Combating Aminoglycoside Resistance: From Structural and Functional Characterisation to Therapeutic Challenges with RKAAT

Page: [454 - 468] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

A comprehensive knowledge of aminoglycoside-modifying enzymes (AMEs) and their role in bacterial resistance mechanisms is urgently required due to the rising incidence of antibiotic resistance, particularly in Klebsiella pneumoniae infections. This study explores the essential features of AMEs, including their structural and functional properties, the processes by which they contribute to antibiotic resistance, and the therapeutic importance of aminoglycosides. The study primarily examines the Recombinant Klebsiella pneumoniae Aminoglycoside Adenylyl Transferase (RKAAT), particularly emphasizing its biophysical characteristics and the sorts of resistance it imparts. Furthermore, this study examines the challenges presented by RKAAT-mediated resistance, an evaluation of treatment methods and constraints, and options for controlling infection. The analysis provides a prospective outlook on strategies to address and reduce antibiotic resistance. This extensive investigation seeks to provide vital insights into the continuing fight against bacterial resistance, directing future research efforts and medicinal approaches.

Graphical Abstract

[1]
Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens, 2021, 10(10), 1310.
[http://dx.doi.org/10.3390/pathogens10101310] [PMID: 34684258]
[2]
Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol., 2023, 21(5), 280-295.
[http://dx.doi.org/10.1038/s41579-022-00820-y] [PMID: 36411397]
[3]
Bujotzek, Alexander; Tiefenthaler, Georg; Lariviere, Laurent; D’Andrea, Laura; Marquez, Elsa A.; Rudloff, Ina; Cho, Steven X. Protein engineering of a stable and potent anti-inflammatory IL-37-Fc fusion with enhanced therapeutic potential. Cell Chemical Biology , 2022, , 586-596.
[http://dx.doi.org/10.1016/j.chembiol.2021.10.004]
[4]
Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int. J. Hyg. Environ. Health, 2022, 244, 114006.
[http://dx.doi.org/10.1016/j.ijheh.2022.114006] [PMID: 35841823]
[5]
Arcari, G.; Carattoli, A. Global spread and evolutionary convergence of multidrug-resistant and hypervirulent Klebsiella pneumoniae high-risk clones. Pathog. Glob. Health, 2023, 117(4), 328-341.
[http://dx.doi.org/10.1080/20477724.2022.2121362] [PMID: 36089853]
[6]
Kumar, S.; Anwer, R.; Azzi, A. Molecular typing methods & resistance mechanisms of MDR Klebsiella pneumoniae. AIMS Microbiol., 2023, 9(1), 112-130.
[http://dx.doi.org/10.3934/microbiol.2023008] [PMID: 36891535]
[7]
Maione, A.; La Pietra, A.; de Alteriis, E.; Mileo, A.; De Falco, M.; Guida, M.; Galdiero, E. Effect of myrtenol and its synergistic interactions with antimicrobial drugs in the inhibition of single and mixed biofilms of candida auris and klebsiella pneumoniae. Microorganisms, 2022, 10(9), 1773.
[http://dx.doi.org/10.3390/microorganisms10091773] [PMID: 36144375]
[8]
Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol., 2020, 18(6), 344-359.
[http://dx.doi.org/10.1038/s41579-019-0315-1] [PMID: 32055025]
[9]
Banerjee, T.; Sharma, S.; Rakshit, P. Role of antibiotics in hospital-acquired infections and community-acquired infections. In: Antibiotics - Therapeutic Spectrum and Limitations; Elsevier, 2023; pp. 549-574.
[http://dx.doi.org/10.1016/B978-0-323-95388-7.00016-4]
[10]
Dhingra, S.; Rahman, N.A.A.; Peile, E.; Rahman, M.; Sartelli, M.; Hassali, M.A.; Islam, T.; Islam, S.; Haque, M. Microbial resistance movements: An overview of global public health threats posed by antimicrobial resistance, and how best to counter. Front. Public Health, 2020, 8, 535668.
[http://dx.doi.org/10.3389/fpubh.2020.535668] [PMID: 33251170]
[11]
Gonzalez-Ferrer, S.; Peñaloza, H.F.; Budnick, J.A.; Bain, W.G.; Nordstrom, H.R.; Lee, J.S.; Van Tyne, D. Finding order in the chaos: Outstanding questions in Klebsiella pneumoniae pathogenesis. Infect. Immun., 2021, 89(4), e00693-20.
[http://dx.doi.org/10.1128/IAI.00693-20] [PMID: 33558323]
[12]
Abbas, Ali Taher; Salih, Hind Abdallah Review of Beta lactams. Ann. Rom. Soc. Cell Biol., 2022, 26, 1863-1881.
[13]
Albarri, O.; AlMatar, M.; Öcal, M.M.; Köksal, F. Overexpression of efflux pumps acrab and oqxab contributes to ciprofloxacin resistance in clinical isolates of k. pneumoniae. Curr. Protein Pept. Sci., 2022, 23(5), 356-368.
[http://dx.doi.org/10.2174/1389203723666220630162920] [PMID: 35786184]
[14]
AlMatar, M.; Albarri, O.; Var, I.; Köksal, F. Antimicrobial resistance of clinical klebsiella pneumoniae isolates: Involvement of AcrAB and OqxAB Efflux Pumps. Curr. Mol. Pharmacol., 2023, 17(1), e310323215266.
[http://dx.doi.org/10.2174/1874467217666230331081434] [PMID: 36999690]
[15]
Azeredo, J.; García, P.; Drulis-Kawa, Z. Targeting biofilms using phages and their enzymes. Curr. Opin. Biotechnol., 2021, 68, 251-261.
[http://dx.doi.org/10.1016/j.copbio.2021.02.002] [PMID: 33714050]
[16]
Priyanka, A.; Akshatha, K.; Deekshit, V.K. Klebsiella pneumoniae infections and antimicrobial drug resistance. In: In Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery; Singapore: Springer Singapore, 2020; pp. 195-225.
[http://dx.doi.org/10.1007/978-981-15-1695-5_12]
[17]
Wang, N.; Luo, J.; Deng, F.; Huang, Y.; Zhou, H. Antibiotic combination therapy: A strategy to overcome bacterial resistance to aminoglycoside antibiotics. Front. Pharmacol., 2022, 13, 839808.
[http://dx.doi.org/10.3389/fphar.2022.839808] [PMID: 35281905]
[18]
Dagur, P.; Ghosh, M.; Patra, A. Aminoglycoside antibiotics. In: Medicinal Chemistry of Chemotherapeutic Agents; Elsevier, 2023; pp. 135-155.
[http://dx.doi.org/10.1016/B978-0-323-90575-6.00009-0]
[19]
Zhang, Yuan; Zhang, Ning; Wang, Mengyu; Luo, Ming; Peng, Yao; Li, Zhenpeng; Xu, Jialiang; Ou, Meiling; Kan, Biao; Li, Xu The prevalence and distribution of aminoglycoside resistance genes. In: Biosafety and Health ; Chinese Medical Journals Publishing House: Dongsi Xidajie, 2023; pp. 14-20.
[20]
Llano-Sotelo, Beatriz Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site. In: Chemistry & biology; Elsevier, 2002; pp. 455-463.
[21]
Stern, A.L.; Van der Verren, S.E.; Kanchugal P, S.; Näsvall, J.; Gutiérrez-de-Terán, H.; Selmer, M. Structural mechanism of AadA, a dual-specificity aminoglycoside adenylyltransferase from Salmonella enterica. J. Biol. Chem., 2018, 293(29), 11481-11490.
[http://dx.doi.org/10.1074/jbc.RA118.003989] [PMID: 29871922]
[22]
Wright, Gerard D Aminoglycoside phosphotransferases: Proteins, structure, and mechanism. In: Front Biosci; Citeseer, 1999; pp. 9-21.
[23]
Sunada, A.; Nakajima, M.; Ikeda, Y.; Kondo, S.; Hotta, K. Enzymatic 1-N-acetylation of paromomycin by an actinomycete strain #8 with multiple aminoglycoside resistance and paromomycin sensitivity. J. Antibiot., 1999, 52(9), 809-814.
[http://dx.doi.org/10.7164/antibiotics.52.809] [PMID: 10726929]
[24]
Hotta, K.; Sunada, A.; Ishikawa, J.; Mizuno, S.; Ikeda, Y.; Kondo, S. The novel enzymatic 3′'-N-acetylation of arbekacin by an aminoglycoside 3-N-acetyltransferase of Streptomyces origin and the resulting activity. J. Antibiot., 1998, 51(8), 735-742.
[http://dx.doi.org/10.7164/antibiotics.51.735] [PMID: 9766465]
[25]
Raslan, M.A.; Raslan, S.A.; Shehata, E.M.; Mahmoud, A.S.; Lundstrom, K.; Barh, D.; Azevedo, V.; Sabri, N.A. Associations between nutrigenomic effects and incidences of microbial resistance against novel antibiotics. Pharmaceuticals, 2023, 16(8), 1093.
[http://dx.doi.org/10.3390/ph16081093] [PMID: 37631008]
[26]
Frase, H.; Toth, M.; Vakulenko, S.B. Revisiting the nucleotide and aminoglycoside substrate specificity of the bifunctional aminoglycoside acetyltransferase(6′)-Ie/aminoglycoside phosphotransferase(2′')-Ia enzyme. J. Biol. Chem., 2012, 287(52), 43262-43269.
[http://dx.doi.org/10.1074/jbc.M112.416453] [PMID: 23115238]
[27]
Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updat., 2010, 13(6), 151-171.
[http://dx.doi.org/10.1016/j.drup.2010.08.003] [PMID: 20833577]
[28]
Labby, K.J.; Garneau-Tsodikova, S. Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med. Chem., 2013, 5(11), 1285-1309.
[http://dx.doi.org/10.4155/fmc.13.80] [PMID: 23859208]
[29]
Boehr, D.D.; Draker, K.; Koteva, K.; Bains, M.; Hancock, R.E.; Wright, G.D. Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes. Chem. Biol., 2003, 10(2), 189-196.
[http://dx.doi.org/10.1016/S1074-5521(03)00026-7] [PMID: 12618191]
[30]
Baquero, F.; Martínez, J.L.; F Lanza, V.; Rodríguez-Beltrán, J.; Galán, J.C.; San Millán, A.; Cantón, R.; Coque, T.M. Evolutionary pathways and trajectories in antibiotic resistance. Clin. Microbiol. Rev., 2021, 34(4), e0005019.
[http://dx.doi.org/10.1128/CMR.00050-19] [PMID: 34190572]
[31]
Serio, A.W.; Keepers, T.; Andrews, L.; Krause, K.M. Aminoglycoside revival: Review of a historically important class of antimicrobials undergoing rejuvenation. Ecosal Plus, 2018, 8(1), ecosalplus.ESP-0002-2018.
[http://dx.doi.org/10.1128/ecosalplus.ESP-0002-2018] [PMID: 30447062]
[32]
Bennett, C.C. The aminoglycosides. Prim. Care Update Ob Gyns, 1996, 3(6), 186-191.
[http://dx.doi.org/10.1016/S1068-607X(96)00025-X]
[33]
Thacharodi, A.; Lamont, I.L. Aminoglycoside-modifying enzymes are sufficient to make pseudomonas aeruginosa clinically resistant to key antibiotics. Antibiotics, 2022, 11(7), 884.
[http://dx.doi.org/10.3390/antibiotics11070884] [PMID: 35884138]
[34]
Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. J. Mol. Evol., 2020, 88(1), 26-40.
[http://dx.doi.org/10.1007/s00239-019-09914-3] [PMID: 31659373]
[35]
Varela, M.F.; Stephen, J.; Lekshmi, M.; Ojha, M.; Wenzel, N.; Sanford, L.M.; Hernandez, A.J.; Parvathi, A.; Kumar, S.H. Bacterial resistance to antimicrobial agents. Antibiotics, 2021, 10(5), 593.
[http://dx.doi.org/10.3390/antibiotics10050593] [PMID: 34067579]
[36]
Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. In: Virulence Mechanisms of Bacterial Pathogens; ASM Press: Washington, DC, USA, 2016; pp. 481-511.
[http://dx.doi.org/10.1128/9781555819286.ch17]
[37]
Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med., 2016, 6(6), a027029.
[http://dx.doi.org/10.1101/cshperspect.a027029] [PMID: 27252397]
[38]
Martinez, J.L.; Fajardo, A.; Garmendia, L.; Hernandez, A.; Linares, J.F.; Martínez-Solano, L.; Sánchez, M.B. A global view of antibiotic resistance. FEMS Microbiol. Rev., 2009, 33(1), 44-65.
[http://dx.doi.org/10.1111/j.1574-6976.2008.00142.x] [PMID: 19054120]
[39]
Winter, M.; Buckling, A.; Harms, K.; Johnsen, P.J.; Vos, M. Antimicrobial resistance acquisition via natural transformation: Context is everything. Curr. Opin. Microbiol., 2021, 64, 133-138.
[http://dx.doi.org/10.1016/j.mib.2021.09.009] [PMID: 34710742]
[40]
Lund, D.; Coertze, R.D.; Parras-Moltó, M.; Berglund, F.; Flach, C.F.; Johnning, A.; Larsson, D.G.J.; Kristiansson, E. Extensive screening reveals previously undiscovered aminoglycoside resistance genes in human pathogens. Commun. Biol., 2023, 6(1), 812.
[http://dx.doi.org/10.1038/s42003-023-05174-6] [PMID: 37537271]
[41]
El-Far, A.; Samir, S.; El-Gebaly, E.; Omar, M.; Dahroug, H.; El-Shenawy, A.; Soliman, N.S.; Gamal, D. High rates of aminoglycoside methyltransferases associated with metallo-beta-lactamases in multidrug-resistant and extensively drug-resistant pseudomonas aeruginosa clinical isolates from a tertiary care hospital in egypt. Infect. Drug Resist., 2021, 14, 4849-4858.
[http://dx.doi.org/10.2147/IDR.S335582] [PMID: 34848977]
[42]
Bassenden, A. Towards structure-guided design of next-generation aminoglycoside antibiotics; McGill University, 2021.
[43]
Zeiders, S.M.; Chmielewski, J. Antibiotic–cell‐penetrating peptide conjugates targeting challenging drug‐resistant and intracellular pathogenic bacteria. Chem. Biol. Drug Des., 2021, 98(5), 762-778.
[http://dx.doi.org/10.1111/cbdd.13930] [PMID: 34315189]
[44]
Sadovskaya, I.; Vinogradov, E.; Li, J.; Hachani, A.; Kowalska, K.; Filloux, A. High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: The ndvB gene is involved in the production of highly glycerol-phosphorylated -(1->3)-glucans, which bind aminoglycosides. Glycobiology, 2010, 20(7), 895-904.
[http://dx.doi.org/10.1093/glycob/cwq047] [PMID: 20348539]
[45]
Hanberger, H.; Edlund, C.; Furebring, M.; G Giske, C.; Melhus, A.; Nilsson, L.E.; Petersson, J.; Sjölin, J.; Ternhag, A.; Werner, M.; Eliasson, E. Rational use of aminoglycosides--review and recommendations by the swedish reference group for antibiotics (SRGA). Scand. J. Infect. Dis., 2013, 45(3), 161-175.
[http://dx.doi.org/10.3109/00365548.2012.747694] [PMID: 23270477]
[46]
Pagkalis, S.; Mantadakis, E.; Mavros, M.N.; Ammari, C.; Falagas, M.E. Pharmacological considerations for the proper clinical use of aminoglycosides. Drugs, 2011, 71(17), 2277-2294.
[http://dx.doi.org/10.2165/11597020-000000000-00000] [PMID: 22085385]
[47]
Yılmaz, Ç.; Özcengiz, G. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem. Pharmacol., 2017, 133, 43-62.
[http://dx.doi.org/10.1016/j.bcp.2016.10.005] [PMID: 27765485]
[48]
De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial resistance in eskape pathogens. Clin. Microbiol. Rev., 2020, 33(3), e00181-19.
[http://dx.doi.org/10.1128/CMR.00181-19] [PMID: 32404435]
[49]
Zhang, J.; Liu, G.; Zhang, X.; Chang, Y.; Wang, S.; He, W.; Sun, W.; Chen, D.; Murchie, A.I.H. Aminoglycoside riboswitch control of the expression of integron associated aminoglycoside resistance adenyltransferases. Virulence, 2020, 11(1), 1432-1442.
[http://dx.doi.org/10.1080/21505594.2020.1836910] [PMID: 33103573]
[50]
Chen, Y.; Näsvall, J.; Wu, S.; Andersson, D.I.; Selmer, M. Structure of AadA from Salmonella enterica : A monomeric aminoglycoside (3′′)(9) adenyltransferase. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(11), 2267-2277.
[http://dx.doi.org/10.1107/S1399004715016429] [PMID: 26527143]
[51]
Roi, A.; Rusu, L.C.; Roi, C.I.; Luca, R.E.; Boia, S.; Munteanu, R.I. A new approach for the diagnosis of systemic and oral diseases based on salivary biomolecules. Dis. Markers, 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/8761860] [PMID: 30906485]
[52]
Qing, R.; Hao, S.; Smorodina, E.; Jin, D.; Zalevsky, A.; Zhang, S. Protein design: From the aspect of water solubility and stability. Chem. Rev., 2022, 122(18), 14085-14179.
[http://dx.doi.org/10.1021/acs.chemrev.1c00757] [PMID: 35921495]
[53]
Tripathi, T.; Dubey, V.K. Advances in protein molecular and structural biology methods; Academic Press, 2022.
[54]
Pierrat, O.A.; Liu, M.; Collie, G.W.; Shetty, K.; Rodrigues, M.J.; Le Bihan, Y.V.; Gunnell, E.A.; McAndrew, P.C.; Stubbs, M.; Rowlands, M.G.; Yahya, N.; Shehu, E.; Talbot, R.; Pickard, L.; Bellenie, B.R.; Cheung, K.M.J.; Drouin, L.; Innocenti, P.; Woodward, H.; Davis, O.A.; Lloyd, M.G.; Varela, A.; Huckvale, R.; Broccatelli, F.; Carter, M.; Galiwango, D.; Hayes, A.; Raynaud, F.I.; Bryant, C.; Whittaker, S.; Rossanese, O.W.; Hoelder, S.; Burke, R.; van Montfort, R.L.M. Discovering cell-active BCL6 inhibitors: effectively combining biochemical HTS with multiple biophysical techniques, X-ray crystallography and cell-based assays. Sci. Rep., 2022, 12(1), 18633.
[http://dx.doi.org/10.1038/s41598-022-23264-z] [PMID: 36329085]
[55]
Honisch, C.; Donadello, V.; Hussain, R.; Peterle, D.; De Filippis, V.; Arrigoni, G.; Gatto, C.; Giurgola, L.; Siligardi, G.; Ruzza, P. Application of circular dichroism and fluorescence spectroscopies to assess photostability of water-soluble porcine lens proteins. ACS Omega, 2020, 5(8), 4293-4301.
[http://dx.doi.org/10.1021/acsomega.9b04234] [PMID: 32149259]
[56]
Böhm, G.; Muhr, R.; Jaenicke, R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. Des. Sel., 1992, 5(3), 191-195.
[http://dx.doi.org/10.1093/protein/5.3.191] [PMID: 1409538]
[57]
Pelton, J.T.; McLean, L.R. Spectroscopic methods for analysis of protein secondary structure. Anal. Biochem., 2000, 277(2), 167-176.
[http://dx.doi.org/10.1006/abio.1999.4320] [PMID: 10625503]
[58]
Hawe, A.; Sutter, M.; Jiskoot, W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm. Res., 2008, 25(7), 1487-1499.
[http://dx.doi.org/10.1007/s11095-007-9516-9] [PMID: 18172579]
[59]
Wang, H.; Nakata, E.; Hamachi, I. Recent progress in strategies for the creation of protein-based fluorescent biosensors. ChemBioChem, 2009, 10(16), 2560-2577.
[http://dx.doi.org/10.1002/cbic.200900249] [PMID: 19693761]
[60]
Hashemi-Shahraki, F.; Shareghi, B.; Farhadian, S. Characterizing the binding affinity and molecular interplay between quinoline yellow and pepsin. J. Mol. Liq., 2021, 341, 117317.
[http://dx.doi.org/10.1016/j.molliq.2021.117317]
[61]
Shakya, T.; Stogios, P.J.; Waglechner, N.; Evdokimova, E.; Ejim, L.; Blanchard, J.E.; McArthur, A.G.; Savchenko, A.; Wright, G.D. A small molecule discrimination map of the antibiotic resistance kinome. Chem. Biol., 2011, 18(12), 1591-1601.
[http://dx.doi.org/10.1016/j.chembiol.2011.10.018] [PMID: 22195561]
[62]
Wybenga-Groot, Leanne E; Kari-ann, Draker Gerard D Wright, and Albert M Berghuis Crystal structure of an aminoglycoside 6′-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold In: Structure; Elsevier, 1999; pp. 497-507.
[63]
Vetting, M.W.; Hegde, S.S.; Javid-Majd, F.; Blanchard, J.S.; Roderick, S.L. Aminoglycoside 2′-N-acetyltransferase from Mycobacterium tuberculosis in complex with coenzyme A and aminoglycoside substrates. Nat. Struct. Biol., 2002, 9(9), 653-658.
[http://dx.doi.org/10.1038/nsb830] [PMID: 12161746]
[64]
Wolf, E.; Vassilev, A.; Makino, Y.; Sali, A.; Nakatani, Y.; Burley, S.K. Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell, 1998, 94(4), 439-449.
[http://dx.doi.org/10.1016/S0092-8674(00)81585-8] [PMID: 9727487]
[65]
Benveniste, Raoul; Davies, Julian R‐factor mediated gentamicin resistance: A new enzyme which modifies aminoglycoside antibiotics. In: FEBS letters; Wiley Online Library, 1971; pp. 293-296.
[http://dx.doi.org/10.1016/0014-5793(71)80282-X]
[66]
Pendleton, Jack N Sean P Gorman, and Brendan F Gilmore Clinical relevance of the ESKAPE pathogens. In: Expert review of anti-infective therapy; Taylor & Francis, 2013; pp. 297-308.
[67]
Jiang, M.; Kuang, S.; Lai, S.; Zhang, S.; Yang, J.; Peng, B.; Peng, X.; Chen, Z.; Li, H. Na + -NQR confers aminoglycoside resistance via the regulation of L- Alanine Metabolism. MBio, 2020, 11(6), e02086-20.
[http://dx.doi.org/10.1128/mBio.02086-20] [PMID: 33203750]
[68]
Mingeot-Leclercq, M.P.; Glupczynski, Y.; Tulkens, P.M. Aminoglycosides: Activity and resistance. Antimicrob. Agents Chemother., 1999, 43(4), 727-737.
[http://dx.doi.org/10.1128/AAC.43.4.727] [PMID: 10103173]
[69]
Ramazanzadeh, R.; Rouhi, S.; Shakib, P.; Shahbazi, B.; Bidarpour, F.; Karimi, M. Molecular characterization of vibrio cholerae isolated from clinical samples in kurdistan province, iran. Jundishapur J. Microbiol., 2015, 8(5), e18119.
[http://dx.doi.org/10.5812/jjm.8(4)2015.18102] [PMID: 26060565]
[70]
Huth, M.E.; Ricci, A.J.; Cheng, A.G. Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int. J. Otolaryngol., 2011, 2011, 1-19.
[http://dx.doi.org/10.1155/2011/937861] [PMID: 22121370]
[71]
Lv, B.; Bian, M.; Huang, X.; Sun, F.; Gao, Y.; Wang, Y.; Fu, Y.; Yang, B.; Fu, X. n -butanol potentiates subinhibitory aminoglycosides against bacterial persisters and multidrug-resistant mrsa by rapidly enhancing antibiotic uptake. ACS Infect. Dis., 2022, 8(2), 373-386.
[http://dx.doi.org/10.1021/acsinfecdis.1c00559] [PMID: 35100802]
[72]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Antimicrobial Resistance in ESKAPE Pathogens. Mol. Cell. Endocrinol., 1997, 246.
[73]
Hishinuma, A.; Yoshida, A.; Suzuki, H.; Okuzumi, K.; Ishida, T. Complete sequencing of an IncFII NDM-1 plasmid in Klebsiella pneumoniae shows structural features shared with other multidrug resistance plasmids. J. Antimicrob. Chemother., 2013, 68(10), 2415-2417.
[http://dx.doi.org/10.1093/jac/dkt190] [PMID: 23681270]
[74]
Bennett, P.M. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol., 2008, 153(S1)(Suppl. 1), S347-S357.
[http://dx.doi.org/10.1038/sj.bjp.0707607] [PMID: 18193080]
[75]
Jiang, Z.; Wei, J.; Liang, Y.; Peng, N.; Li, Y. Aminoglycoside antibiotics inhibit mycobacteriophage infection. Antibiotics, 2020, 9(10), 714.
[http://dx.doi.org/10.3390/antibiotics9100714] [PMID: 33086520]
[76]
Glinka, M.; Wojnowski, W.; Wasik, A. Determination of aminoglycoside antibiotics: Current status and future trends. Trends Analyt. Chem., 2020, 131, 116034.
[http://dx.doi.org/10.1016/j.trac.2020.116034]
[77]
Hitchcock, N.M.; Devequi, G.N.D.; Shiach, J.; Valeria, S.H.K.; Dantas, V.B.J.; Alencar, P.R.L.; Coler, B.S.; Botelho, P.S.M.; Badaró, R. Current clinical landscape and global potential of bacteriophage therapy. Viruses, 2023, 15(4), 1020.
[http://dx.doi.org/10.3390/v15041020] [PMID: 37113000]
[78]
González-Bello, C.; Rodríguez, D.; Pernas, M.; Rodríguez, Á.; Colchón, E. β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J. Med. Chem., 2020, 63(5), 1859-1881.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01279] [PMID: 31663735]
[79]
Bush, K. Synergistic antibiotic combinations. Antibacterials, 2017, 69-88.
[http://dx.doi.org/10.1007/7355_2017_23]
[80]
Schmitz, F.J.; Fluit, A.C.; Gondolf, M.; Beyrau, R.; Lindenlauf, E.; Verhoef, J.; Heinz, H.P.; Jones, M.E. The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J. Antimicrob. Chemother., 1999, 43(2), 253-259.
[http://dx.doi.org/10.1093/jac/43.2.253] [PMID: 11252331]
[81]
Coia, J.E.; Duckworth, G.J.; Edwards, D.I.; Farrington, M.; Fry, C.; Humphreys, H.; Mallaghan, C.; Tucker, D.R. Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J. Hosp. Infect., 2006, 63(Suppl. 1), S1-S44.
[http://dx.doi.org/10.1016/j.jhin.2006.01.001] [PMID: 16581155]
[82]
Cox, G.; Ejim, L.; Stogios, P.J.; Koteva, K.; Bordeleau, E.; Evdokimova, E.; Sieron, A.O.; Savchenko, A.; Serio, A.W.; Krause, K.M.; Wright, G.D. Plazomicin retains antibiotic activity against most aminoglycoside modifying enzymes. ACS Infect. Dis., 2018, 4(6), 980-987.
[http://dx.doi.org/10.1021/acsinfecdis.8b00001] [PMID: 29634241]
[83]
Sonousi, A.S.M. Synthesis of netilmicin and apramycin derivatives for the treatment of multidrug-resistant. Infect. Dis., 2017.
[84]
Iyer, A.; Madder, A.; Singh, I. Teixobactins: A new class of 21st century antibiotics to combat multidrug-resistant bacterial pathogens. Future Microbiology; Future Medicine, 2019.
[85]
Lebeis, S.L.; Kalman, D. Aligning antimicrobial drug discovery with complex and redundant host-pathogen interactions. Cell Host Microbe, 2009, 5(2), 114-122.
[http://dx.doi.org/10.1016/j.chom.2009.01.008] [PMID: 19218083]
[86]
Mohloding, M. Expression, purification, and structure-function studies of recombinant Klebsiella pneumoniae aminoglycoside (3”) (9) adenylyl transferase; University of the Witwatersrand, 2022.
[87]
National Academies of Sciences and Medicine. Engineering In: Global health and the future role of the United States; National Academies Press, 2017.
[88]
Carnahan, J. Unexpected: Finding Resilience through Functional Medicine, Science, and Faith; Simon and Schuster, 2023.