Effect of Dexketoprofen on the Disposition Kinetics of Moxifloxacin in Plasma and Lung in Male and Female Rats

Page: [63 - 70] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: The simultaneous use of NSAIDs and antibiotics is recommended for bacterial diseases in human and veterinary medicine. Moxifloxacin (MFX) and dexketoprofen (DEX) can be used simultaneously in bacterial infections. However, there are no studies on how the simultaneous use of DEX affects the pharmacokinetics of MFX in rats.

Objectives: The aim of this study was to determine the effect of DEX on plasma and lung pharmacokinetics of MFX in male and female rats.

Methods: A total of 132 rats were randomly divided into 2 groups: MFX (n=66, 33 males/33 females) and MFX+DEX (n=66, 33 females/33 males). MFX at a dose of 20 mg/kg and DEX at a dose of 25 mg/kg were administered intraperitoneally. Plasma and lung concentrations of MFX were determined using the highperformance liquid chromatography-UV and pharmacokinetic parameters were evaluated by noncompartmental analysis.

Results: Simultaneous administration of DEX increased the plasma and lung area under the curve from 0 to 8 h (AUC0-8) and peak concentration (Cmax) of MFX in rats, while it significantly decreased the total body clearance (CL/F). When female and male rats were compared, significant differences were detected in AUC0-8, Cmax, CL/F and volume of distribution. The AUC0-8lung/AUC0-8plasma ratios of MFX were calculated as 1.68 and 1.65 in female rats and 5.15 and 4.90 in male rats after single and combined use, respectively.

Conclusion: MFX was highly transferred to the lung tissue and this passage was remarkably higher in male rats. However, DEX administration increased the plasma concentration of MFX in both male and female rats but did not change its passage to the lung. However, there is a need for a more detailed investigation of the difference in the pharmacokinetics of MFX in male and female rats.

Graphical Abstract

[1]
Siefert, H.M.; Kohlsdorfer, C.; Steinke, W.; Witt, A. Pharmacokinetics of the 8-methoxyquinolone, moxifloxacin: Tissue distribution in male rats. J. Antimicrob. Chemother., 1999, 43(2), 61-67.
[http://dx.doi.org/10.1093/jac/43.suppl_2.61] [PMID: 10382877]
[2]
Soman, A.; Honeybourne, D.; Andrews, J.; Jevons, G.; Wise, R. Concentrations of moxifloxacin in serum and pulmonary compartments following a single 400 mg oral dose in patients undergoing fibre-optic bronchoscopy. J. Antimicrob. Chemother., 1999, 44(6), 835-838.
[http://dx.doi.org/10.1093/jac/44.6.835] [PMID: 10590288]
[3]
Wise, R.; Andrews, J.M.; Marshall, G.; Hartman, G. Pharmacokinetics and inflammatory-fluid penetration of moxifloxacin following oral or intravenous administration. Antimicrob. Agents Chemother., 1999, 43(6), 1508-1510.
[http://dx.doi.org/10.1128/AAC.43.6.1508] [PMID: 10348784]
[4]
von Keutz, E.; Schlüter, G. Preclinical safety evaluation of moxifloxacin, a novel fluoroquinolone. J. Antimicrob. Chemother., 1999, 43(Suppl. 2), 91-100.
[http://dx.doi.org/10.1093/jac/43.suppl_2.91] [PMID: 10382881]
[5]
Barot, M.; Gokulgandhi, M.R.; Pal, D.; Mitra, A.K. In vitro moxifloxacin drug interaction with chemotherapeutics: Implications for retinoblastoma management. Exp. Eye Res., 2014, 118, 61-71.
[http://dx.doi.org/10.1016/j.exer.2013.10.009] [PMID: 24157270]
[6]
Malangoni, M.A.; Song, J.; Herrington, J.; Choudhri, S.; Pertel, P. Randomized controlled trial of moxifloxacin compared with piperacillin-tazobactam and amoxicillin-clavulanate for the treatment of complicated intra-abdominal infections. Ann. Surg., 2006, 244(2), 204-211.
[http://dx.doi.org/10.1097/01.sla.0000230024.84190.a8] [PMID: 16858182]
[7]
Huang, L.; Liu, J.; Yu, X.; Shi, L.; Liu, J.; Xiao, H.; Huang, Y. Drug–drug interactions between moxifloxacin and rifampicin based on pharmacokinetics in vivo. in rats. Biomed. Chromatogr., 2016, 30(10), 1591-1598.
[http://dx.doi.org/10.1002/bmc.3726] [PMID: 27028459]
[8]
Papich, M.G. Moxifloxacin. In: Saunders Handbook of Veterinary Drugs Small and Large Animal; W. B. Saunders: Philadelphia, PA, 2016.
[9]
Barbanoj, M.J.; Antonijoan, R.M.; Gich, I. Clinical pharmacokinetics of dexketoprofen. Clin. Pharmacokinet., 2001, 40(4), 245-262.
[http://dx.doi.org/10.2165/00003088-200140040-00002] [PMID: 11368291]
[10]
Sarıtaş, Z.K.; Korkmaz, M.; Yılmaz, O. The effect of intravenously given dexketoprofen trometamol on postoperative pain in ovariohysterectomized dogs. Eurasian J. Vet. Sci., 2014, 30(1), 5-10.
[http://dx.doi.org/10.15312/EurasianJVetSci.201415908]
[11]
Curry, S.L.; Cogar, S.M.; Cook, J.L. Nonsteroidal antiinflammatory drugs: A review. J. Am. Anim. Hosp. Assoc., 2005, 41(5), 298-309.
[http://dx.doi.org/10.5326/0410298] [PMID: 16141181]
[12]
Hanna, M.; Moon, J.Y. A review of dexketoprofen trometamol in acute pain. Curr. Med. Res. Opin., 2019, 35(2), 189-202.
[http://dx.doi.org/10.1080/03007995.2018.1457016] [PMID: 29569951]
[13]
Forbes, A.J. Oral surgery. In: Advances in pain research and therapy; Raven Press, 1991.
[14]
McGurk, M.; Robinson, P.; Rajayogeswaran, V.; De Luca, M.; Casini, A.; Artigas, R.; Muñoz, G.; Mauleón, D. Clinical comparison of dexketoprofen trometamol, ketoprofen, and placebo in postoperative dental pain. J. Clin. Pharmacol., 1998, 38(S1), 46S-54S.
[http://dx.doi.org/10.1002/jcph.1998.38.s1.46] [PMID: 9882082]
[15]
Metscher, B.; Kübler, U.; Jahnel-Kracht, H. Dexketoprofen-trometamol and tramadol in acute lumbago. MMW Fortschr. Med., 2001, 118(4), 147-151.
[PMID: 11217678]
[16]
Durna Corum, D.; Corum, O.; Yildiz, R.; Eser Faki, H.; Ider, M.; Cetin, G.; Uney, K. Influences of tolfenamic acid and flunixin meglumine on the disposition kinetics of levofloxacin in sheep. Acta Vet. Hung., 2020, 68(1), 65-70.
[http://dx.doi.org/10.1556/004.2020.00015] [PMID: 32384070]
[17]
Tekeli, I.O.; Turk, E.; Durna Corum, D.; Corum, O.; Kirgiz, F.C.; Sakin, F.; Uney, K. Effect of ketoprofen co‐administration on pharmacokinetics of cefquinome following repeated administration in goats. J. Vet. Pharmacol. Ther., 2020, 43(5), 440-447.
[http://dx.doi.org/10.1111/jvp.12904] [PMID: 32815194]
[18]
Cetin, G.; Durna Corum, D.; Corum, O.; Atik, O.; Coskun, D.; Uney, K. Effect of ketoprofen and tolfenamic acid on intravenous pharmacokinetics of ceftriaxone in sheep. J. Vet. Pharmacol. Ther., 2021, 44(6), 945-951.
[http://dx.doi.org/10.1111/jvp.13001] [PMID: 34312894]
[19]
Ural, M.N.; Uney, K. Pharmacokinetic behavior and pharmacokinetic / pharmacodynamic integration of danofloxacin following single or co-administration with meloxicam in healthy lambs and lambs with respiratory infections. Antibiotics, 2021, 10(10), 1190.
[http://dx.doi.org/10.3390/antibiotics10101190] [PMID: 34680771]
[20]
Chen, L.; Guo, S.; Xu, M.; Wu, L.X.; Zhang, J.H. Effect of diclofenac on the pharmacokinetics of moxifloxacin in rats. Drug Res., 2014, 64(7), 343-347.
[PMID: 24227472]
[21]
Sadariya, K.A.; Gothi, A.K.; Patel, S.D.; Patel, H.V.; Bhavsar, S.K.; Thaker, A.M. Pharmacokinetic interaction of moxifloxacin and meloxicam following intramuscular administration in rats. Pharma Sci. Monitor, 2010, 11, 27-34.
[22]
Sadariya, K.A.; Patel, S.D.; Bhavsar, S.K.; Thaker, A.M. Effect of febrile condition and ketoprofen co-administration on pharmacokinetics of moxifloxacin following intravenous administration in sheep. Isr. J. Vet. Med., 2014, 69, 68-73.
[23]
Altan, F.; Corum, O.; Yildiz, R.; Eser Faki, H.; Ider, M.; Ok, M.; Uney, K. Intravenous pharmacokinetics of moxifloxacin following simultaneous administration with flunixin meglumine or diclofenac in sheep. J. Vet. Pharmacol. Ther., 2020, 43(2), 108-114.
[http://dx.doi.org/10.1111/jvp.12841] [PMID: 32043623]
[24]
Ore, A.; Olayinka, E.T. Influence of moxifloxacin on hepatic redox status and plasma biomarkers of hepatotoxicity and nephrotoxicity in rat. Biochem. Res. Int., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/192724] [PMID: 26550491]
[25]
Yildirim, Y.; Karakaya, D.; Kelsaka, E.; Aksoy, A.; Gülbahar, M.Y.; Bedir, A. The effect of dexketoprofen on ischemia reperfusion injury. Bratisl. Med. J., 2014, 115(5), 256-259.
[http://dx.doi.org/10.4149/BLL_2014_053] [PMID: 25174054]
[26]
EMA. Committee for Medicinal Products for Human Use (CHMP); European Medecines Agency (EMA.). Guideline on Bio-analytical Method Validation. 2011. Available from: https://www.EMA.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_ en.pdf (Accessed on 10 June 2023).
[27]
Corum, O.; Terzi, E.; Durna Corum, D.; Tastan, Y.; Gonzales, R.C.; Kenanoglu, O.N.; Arriesgado, D.M.; Navarro, V.R.; Bilen, S.; Sonmez, A.Y.; Uney, K. Plasma and muscle tissue disposition of enrofloxacin in Nile tilapia (Oreochromis niloticus) after intravascular, intraperitoneal, and oral administrations. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2022, 39(11), 1806-1817.
[http://dx.doi.org/10.1080/19440049.2022.2121429] [PMID: 36136094]
[28]
Durna Corum, D.; Corum, O.; Terzi, E.; Coskun, D.; Bilen, S.; Cetin, G.; Uney, K. Pharmacokinetics of cefquinome in rainbow trout (Oncorhynchus mykiss) after intravascular, intraperitoneal, and oral administrations. J. Vet. Pharmacol. Ther., 2022, 45(6), 578-583.
[http://dx.doi.org/10.1111/jvp.13091] [PMID: 36000461]
[29]
Corum, O.; Uney, K.; Terzi, E.; Durna Corum, D.; Coskun, D.; Altan, F.; Elmas, M. Effects of temperature on the pharmacokinetics, tissue residues, and withdrawal times of doxycycline in tainbow trout (Oncorhynchus mykiss) following oral administration. Vet. Sci., 2023, 10(6), 401.
[http://dx.doi.org/10.3390/vetsci10060401] [PMID: 37368787]
[30]
Durna Corum, D.; Uney, K. Gender differences in the effect of calcitriol on the body disposition and excretion of doxorubicin in mice. Eur. J. Drug Metab. Pharmacokinet., 2020, 45(5), 653-664.
[http://dx.doi.org/10.1007/s13318-020-00632-6] [PMID: 32613470]
[31]
Corum, O.; Terzi, E.; Durna Corum, D.; Kenanoglu, O.N.; Bilen, S.; Uney, K. Pharmacokinetic/pharmacodynamic integration of marbofloxacin after oral and intravenous administration in rainbow trout (Oncorhynchus mykiss). Aquaculture, 2020, 514, 734510.
[http://dx.doi.org/10.1016/j.aquaculture.2019.734510]
[32]
Tekeli, I.O.; Turk, E.; Durna Corum, D.; Corum, O.; Kirgiz, F.C.; Uney, K. Pharmacokinetics, bioavailability and tissue residues of doxycycline in Japanese quails (Coturnix coturnix japonica) after oral administration. Food Addit. Contam.: Part A, 2020, 37(12), 2082-2092.
[33]
Liang, D.; Ma, J.; Wei, B. Oral absorption and drug interaction kinetics of moxifloxacin in an animal model of weightlessness. Sci. Rep., 2021, 11(1), 2605.
[http://dx.doi.org/10.1038/s41598-021-82044-3] [PMID: 33510326]
[34]
Hurtado, F.K.; Kaiser, M.; Tasso, L.; Dalla Costa, T. Fast and sensitive RP-HPLC–Fluorescence method for the quantitative analysis of moxifloxacin in rat plasma and its application to a preclinical pharmacokinetic study. Acta Chromatogr., 2016, 28(2), 175-191.
[http://dx.doi.org/10.1556/1326.2016.28.2.3]
[35]
Cheng, X.; Huang, Y.; Li, Y. Comparative of pharmacokinetic of moxifloxacin in the plasma and lung tissues of pneumonia rats and normal rats. J. Pharm. Pract., 2020, 6, 312-317.
[36]
Stass, H.; Kubitza, D. Pharmacokinetics and elimination of moxifloxacin after oral and intravenous administration in man. J. Antimicrob. Chemother., 1999, 43(Suppl. 2), 83-90.
[http://dx.doi.org/10.1093/jac/43.suppl_2.83] [PMID: 10382880]
[37]
Tras, B.; Elmas, M. Clinical Pharmacokinetics; Selcuk University: Konya, 2005, pp. 23-40.
[38]
Barman Balfour, J.A.; Wiseman, L.R. Moxifloxacin. Drugs, 1999, 57(3), 363-373.
[http://dx.doi.org/10.2165/00003495-199957030-00007] [PMID: 10193688]
[39]
Goudah, A. Pharmacokinetics and tissue residues of moxifloxacin in broiler chickens. Br. Poult. Sci., 2009, 50(2), 251-258.
[http://dx.doi.org/10.1080/00071660802710108] [PMID: 19373726]
[40]
Foster, R.T.; Jamali, F.; Russell, A.S.; Alballa, S.R. Pharmacokinetics of ketoprofen enantiomers in healthy subjects following single and multiple doses. J. Pharm. Sci., 1988, 77(1), 70-73.
[http://dx.doi.org/10.1002/jps.2600770113] [PMID: 3346825]
[41]
Brillault, J.; De Castro, W.V.; Harnois, T.; Kitzis, A.; Olivier, J.C.; Couet, W. P-glycoprotein-mediated transport of moxifloxacin in a Calu-3 lung epithelial cell model. Antimicrob. Agents Chemother., 2009, 53(4), 1457-1462.
[http://dx.doi.org/10.1128/AAC.01253-08] [PMID: 19188390]
[42]
Mejía-Abril, G.; Zubiaur, P.; Navares-Gómez, M.; Villapalos-García, G.; Román, M.; Ochoa, D.; Abad-Santos, F. Dexketoprofen pharmacokinetics is not significantly altered by genetic polymorphism. Front. Pharmacol., 2021, 12, 660639.
[http://dx.doi.org/10.3389/fphar.2021.660639] [PMID: 33995083]
[43]
Stass, H.; Kubitza, D.; Halabi, A.; Delesen, H. Pharmacokinetics of moxifloxacin, a novel 8‐methoxy‐quinolone, in patients with renal dysfunction. Br. J. Clin. Pharmacol., 2002, 53(3), 232-237.
[http://dx.doi.org/10.1046/j.0306-5251.2001.01557.x] [PMID: 11874385]
[44]
Ahmed, E.F.; El-Baky, R.M.A.; Ahmed, A.B.F.; Waly, N.G.; Gad, F.F.M. Antibacterial activity of some non-steroidal anti-inflammatory drugs against bacteria causing urinary tract infection. Am. J. Infect. Dis., 2017, 5, 66-73.
[45]
Nozaki, Y.; Kusuhara, H.; Kondo, T.; Iwaki, M.; Shiroyanagi, Y.; Nakayama, H.; Horita, S.; Nakazawa, H.; Okano, T.; Sugiyama, Y. Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake of methotrexate by human kidney slices. J. Pharmacol. Exp. Ther., 2007, 322(3), 1162-1170.
[http://dx.doi.org/10.1124/jpet.107.121491] [PMID: 17578901]
[46]
Hörl, W.H. Nonsteroidal anti-inflammatory drugs and the kidney. Pharmaceuticals, 2010, 3(7), 2291-2321.
[http://dx.doi.org/10.3390/ph3072291] [PMID: 27713354]
[47]
Beckmann, J.; Kees, F.; Schaumburger, J.; Kalteis, T.; Lehn, N.; Grifka, J.; Lerch, K. Tissue concentrations of vancomycin and moxifloxacin in periprosthetic infection in rats. Acta Orthop., 2007, 78(6), 766-773.
[http://dx.doi.org/10.1080/17453670710014536] [PMID: 18236182]
[48]
Breilh, D.; Jougon, J.; Djabarouti, S.; Gordien, J.B.; Xuereb, F.; Velly, J.F.; Arvis, P.; Landreau, V.; Saux, M.C. Diffusion of oral and intravenous 400 mg once-daily moxifloxacin into lung tissue at pharmacokinetic steady-state. J. Chemother., 2003, 15(6), 558-562.
[http://dx.doi.org/10.1179/joc.2003.15.6.558] [PMID: 14998080]
[49]
Schuetz, E.G.; Furuya, K.N.; Schuetz, J.D. Pharmacodynamics of moxifloxacin and levofloxacin simulating human serum and lung concentrations. J. Pharmacol. Exp. Ther., 1995, 275, 1011-1018.
[PMID: 7473127]
[50]
Sullivan, J.T.; Lettieri, J.T.; Liu, P.; Heller, A.H. The influence of age and gender on the pharmacokinetics of moxifloxacin. Clin. Pharmacokinet., 2001, 40(Suppl. 1), 11-18.
[http://dx.doi.org/10.2165/00003088-200140001-00002] [PMID: 11352437]
[51]
Meibohm, B.; Beierle, I.; Derendorf, H. How important are gender differences in pharmacokinetics? Clin. Pharmacokinet., 2002, 41(5), 329-342.
[http://dx.doi.org/10.2165/00003088-200241050-00002] [PMID: 12036391]
[52]
Wierzbiński, P.; Hubska, J.; Henzler, M.; Kucharski, B.; Bieś, R.; Krzystanek, M. Depressive and other adverse CNS effects of fluoroquinolones. Pharmaceuticals, 2023, 16(8), 1105.
[http://dx.doi.org/10.3390/ph16081105] [PMID: 37631020]
[53]
Sarro, A.; Sarro, G. Adverse reactions to fluoroquinolones. An overview on mechanistic aspects. Curr. Med. Chem., 2001, 8(4), 371-384.
[http://dx.doi.org/10.2174/0929867013373435] [PMID: 11172695]