epidemic of COVID-19-associated mucormycosis in India? Results of an experimental aero-mycological study. Mycoses 2022; 65(11): 1024-9.
[http://dx.doi.org/10.1111/myc.13487 ] [PMID: 35726395]
[83]
Seidel D, Simon M, Sprute R, et al. Results from a national survey on COVID-19-associated mucormycosis in Germany: 13 patients from six tertiary hospitals. Mycoses 2022; 65(1): 103-9.
[http://dx.doi.org/10.1111/myc.13379] [PMID: 34655486]
[84]
Hoenigl M, Seidel D, Carvalho A, et al. The emergence of COVID-19 associated mucormycosis: A review of cases from 18 countries. Lancet Microbe 2022; 3(7): e543-52.
[http://dx.doi.org/10.1016/S2666-5247(21)00237-8 ] [PMID: 35098179]