[5]
Götz, M.; Sirko, S.; Beckers, J. Strategies for the regeneration of adult hippocampal neurogenesis and their relevance for CNS repair. Cell Tissue Res., 2012, 349(2), 639-648.
[6]
Tanaka, K.F.; Takebayashi, H.; Yamazaki, Y. The generation of proliferative neural progenitor cells from guinea pig enteric nervous system ganglionic progenitor cells. J. Neurosci., 2008, 28(15), 3851-3859.
[15]
Barker, R.A.; Dunnett, S.B. Repair of the injured central nervous system: Strategies for therapy. Trends Neurosci., 1999, 22(12), 612-618.
[22]
Chen, X.; Zhang, Q.; Shang, L. Recent advances in the field of smart drug delivery based on noble polymers. J. Control. Release, 2017, 256, 9-22.
[27]
Lindner, D.; Lokmic, Z.; Sullivan, R. Laser-capture microdissection fluorescence activated cell sorting (LCM/FACS) techniques result in suboptimal DNA amplification. PLoS One, 2009, 4(6), e8121.
[30]
Zhu, L.; Xu, P.C. Down-regulation of growth arrest DNA damage-inducible gene 45β expression is associated with human hepatocellular carcinoma. Am. J. Pathol., 2007, 170(5), 1964-1974.
[38]
Sonali; Singh, RP.; Singh, N.; Sharma, G.; Vijayakumar, MR.; Koch, B. Transferrin liposomes of docetaxel for brain-targeted cancer applications: Formulation and brain theranostics. Drug Deliv Transl Res., 2018, 8(6), 1720-1734.
[39]
Gao, X.; Wang, B.; Wei, X.; Men, K.; Zheng, F.; Zhou, Y. A specific RAGE-binding peptide bi-functionalized ferritin nanocage for detecting and inhibiting Aβ fibrillation with high affinity. Biomaterials, 2014, 35(12), 3699-3710.
[42]
Fang, Y.; Zheng, J.; Yang, J.; Chen, P.Y. Nano-structured drug delivery systems for neuroprotection in ischemic stroke. Curr. Pharm. Des., 2020, 26(12), 1311-1319.
[46]
Lakkadwala, S.; Gange, K.N.; Chan, P.; Lee, S.; Kang, S.W.; Bajgai, J. Engineered polymeric nanoparticles for receptor-targeted blockage of oxidized low-density lipoprotein uptake and atherosclerosis. ACS Nano, 2020, 14(11), 14614-14630.
[47]
De Rosa, E.; Chiappini, C.; Fan, D.; Liu, X.; Ferrari, M.; Tasciotti, E. Agarose surface coating influences intracellular accumulation and enhances payload stability of a nano-delivery system. J. Mater. Chem., 2012, 22(30), 15235-15244.
[48]
Yang, T.; Li, B.; Qi, S.; Liu, Y.; Gai, Y.; Ye, P. Neurotoxicity of cerebro-spinal fluid from patients with Parkinson’s disease on mesencephalic primary cultures as an in vitro model of dopaminergic neurons. J. Neurol. Sci., 2018, 386, 58-63.
[51]
Shah, A.D.; Bhangale, A.D.; Mehta, S.C. Brain-targeted drug delivery system for Alzheimer’s disease. Pharm. Dev. Technol., 2018, 23(3), 306-316.
[54]
Yu, L.; Zhang, Y.; Zhang, H.; Zhu, Y.; Cao, S.; Zhang, P. Noninvasive brain drug delivery and the blood-brain barrier: In vitro, in vivo and ex vivo models. Drug Discov. Today, 2019, 24(11), 1927-1938.
[62]
Chandra, A.; Sharma, P.; Soni, V. Nanotechnology: A magic bullet for brain drug delivery. Curr. Pharm. Des., 2019, 25(1), 36-44.
[63]
Wu, J.; Zhao, Y.; Guo, R.; Li, Y.; Huang, R.; Pan, H. Dual-responsive polymeric micelles with aggregation-induced emission-active polythiophene for targeted drug delivery and real-time imaging. Biomaterials, 2016, 85, 169-180.
[67]
Zhao, Y.; Haney, M.J.; Mahajan, V.; Reiner, B.C.; Dunaevsky, A.; Mosley, R.L. Active targeted macrophage-mediated delivery of catalase to affected brain regions in models of Parkinson's disease. J. Nanomed. Nanotechnol., 2011, 4-5.
[69]
Raza, K.; Kumar, D.; Kiran, K.; Malik, R.; Arora, S.; Katare, O.P. Brain targeting for sustained action: Advances in drug delivery. Drug Deliv. Transl. Res., 2018, 8(1), 317-328.
[70]
Shariat, S.; Badiee, A.; Jalali, S.A.; Mansoori, P.; Yazdani, M.; Mortazavi, S.A. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl. Biochem. Biotechnol., 2014, 172(2), 943-956.
[71]
Guo, W.; Deng, L.; Yu, J.; Chen, Z.; Woo, Y.; Liu, H. pH-triggered charge-reversal and redox-sensitive drug-release polymer micelles codeliver doxorubicin and triptolide for prostate tumor therapy. Int. J. Nanomedicine, 2016, 11, 6059-6072.
[74]
Shi, L.; Yang, W.; Si, T.; Zhang, J.; Gao, P. Polymeric micelles vs. polymer-drug conjugates: The influence of the drug on the carrier’s performance. Acta Biomater., 2018, 65, 144-154.
[77]
Hu, Y.; Jiang, X.; Ding, Y.; Ge, H.; Yuan, Y.; Yang, C. A new LHRH-mediated targeting lyophilized nanoparticles for the targeting therapy study of glioma. Int. J. Pharm., 2013, 448(1), 248-258.
[80]
Zhang, H.; Liang, C.; Hou, X.; Chen, W.; Li, Y. Targeting drug delivery systems for precision therapy in neurodegenerative diseases. Front. Pharmacol., 2021, 12, 736007.
[81]
Sharma, G.; Modgil, A.; Zhong, T.; Sun, C.; Singh, J. Influence of short and long PEG chains grafted onto thiolated amphiphilic copolymers on the delivery of neuroprotective nanomedicine to the CNS. Acta Biomater., 2021, 136, 172-184.
[82]
Liu, Y.; Yang, X.; Li, W.; Ma, G. Co-delivery of nerve growth factor and curcumin by lipid nanoparticles for the treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2020, 15, 9605-9617.
[87]
Zhao, L.; Zhang, L.; Gu, Y.; Hou, Y.; Wang, L. Microglial phagocytosis and its regulation: A therapeutic target in Parkinson’s disease. Front. Mol. Neurosci., 2021, 14, 620153.
[90]
Zheng, L.; Hong, L.; Shi, L.; Guo, S.; Shen, Y.; Fu, S. Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria. Chem. Eng. J., 2021, 415, 128947.
[91]
Jain, S.; Mittal, A.; Jain, A.K.; Mahajan, R.R. Miconazole nitrate-loaded solid lipid nanoparticles for topical delivery: Optimization and characterization. Drug Deliv. Transl. Res., 2012, 2(5), 350-358.
[92]
Sousa, F.; Castro, P.; Fonte, P.; Kennedy, P.J.; Sarmento, B. Nanoparticles for the delivery of anti-tnfα monoclonal antibodies into the brain for treatment of a mouse model of parkinson’s disease. J. Control. Release, 2018, 291, 37-50.
[93]
Yuan, Z.; Zhou, X.; Yang, X.; Zhang, X.; Zhu, W.; Yang, M. Application of polymer nanoparticles in cancer immunotherapy. Mater. Sci. Eng. C, 2019, 97, 1015-1026.
[94]
Zupancic, S.; Lavric, Z.; Kristl, J. Stability and dissolution properties of solid dispersions of acyclovir with hydroxypropyl-beta-cyclodextrin. Eur. J. Pharm. Biopharm., 2002, 54(2), 247-252.
[102]
Wang, Y.; Chen, W.; Wu, J.; Zhang, J.; Wu, W.; Huang, Y. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles. J. Magn. Magn. Mater., 2015, 385, 13-18.
[115]
Gagliardi, M.; Masi, G.; Mancuso, A.; Pini, A. Non-invasive brain drug delivery: A key problem in modern neuropharmacology. Curr. Top. Med. Chem., 2016, 16(16), 1789-1802.
[122]
Wei, L.; Guo, X.; Yang, T.; Yu, M.; Zhu, M.; Zhu, B. Synthesis of hollow silica nanoparticles for application in drug delivery. J. Nanosci. Nanotechnol., 2015, 15(8), 5679-5683.