Optimization and Transfollicular Delivery of Finasteride Loaded PLGA Nanoparticles Laden Carbopol Gel for Treatment of Hair Growth Stimulation

Article ID: e190124225833 Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Background: One of the frequent side effects of cancer treatment is chemotherapyinduced alopecia (CIA). The psychological discomfort of hair loss may cause patients to stop receiving chemotherapy, lowering the therapy's effectiveness. Finasteride (FNS), a JAK inhibitor, has shown tremendous promise in therapeutic uses for treating baldness. Still, systemic side effects constrained its broad use in alopecia from oral treatment and a low absorption rate at the target site-PLGA-loaded nanoparticles (NPs) for topical delivery of FNS-to overcome these issues.

Methods: The nano-precipitation process was used to make FNS-NPs. The independent variables (stabiliser and polymer) were PLGA (X1), P407 (X2), and sonication time (X3). Based on the point prediction method obtainable by the Box Behnken design software, the best FNS-NPs composition was selected. Entrapment efficiency, particle size, zeta potential, and polydispersity index were used to characterize the nanoparticles. Using Carbopol as a polymer, the ideal FNS-NPs composition was further transformed into a gel formulation. The prepared topical gel formulation (FNS-NPs gel) included gel characterization, Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), Powder X-ray Diffraction (PXRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), in vitro and in vivo studies.

Results: Optimized FNS-NPs (F13) had particle sizes of 175.26±3.85 nm, 0.241±0.11 PDI, 71.04±1.35 % EE, and -33.27±0.39 surface charges. There is no interaction between the drug and the excipients, according to FTIR studies. The FNS were visible in the X-ray diffractogram enclosed in a polymer matrix. The developed FNS-NPs gel formulation shows ideal drug content, viscosity, pH, and spreadability. According to the release and permeation investigation findings, FNS released slowly (68.73±0.94%) but significantly permeated the membrane more than before. In a dose- and time-dependent manner, the produced nanoparticles considerably (p ≤0.05) increased FNS delivery compared to the FNS solution. The FNS-NPs gel therapy significantly increases the quantity and size of hair follicles dose-dependently. The effectiveness of the 1% FNSNPs gel and the 2% minoxidil solution were comparable. After 72 hours, the FNS-NPs gel showed no signs of skin irritation. The outcomes, therefore, showed that the trans follicular delivery mechanism of the FNS-NPs gel might stimulate hair growth.

Conclusion: These findings imply that the innovative formulation that has been developed has several beneficial properties that make it suitable for FNS dermal delivery in the treatment of alopecia areata.

Graphical Abstract

[1]
Rathnayake, D.; Sinclair, R. Male androgenetic alopecia. Expert Opin. Pharmacother., 2010, 11(8), 1295-1304.
[http://dx.doi.org/10.1517/14656561003752730] [PMID: 20426708]
[2]
Hirshburg, J.M.; Kelsey, P.A.; Therrien, C.A.; Gavino, A.C.; Reichenberg, J.S. Adverse effects and safety of 5-alpha reductase inhibitors (finasteride, dutasteride): A systematic review. J. Clin. Aesthet. Dermatol., 2016, 9(7), 56-62.
[PMID: 27672412]
[3]
US Food and Drug Administration. Drug approval package. 2003. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/020180_s027_ProscarTOC.cfm
[4]
Carreño-Orellana, N.; Moll-Manzur, C.; Carrasco-Zuber, J.E.; Álvarez-Véliz, S.; Berroeta-Mauriziano, D.; Porras-Kusmanic, N. Adverse effects of finasteride: Myths and realities. An updated review. Rev. Med. Chil., 2016, 144(12), 1584-1590.
[http://dx.doi.org/10.4067/S0034-9887201600120001] [PMID: 28393993]
[5]
Caruso, D.; Abbiati, F.; Giatti, S.; Romano, S.; Fusco, L.; Cavaletti, G.; Melcangi, R.C. Patients treated for male pattern hair with finasteride show, after discontinuation of the drug, altered levels of neuroactive steroids in cerebrospinal fluid and plasma. J. Steroid Biochem. Mol. Biol., 2015, 146, 74-79.
[http://dx.doi.org/10.1016/j.jsbmb.2014.03.012] [PMID: 24717976]
[6]
Mishra, P.; Handa, M.; Ujjwal, R.R.; Singh, V.; Kesharwani, P.; Shukla, R. Potential of nanoparticulate based delivery systems for effective management of alopecia. Colloids Surf. B Biointerfaces, 2021, 208, 112050.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112050] [PMID: 34418723]
[7]
Milano, A. Folliculitis decalvans. Eur. J. Pediatr. Dermatol., 2018, 28, 124.
[8]
Powell, J.J.; Dawber, R.P.; Gatter, K. Folliculitis decalvans including tufted folliculitis: Clinical, histological and therapeutic findings. Br. J. Dermatol., 1999, 140(2), 328-333.
[http://dx.doi.org/10.1046/j.1365-2133.1999.02675] [PMID: 10233232]
[9]
Madheswaran, T.; Baskaran, R.; Yoo, B.K.; Kesharwani, P. In vitro and in vivo skin distribution of 5α-reductase inhibitors loaded into liquid crystalline nanoparticles. J. Pharm. Sci., 2017, 106(11), 3385-3394.
[http://dx.doi.org/10.1016/j.xphs.2017.06.016] [PMID: 28652158]
[10]
Algahtani, M.S.; Ahmad, M.Z.; Nourein, I.H.; Ahmad, J. Co-delivery of imiquimod and curcumin by nanoemugel for improved topical delivery and reduced psoriasis-like skin lesions. Biomolecules, 2020, 10(7), 968.
[http://dx.doi.org/10.3390/biom10070968] [PMID: 32605030]
[11]
Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. J. Biomater. Sci. Polym. Ed., 2007, 6(9), 775-795.
[12]
Sabzevari, A.; Adibkia, K.; Hashemi, H.; Hedayatfar, A.; Mohsenzadeh, N.; Atyabi, F.M.H. Polymeric triamcinolone acetonide nanoparticles as a new alternative in the treatment of uveitis: In vitro and in vivo studies. Eur. J. Pharm. Biopharm., 2013, 84(1), 63-71.
[13]
Vega, E.; Egea, M. A.; Garduño-Ramírez, M. L.; García, M. L.; Sánchez, E.; Espina, M. Flurbiprofen PLGA-PEG nanospheres: Role of hydroxy-b- 807 cyclodextrin on ex vivo human skin permeation and in vivo topical anti- 808 inflammatory efficacy. Colloids Surf. B Biointerfaces, 2013, 110, 339-346.809.
[14]
Ayalasomayajula, S.P.; Kompella, U.B. Subconjunctivally administered 810 celecoxib-PLGA microparticles sustain retinal drug levels and alleviate 811 diabetes-induced oxidative stress in a rat model. Eur. J. Pharmacol., 2005, 511(812), 191-198.813.
[15]
Gratieri, T.; Gelfuso, G.M.; Rocha, E.M.; Sarmento, V.H.; de Freitas, O.; Lopez, R.F.V. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur. J. Pharm. Biopharm., 2010, 75(2), 186-193.
[16]
Lauterbach, A.; Müller-Goymann, C.C. Comparison of rheological properties, follicular penetration, drug release, and permeation behavior of a novel topical drug delivery system and a conventional cream. Eur. J. Pharm. Biopharm., 2014, 88(3), 614-624.
[17]
Zoppi, A.; Linck, Y.G.; Monti, G.a.; Genovese, D.B.; Jimenez, K.A.F.; Manzo, R.H. Studies of pilocarpine: Carbomer intermolecular interactions. Int. J. Pharm., 2012, 427(2), 252-259.
[18]
Buchan, B.; Kay, G.; Heneghan, A.; Matthews, K.H.; Cairns, D. Gel formulations for 824 treatment of the ophthalmic complications in cystinosis. Int. J. Pharm., 2010, 392(825), 192-197.826.
[19]
Batheja, P.; Sheihet, L.; Kohn, J.; Singer, A.J.; Michniak-Kohn, B. Topical drug delivery by a polymeric nanosphere gel: Formulation optimization and in vitro and in vivo skin distribution studies. J. Control. Release, 2011, 149(2), 159-167.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.005] [PMID: 20950659]
[20]
Said Dos Santos, R.; Rosseto, H.C.; Bassi da Silva, J.; Vecchi, C.F.; Caetano, W.; Bruschi, M.L. The effect of carbomer 934P and different vegetable oils on physical stability, mechanical and rheological properties of emulsion-based systems containing propolis. J. Mol. Liq., 2020, 307, 112969.
[http://dx.doi.org/10.1016/j.molliq.2020.112969]
[21]
Batool, S.; Zahid, F.; Ud-Din, F.; Naz, S.S.; Dar, M.J.; Khan, M.W.; Zeb, A.; Khan, G.M. Macrophage targeting with the novel carbopol-based miltefosine-loaded transfersomal gel for the treatment of cutaneous leishmaniasis: In vitro and in vivo analyses. Drug Dev. Ind. Pharm., 2021, 47(3), 440-453.
[http://dx.doi.org/10.1080/03639045.2021.1890768] [PMID: 33615936]
[22]
Yenilmez, E.; Başaran, E.; Arslan, R.; Berkman, M.S.; Güven, U.M.; Bayçu, C.; Yazan, Y. Chitosan gel formulations containing egg yolk oil and epidermal growth factor for dermal burn treatment. Pharmazie, 2015, 70(2), 67-73.
[PMID: 25997244]
[23]
Dimitrovska, I.; Olumceva, T.; Markova, E.; Kostoska, M.; Taneska, L.; Petrushevska, M.; Makrievski, V.; Todorov, J.; Shalabalija, D.; Mihailova, L.; Popeski, D.R.; Glavas, D.M.; Crcarevska, S.M. Topical gel with thyl ellulose based microsponges loaded with clindamycin hydrochloride for acne treatment. Cellulose, 2020, 27(12), 7109-7126.
[http://dx.doi.org/10.1007/s10570-020-03283-7]
[24]
El Menshawe, S.F.; Aboud, H.M.; Elkomy, M.H.; Kharshoum, R.M.; Abdeltwab, A.M. A novel nanogel loaded with chitosan decorated bilosomes for transdermal delivery of terbutaline sulfate: Artificial neural network optimization, in vitro characterization and in vivo evaluation. Drug Deliv. Transl. Res., 2020, 10(2), 471-485.
[http://dx.doi.org/10.1007/s13346-019-00688-1] [PMID: 31677149]
[25]
Rabia, S.; Khaleeq, N.; Batool, S.; Dar, M.J.; Kim, D.W.; Din, F.U.; Khan, G.M. Rifampicin-loaded nanotransferosomal gel for treatment of cutaneous leishmaniasis: Passive targeting via topical route. Nanomedicine, 2020, 15(2), 183-203.
[http://dx.doi.org/10.2217/nnm-2019-0320] [PMID: 31916472]
[26]
Chung, E.P.; Wells, A.R.; Kiamco, M.M.; Leung, K.P. Dual asymmetric centrifugation efficiently produces a poloxamer-based nanoemulsion gel for topical delivery of pirfenidone. AAPS PharmSciTech, 2020, 21(7), 265.
[http://dx.doi.org/10.1208/s12249-020-01798-7] [PMID: 33006045]
[27]
Cristiano, M.C.; Froiio, F.; Mancuso, A.; De Gaetano, F.; Ventura, C.A.; Fresta, M.; Paolino, D. The rheolaser master™ and kinexus rotational rheometer® to evaluate the influence of topical drug delivery systems on rheological features of topical poloxamer gel. Molecules, 2020, 25(8), 1979.
[http://dx.doi.org/10.3390/molecules25081979] [PMID: 32340329]
[28]
Ameeduzzafar, Q.M.; Qumber, M.; Alruwaili, N.K.; Bukhari, S.N.A.; Alharbi, K.S.; Imam, S.S.; Afzal, M.; Alsuwayt, B.; Mujtaba, A.; Ali, A. BBD-based development of itraconazole loaded nanostructured lipid carrier for topical delivery: In vitro evaluation and antimicrobial assessment. J. Pharm. Innov., 2021, 16(1), 85-98.
[http://dx.doi.org/10.1007/s12247-019-09420-5]
[29]
Dave, P.N.; Gor, A. Natural polysaccharide-based hydrogels and nanomaterials: Recent trends and their applications.Handbook of Nanomaterials for Industrial Applications. Micro and Nano Technologies; Elsevier, 2018, pp. 36-66.
[30]
Hernández-Giottonini, K.Y.; Rodríguez-Córdova, R.J.; Gutiérrez-Valenzuela, C.A.; Peñuñuri-Miranda, O.; Zavala-Rivera, P.; Guerrero-Germán, P.; Lucero-Acuña, A. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: Effects of formulation parameters. RSC Advances, 2020, 10(8), 4218-4231.
[http://dx.doi.org/10.1039/c9ra10857b] [PMID: 35495261]
[31]
Dilawar, N.; Ur-Rehman, T.; Shah, K.U.; Fatima, H.; Alhodaib, A. Development and evaluation of PLGA nanoparticle-loaded organogel for the transdermal delivery of risperidone. Gels, 2022, 8(11), 709.
[http://dx.doi.org/10.3390/gels8110709] [PMID: 36354616]
[32]
Myers, R.H.; Montgomery, D.C. Response Surface Methodology Process and Product Optimization Using Designed Experiments, 2nd ed; John Wiley & Sons Inc., 2002.
[33]
Ameeduzzafar, K.N.; Khan, N.K.; Alruwaili, N.K.; Bukhari, S.N.A.; Alsuwayt, B.; Afzal, M.; Akhter, S.; Yasir, M.; Elmowafy, M.; Shalaby, K.; Ali, A. Improvement of ocular efficacy of levofloxacin by bioadhesive chitosan coated PLGA nanoparticles: Box-behnken design, in-vitro characterization, antibacterial evaluation and scintigraphy study. Iran. J. Pharm. Res., 2020, 19(1), 292-311.
[34]
Pandit, J.; Sultana, Y.; Aqil, M. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: Optimization, characterization, and in vitro toxicity evaluation. Artif. Cells Nanomed. Biotechnol., 2017, 45(7), 1397-1407.
[http://dx.doi.org/10.1080/21691401.2016.1243545] [PMID: 27855494]
[35]
Xing, R.; Mustapha, O.; Ali, T.; Rehman, M.; Zaidi, S.S.; Baseer, A.; Batool, S.; Mukhtiar, M.; Shafique, S.; Malik, M.; Sohail, S.; Ali, Z.; Zahid, F.; Zeb, A.; Shah, F.; Yousaf, A.; Din, F. Development, Characterization, and Evaluation of SLN-Loaded Thermoresponsive Hydrogel System of Topotecan as Biological Macromolecule for Colorectal Delivery. BioMed Res. Int., 2021, 2021, 9968602.
[http://dx.doi.org/10.1155/2021/9968602] [PMID: 34285920]
[36]
Patra, A.; Satpathy, S.; Shenoy, A.K.; Bush, J.A.; Kazi, M.; Hussain, M.D. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers. Int. J. Nanomedicine, 2018, 13, 2869-2881.
[http://dx.doi.org/10.2147/IJN.S153094] [PMID: 29844670]
[37]
Anantaworasakul, P.; Chaiyana, W.; Michniak-Kohn, B.B.; Rungseevijitprapa, W.; Ampasavate, C. Enhanced transdermal delivery of concentrated capsaicin from chili extract-loaded lipid nanoparticles with reduced skin irritation. Pharmaceutics, 2020, 12(5), 463.
[http://dx.doi.org/10.3390/pharmaceutics12050463] [PMID: 32438539]
[38]
Tabbakhian, M.; Tavakoli, N.; Jaafari, M.R.; Daneshamouz, S. Enhancement of follicular delivery of finasteride by liposomes and niosomes 1. in vitro permeation and in vivo deposition studies using hamster flank and ear models. Int. J. Pharm., 2006, 323(1-2), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.041] [PMID: 16837150]
[39]
Yang, X.; Trinh, H.M.; Agrahari, V.; Sheng, Y.; Pal, D.; Mitra, A.K. Nanoparticle-based topical ophthalmic gel formulation for sustained release of hydrocortisone butyrate. AAPS PharmSciTech, 2016, 17(2), 294-306.
[http://dx.doi.org/10.1208/s12249-015-0354-5] [PMID: 26085051]
[40]
Chang, C.E.; Hsieh, C.M.; Chen, L.C.; Su, C.Y.; Liu, D.Z.; Jhan, H.J.; Ho, H.O.; Sheu, M.T. Novel application of pluronic lecithin organogels (PLOs) for local delivery of synergistic combination of docetaxel and cisplatin to improve therapeutic efficacy against ovarian cancer. Drug Deliv., 2018, 25(1), 632-643.
[http://dx.doi.org/10.1080/10717544.2018.1440444] [PMID: 29463123]
[41]
Tao, J.; Chow, S.F.; Zheng, Y. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles. Acta Pharm. Sin. B, 2019, 9(1), 4-18.
[http://dx.doi.org/10.1016/j.apsb.2018.11.001] [PMID: 30766774]
[42]
Giuliano, E.; Paolino, D.; Fresta, M.; Cosco, D. Mucosal applications of poloxamer 407-based hydrogels: An overview. Pharmaceutics, 2018, 10(3), 159.
[http://dx.doi.org/10.3390/pharmaceutics10030159] [PMID: 30213143]
[43]
Ahmed, M.M.; Fatima, F.; Anwer, M.K.; Ibnouf, E.O.; Kalam, M.A.; Alshamsan, A.; Aldawsari, M.F.; Alalaiwe, A.; Ansari, M.J. Formulation and in vitro evaluation of topical nanosponge-based gel containing butenafine for the treatment of fungal skin infection. Saudi Pharm. J., 2021, 29(5), 467-477.
[http://dx.doi.org/10.1016/j.jsps.2021.04.010] [PMID: 34135673]
[44]
Charoenputtakun, P.; Pamornpathomkul, B.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. Terpene composited lipid nanoparticles for enhanced dermal delivery of all-trans-retinoic acids. Biol. Pharm. Bull., 2014, 37(7), 1139-1148.
[http://dx.doi.org/10.1248/bpb.b14-00015] [PMID: 24805206]
[45]
Neupane, R.; Boddu, S.H.S.; Renukuntla, J.; Babu, R.J.; Tiwari, A.K. Alternatives to biological skin in permeation studies: Current trends and possibilities. Pharmaceutics, 2020, 12(2), 152.
[http://dx.doi.org/10.3390/pharmaceutics12020152] [PMID: 32070011]
[46]
Sadozai, S.K.; Khan, S.A.; Karim, N.; Becker, D.; Steinbrück, N.; Gier, S.; Baseer, A.; Breinig, F.; Kickelbick, G.; Schneider, M. Ketoconazole-loaded PLGA nanoparticles and their synergism against candida albicans when combined with silver nanoparticles. J. Drug Deliv. Sci. Technol., 2020, 56, 101574.
[http://dx.doi.org/10.1016/j.jddst.2020.101574]
[47]
Elsayed, S.I.; Girgis, G.N.S.; El-Dahan, M.S. Formulation and evaluation of pravastatin sodium-loaded plga nanoparticles: In vitro-in vivo studies assessment. Int. J. Nanomedicine, 2023, 18, 721-742.
[http://dx.doi.org/10.2147/IJN.S394701] [PMID: 36816332]
[48]
Bruker, A.X.S. Topas V4. 2: General Profile and Structure Analysis Software for owder iffraction Data; Bruker AXS, 2009.
[49]
Cheary, R.W.; Coelho, A.A.; Cline, J.P. Fundamental parameters line profile fitting in laboratory diffractometers. J. Res. Natl. Inst. Stand. Technol., 2004, 109(1), 1-25.
[http://dx.doi.org/10.6028/jres.109.002] [PMID: 27366594]
[50]
Elsewedy, H.S.; Dhubiab, B.E.A.; Mahdy, M.A.; Elnahas, H.M. Development, optimization, and evaluation of PEGylated brucine-loaded PLGA nanoparticles. Drug Deliv., 2020, 27(1), 1134-1146.
[http://dx.doi.org/10.1080/10717544.2020.1797237] [PMID: 32729331]
[51]
Ezzat, H.; Rady, M.; Hathout, R.M.; Abdel-Halim, M.; Mansour, S. Enhanced anti-bacterial effect of kojic acid using gelatinized core liposomes: A potential approach to combat antibiotic resistance. J. Drug Deliv. Sci. Technol., 2021, 64, 102625.
[http://dx.doi.org/10.1016/j.jddst.2021.102625]
[52]
Jain, S.; Mittal, A.; Jain, K. Enhanced topical delivery of cyclosporin-a using plga nanoparticles as carrier. Curr. Nanosci., 2011, 7(4), 524-530.
[http://dx.doi.org/10.2174/157341311796196835]
[53]
Gorain, B.; Choudhury, H.; Kundu, A.; Sarkar, L.; Karmakar, S.; Jaisankar, P.; Pal, T.K. Nanoemulsion strategy for olmesartan medoxomil improves oral absorption and extended antihypertensive activity in hypertensive rats. Colloids Surf. B Biointerfaces, 2014, 115, 286-294.
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.016] [PMID: 24388859]
[54]
Liu, J.; Zhu, C.; Xu, L.; Wang, D.; Liu, W.; Zhang, K.; Zhang, Z.; Shi, J. Nanoenabled intracellular calcium bursting for safe and efficient reversal of drug resistance in tumor cells. Nano Lett., 2020, 20(11), 8102-8111.
[http://dx.doi.org/10.1021/acs.nanolett.0c03042] [PMID: 33064007]
[55]
Alshehri, S.; Imam, S.S. Formulation and evaluation of butenafine loaded PLGA-nanoparticulate laden chitosan nano gel. Drug Deliv., 2021, 28(1), 2348-2360.
[http://dx.doi.org/10.1080/10717544.2021.1995078] [PMID: 34747275]
[56]
Kinori, M.; Bertolini, M.; Funk, W.; Samuelov, L.; Meyer, K.C.; Emelianov, V.U.; Hasse, S.; Paus, R. Calcitonin gene-related peptide (CGRP) may award relative protection from interferon-γ-induced collapse of human hair follicle immune privilege. Exp. Dermatol., 2012, 21(3), 223-226.
[http://dx.doi.org/10.1111/j.1600-0625.2011.01432.x] [PMID: 22379970]
[57]
Mir-Palomo, S.; Nácher, A.; Ofelia Vila-Busó, M.A.O.; Caddeo, C.; Manca, M.L.; Saurí, A.R.; Escribano-Ferrer, E.; Manconi, M.; Díez-Sales, O. Co-loading of finasteride and baicalin in phospholipid vesicles tailored for the treatment of hair disorders. Nanoscale, 2020, 12(30), 16143-16152.
[http://dx.doi.org/10.1039/d0nr03357j] [PMID: 32700723]
[58]
Mainardes, R.M.; Evangelista, R.C. PLGA nanoparticles containing praziquantel: Effect of formulation variables on size distribution. Int. J. Pharm., 2005, 290(1-2), 137-144.
[http://dx.doi.org/10.1016/j.ijpharm.2004.11.027] [PMID: 15664139]
[59]
Cun, D.; Zhang, C.; Bera, H.; Yang, M. Particle engineering principles and technologies for pharmaceutical biologics. Adv. Drug Deliv. Rev., 2021, 174, 140-167.
[http://dx.doi.org/10.1016/j.addr.2021.04.006] [PMID: 33845039]
[60]
Rabha, B.; Bharadwaj, K.K.; Baishya, D.; Sarkar, T.; Edinur, H.A.; Pati, S. Synthesis and characterization of diosgenin encapsulated poly-ε-caprolactone-pluronic nanoparticles and its effect on brain cancer cells. Polymers, 2021, 13(8), 1322.
[http://dx.doi.org/10.3390/polym13081322] [PMID: 33919483]
[61]
Shailender, J.; Ravi, P.R.; Saha, P.; Dalvi, A.; Myneni, S. Tenofovir disoproxil fumarate loaded PLGA nanoparticles for enhanced oral absorption: Effect of experimental variables and in vitro, ex vivo and in vivo evaluation. Colloids Surf. B Biointerfaces, 2017, 158, 610-619.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.037] [PMID: 28755558]
[62]
Sharma, N.; Madan, P.; Lin, S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J. Pharm. Sci., 2016, 11(3), 404-416.
[http://dx.doi.org/10.1016/j.ajps.2015.09.004]
[63]
Haryadi, B.M.; Hafner, D.; Amin, I.; Schubel, R.; Jordan, R.; Winter, G.; Engert, J. Nonspherical nanoparticle shape stability is affected by complex manufacturing aspects: Its implications for drug delivery and targeting. Adv. Healthc. Mater., 2019, 8(18), e1900352.
[http://dx.doi.org/10.1002/adhm.201900352] [PMID: 31410996]
[64]
Hamdallah, S.I.; Zoqlam, R.; Erfle, P.; Blyth, M.; Alkilany, A.M.; Dietzel, A.; Qi, S. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. Int. J. Pharm., 2020, 584, 119408.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119408] [PMID: 32407942]
[65]
Le, M.Q.; Violet, F.; Paniagua, C.; Garric, X.; Venier-Julienne, M.C. Penta-block copolymer microspheres: Impact of polymer characteristics and process parameters on protein release. Int. J. Pharm., 2018, 535(1-2), 428-437.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.033] [PMID: 29157963]
[66]
Sarheed, O.; Dibi, M.; Ramesh, K.V.R.N.S. Studies on the effect of oil and surfactant on the formation of alginate-based O/W lidocaine nanocarriers using nanoemulsion template. Pharmaceutics, 2020, 12(12), 1223.
[http://dx.doi.org/10.3390/pharmaceutics12121223] [PMID: 33348692]
[67]
Sultan, O.S.; Kantilal, H.K.A.; Phaik, K.S.; Choudhury, H.; Davamani, F. Formulation and characterization of a novel palm-oil-based α-mangostin nano-emulsion (PO-AMNE) as an antimicrobial endodontic irrigant: An in vitro study. Processes, 2023, 11(3), 798.
[http://dx.doi.org/10.3390/pr11030798]
[68]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh, D.F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[69]
Lee, Y.; Sah, E.; Sah, H. Chemical approach to solvent removal during nanoencapsulation: Its application to preparation of PLGA nanoparticles with nonhalogenated solvent. J. Nanopart. Res., 2015, 17, 1-12.
[70]
Sharma, D.; Maheshwari, D.; Philip, G.; Rana, R.; Bhatia, S.; Singh, M.; Gabrani, R.; Sharma, S.K.; Ali, J.; Sharma, R.K.; Dang, S. Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: In vitro and in vivo evaluation. BioMed Res. Int., 2014, 2014, 156010.
[http://dx.doi.org/10.1155/2014/156010] [PMID: 25126544]
[71]
Riaz, A.; Hendrickx, S.; Elbrink, K. Preparation and characterization of nanostructured lipid carriers for improved topical drug delivery: Evaluation in cutaneous leishmaniasis and vaginal candidiasis animal models. AAPS PharmSciTech, 2020, 21, 1-14.
[72]
Koca, H.D.; Doganay, S.; Turgut, A.; Tavman, I.H.; Saidur, R.; Mahbubul, I.M. Effect of particle size on the viscosity of nanofluids: A review. Renew. Sustain. Energy Rev., 2018, 82, 1664-1674.
[http://dx.doi.org/10.1016/j.rser.2017.07.016]
[73]
Motawea, A.; Borg, T.; Abd El-Gawad, A.E.H. Topical phenytoin nanostructured lipid carriers: Design and development. Drug Dev. Ind. Pharm., 2018, 44(1), 144-157.
[http://dx.doi.org/10.1080/03639045.2017.138620] [PMID: 28956451]
[74]
Akl, M.A.; Kartal-Hodzic, A.; Oksanen, T.; Ismael, H.R.; Afouna, M.M.; Yliperttula, M.; Samy, A.M.; Viitala, T. Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. J. Drug Deliv. Sci. Technol., 2016, 32, 10-20.
[http://dx.doi.org/10.1016/j.jddst.2016.01.007]
[75]
Rungseevijitprapa, W.; Wichayapreechar, P.; Sivamaruthi, B.S.; Jinarat, D.; Chaiyasut, C. Optimization and transfollicular delivery of finasteride-loaded proniosomes for hair growth stimulation in C57BL/6Mlac mice. Pharmaceutics, 2021, 13(12), 2177.
[http://dx.doi.org/10.3390/pharmaceutics13122177] [PMID: 34959458]
[76]
Li, X.; Chen, K.; Ji, X.; Yuan, X.; Lei, Z.; Ullah, M.W.; Xiao, J.; Yang, G. Microencapsulation of poorly water-soluble finasteride in polyvinyl alcohol/chitosan microspheres as a long-term sustained release system for potential embolization applications. Eng. Sci., 2020, 13, 105-120.
[http://dx.doi.org/10.30919/es8d1159]
[77]
Ahmad, A.; Ahmad, M.; Minhas, M.U.; Sarfraz, M.; Sohail, M.; Khan, K.U.; Tanveer, S.; Ijaz, S. Synthesis and evaluation of finasteride-loaded HPMC-based nanogels for transdermal delivery: A versatile nanoscopic platform. BioMed Res. Int., 2022, 2022, 2426960.
[http://dx.doi.org/10.1155/2022/2426960] [PMID: 35909483]
[78]
Ren, W.; Tian, G.; Jian, S.; Gu, Z.; Zhou, L.; Yan, L.; Jin, S.; Yin, W.; Zhao, Y. TWEEN coated NaYF 4: Yb, Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery. RSC Advances, 2012, 2(18), 7037-7041.
[http://dx.doi.org/10.1039/c2ra20855e]
[79]
Lin, Y.K.; Al-Suwayeh, S.A.; Leu, Y.L.; Shen, F.M.; Fang, J.Y. Squalene-containing nanostructured lipid carriers promote percutaneous absorption and hair follicle targeting of diphencyprone for treating alopecia areata. Pharm. Res., 2013, 30(2), 435-446.
[http://dx.doi.org/10.1007/s11095-012-0888-0] [PMID: 23070602]
[80]
Irfan, M.M.; Shah, S.U.; Shah, K.U.; Anton, N.; Idoux-Gillet, Y.; Conzatti, G.; Shah, K.U.; Perennes, E.; Vandamme, T. Impact of formulation design and lyophilisation on the physicochemical characteristics of finasteride nanosystems. J. Microencapsul., 2023, 40(2), 106-123.
[http://dx.doi.org/10.1080/02652048.2023.2178537] [PMID: 36749573]
[81]
Katrajkar, K.; Thakkar, S.; Kshirsagar, B.; Sirsikar, B.; Polaka, S.; Misra, M. Development and evaluation of crystalline inclusion complex of finasteride using electrospraying as a novel approach. J. Drug Deliv. Sci. Technol., 2020, 59, 101887.
[http://dx.doi.org/10.1016/j.jddst.2020.101887]
[82]
Yeh, T.H.; Hsu, L.W.; Tseng, M.T.; Lee, P.L.; Sonjae, K.; Ho, Y.C.; Sung, H.W. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials, 2011, 32(26), 6164-6173.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.056] [PMID: 21641031]
[83]
Casettari, L.; Illum, L. Chitosan in nasal delivery systems for therapeutic drugs. J. Control. Release, 2014, 190, 189-200.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.003] [PMID: 24818769]
[84]
Aljuffali, I.A.; Sung, C.T.; Shen, F.M.; Huang, C.T.; Fang, J.Y. Squarticles as a lipid nanocarrier for delivering diphencyprone and minoxidil to hair follicles and human dermal papilla cells. AAPS J., 2014, 16(1), 140-150.
[http://dx.doi.org/10.1208/s12248-013-9550-y] [PMID: 24307611]
[85]
Kim, J.E.; Lee, Y.J.; Park, H.R.; Lee, D.G.; Jeong, K.H.; Kang, H. The effect of JAK inhibitor on the survival, anagen re-entry, and hair follicle immune privilege restoration in human dermal papilla cells. Int. J. Mol. Sci., 2020, 21(14), 5137.
[http://dx.doi.org/10.3390/ijms21145137] [PMID: 32698510]
[86]
Kim, J.E.; Oh, J.H.; Woo, Y.J.; Jung, J.H.; Jeong, K.H.; Kang, H. Effects of mesenchymal tem cell therapy on lopecia areata in cellular and hair follicle organ culture models. Exp. Dermatol., 2020, 29(3), 265-272.