Natural Polysaccharides Derived from Fruits and Mushrooms with Anti-inflammatory and Antioxidant Effects

Article ID: e180124225810 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

A large class of substances known as polysaccharides have a wide range of advantageous therapeutic and nutritional properties. Polysaccharides found in plants and plant components are extracted for the use in treating a number of diseases. Since ancient times, these polysaccharides have been utilized for human wellness. With no or minimal adverse effects, the polysaccharides that were extracted and refined from the fruits exhibit strong antioxidant, antiinflammatory, immunoregulatory, and hepatoprotective action. These fruit polysaccharides are isolated and purified using numerous chromatographic methods. In this review, the polysaccharide obtained from sources such as Rubus chingii, Mulberry, Glycyrrhiza glabra, Lilium davidii, Flammulina velutipes, Angelica sinesis, and Diospyros kaki have been discussed along with their biological activities including DPPH radical scavenging activity, ABTS free radical scavenging assay, Hydroxyl radical scavenging activity and assay for oxygen free radical absorption capacity (ORAC) listed in various studies.

Graphical Abstract

[1]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[2]
Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol., 2014, 2(January), 377-392.
[3]
Gotteland, M.; Riveros, K.; Gasaly, N.; Carcamo, C.; Magne, F.; Liabeuf, G.; Beattie, A.; Rosenfeld, S. The pros and cons of using algal polysaccharides as prebiotics. Front. Nutr., 2020, 7, 163.
[http://dx.doi.org/10.3389/fnut.2020.00163] [PMID: 33072794]
[4]
Kučuk, N.; Primožič, M.; Knez, Ž.; Leitgeb, M. Sustainable biodegradable biopolymer-based nanoparticles for healthcare applications. Int. J. Mol. Sci., 2023, 24(4), 3188.
[http://dx.doi.org/10.3390/ijms24043188] [PMID: 36834596]
[5]
Kumar, S.; Mukherjee, A.; Dutta, J. Biopolymer-Based Food Packaging: Innovations and Technology Applications; John Wiley & Sons, Inc., 2022, pp. 1-490.
[http://dx.doi.org/10.1002/9781119702313]
[6]
Mizrahy, S.; Peer, D. Polysaccharides as building blocks for nanotherapeutics. Chem. Soc. Rev., 2012, 41(7), 2623-2640.
[http://dx.doi.org/10.1039/C1CS15239D] [PMID: 22085917]
[7]
Dubashynskaya, N.; Poshina, D.; Raik, S.; Urtti, A.; Skorik, Y.A. Polysaccharides in ocular drug delivery. Pharmaceutics, 2019, 12(1), 22.
[http://dx.doi.org/10.3390/pharmaceutics12010022] [PMID: 31878298]
[8]
Barbosa, J.R.; de Carvalho, J.R.N. Polysaccharides obtained from natural edible sources and their role in modulating the immune system: Biologically active potential that can be exploited against COVID-19. Trends Food Sci. Technol., 2021, 108, 223-235.
[http://dx.doi.org/10.1016/j.tifs.2020.12.026] [PMID: 33424125]
[9]
Chen, C.; Wang, P.; Huang, Q.; You, L.J.; Liu, R.H.; Zhao, M.; Fu, X.; Luo, Z.G. A comparison study on polysaccharides extracted from Fructus Mori using different methods: Structural characterization and glucose entrapment. Food Funct., 2019, 10(6), 3684-3695.
[http://dx.doi.org/10.1039/C9FO00026G] [PMID: 31168531]
[10]
Afzal, A.; Oriqat, G.; Akram Khan, M.; Jose, J.; Afzal, M. Chemistry and biochemistry of terpenoids from Curcuma and related species. J. Biol. Active Prod. Nature, 2013, 3(1), 1-55.
[http://dx.doi.org/10.1080/22311866.2013.782757]
[11]
Tarasov, D.; Leitch, M.; Fatehi, P. Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: A review. Biotechnol. Biofuels, 2018, 11(1), 269.
[http://dx.doi.org/10.1186/s13068-018-1262-1] [PMID: 30288174]
[12]
Nwodo, U.; Green, E.; Okoh, A. Bacterial exopolysaccharides: Functionality and prospects. Int. J. Mol. Sci., 2012, 13(12), 14002-14015.
[http://dx.doi.org/10.3390/ijms131114002] [PMID: 23203046]
[13]
Shi, L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. Int. J. Biol. Macromol., 2016, 92, 37-48.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.100] [PMID: 27377457]
[14]
Wang, Q.; Yang, X.; Zhu, C.; Liu, G.; Sun, Y.; Qian, L. Advances in the utilization of tea polysaccharides: Preparation, physicochemical properties, and health benefits. Polymers, 2022, 14(14), 2775.
[http://dx.doi.org/10.3390/polym14142775] [PMID: 35890551]
[15]
Mozammil Hasnain, S.M.; Hasnain, M.S.; Nayak, A.K. Natural polysaccharides: sources and extraction methodologies; Elsevier, 2019, pp. 1-14.
[16]
Chen, Y.; Xie, M.; Li, W.; Zhang, H.; Nie, S.; Wang, Y.; Li, C. An effective method for deproteinization of bioactive polysaccharides extracted from lingzhi (Ganoderma atrum). Food Sci. Biotechnol., 2012, 21(1), 191-198.
[http://dx.doi.org/10.1007/s10068-012-0024-2]
[17]
Chen, S.; Huang, H.; Huang, G. Extraction, derivatization and antioxidant activity of cucumber polysaccharide. Int. J. Biol. Macromol., 2019, 140, 1047-1053.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.203] [PMID: 31454644]
[18]
Sheng, J.Y.; Wang, S.Q.; Liu, K.H.; Zhu, B.; Zhang, Q.Y.; Qin, L.P.; Wu, J.J. Rubus chingii Hu: an overview of botany, traditional uses, phytochemistry, and pharmacology. Chin. J. Nat. Med., 2020, 18(6), 401-416.
[http://dx.doi.org/10.1016/S1875-5364(20)30048-0] [PMID: 32503732]
[19]
Han, N.; Gu, Y.; Ye, C.; Cao, Y.; Liu, Z.; Yin, J. Antithrombotic activity of fractions and components obtained from raspberry leaves (Rubus chingii). Food Chem., 2012, 132(1), 181-185.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.051] [PMID: 26434278]
[20]
He, Y.; Jin, S.; Ma, Z.; Zhao, J.; Yang, Q.; Zhang, Q.; Zhao, Y.; Yao, B. The antioxidant compounds isolated from the fruits of chinese wild raspberry Rubus Chingii Hu. Nat. Prod. Res., 2020, 34(6), 872-875.
[http://dx.doi.org/10.1080/14786419.2018.1504046] [PMID: 30345814]
[21]
Wen, P.; Hu, T.G.; Linhardt, R.J.; Liao, S.T.; Wu, H.; Zou, Y.X. Mulberry: A review of bioactive compounds and advanced processing technology. Trends Food Sci. Technol., 2019, 83, 138-158.
[http://dx.doi.org/10.1016/j.tifs.2018.11.017]
[22]
Rohela, G.K.; Shukla, P.; Muttanna, R.; Kumar, R.; Chowdhury, S.R. Mulberry (Morus spp.): An ideal plant for sustainable development. Trees, For. People, 2020, 2, 100011.
[http://dx.doi.org/10.1016/j.tifs.2018.11.017]
[23]
Lee, J.S.; Synytsya, A.; Kim, H.B.; Choi, D.J.; Lee, S.; Lee, J.; Kim, W.J.; Jang, S.; Park, Y.I. Purification, characterization and immunomodulating activity of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.). Int. Immunopharmacol., 2013, 17(3), 858-866.
[http://dx.doi.org/10.1016/j.intimp.2013.09.019] [PMID: 24120956]
[24]
Chen, C.; You, L.J.; Abbasi, A.M.; Fu, X.; Liu, R.H. Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro. Carbohydr. Polym., 2015, 130, 122-132.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.003] [PMID: 26076608]
[25]
Yuan, Q.; Zhao, L. The mulberry (Morus alba L.) fruit—a review of characteristic components and health benefits. J. Agric. Food Chem., 2017, 65(48), 10383-10394.
[http://dx.doi.org/10.1021/acs.jafc.7b03614] [PMID: 29129054]
[26]
Chen, C.; You, L.J.; Abbasi, A.M.; Fu, X.; Liu, R.H.; Li, C. Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro. Food Funct., 2016, 7(1), 530-539.
[http://dx.doi.org/10.1039/C5FO01114K] [PMID: 26569512]
[27]
Thaipitakwong, T.; Numhom, S.; Aramwit, P. Mulberry leaves and their potential effects against cardiometabolic risks: A review of chemical compositions, biological properties and clinical efficacy. Pharm. Biol., 2018, 56(1), 109-118.
[http://dx.doi.org/10.1080/13880209.2018.1424210] [PMID: 29347857]
[28]
Zhou, X.; Deng, Q.; Chen, H.; Hu, E.; Zhao, C.; Gong, X. Characterizations and hepatoprotective effect of polysaccharides from Mori Fructus in rats with alcoholic-induced liver injury. Int. J. Biol. Macromol., 2017, 102, 60-67.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.083] [PMID: 28322946]
[29]
Chen, C.; Huang, Q.; Fu, X.; Liu, R.H. In vitro fermentation of mulberry fruit polysaccharides by human fecal inocula and impact on microbiota. Food Funct., 2016, 7(11), 4637-4643.
[http://dx.doi.org/10.1039/C6FO01248E] [PMID: 27748781]
[30]
Guo, C.; Liang, T.; He, Q.; Wei, P.; Zheng, N.; Xu, L. Renoprotective effect of Ramulus mori polysaccharides on renal injury in STZ-diabetic mice. Int. J. Biol. Macromol., 2013, 62, 720-725.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.09.022] [PMID: 24076200]
[31]
Simayi, Z.; Rozi, P.; Yang, X.; Ababaikeri, G.; Maimaitituoheti, W.; Bao, X.; Ma, S.; Askar, G.; Yadikar, N. Isolation, structural characterization, biological activity, and application of Glycyrrhiza polysaccharides: Systematic review. Int. J. Biol. Macromol., 2021, 183, 387-398.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.099] [PMID: 33887291]
[32]
Hong, Y.K.; Wu, H.T.; Ma, T.; Liu, W.J.; He, X.J. Effects of Glycyrrhiza glabra polysaccharides on immune and antioxidant activities in high-fat mice. Int. J. Biol. Macromol., 2009, 45(1), 61-64.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.04.001] [PMID: 19447260]
[33]
Alliouche Kerboua, K.; Benosmane, L.; Namoune, S.; Ouled-Diaf, K.; Ghaliaoui, N.; Bendjeddou, D. Anti-inflammatory and antioxidant activity of the hot water-soluble polysaccharides from Anacyclus pyrethrum (L.) Lag. roots. J. Ethnopharmacol., 2021, 281, 114491.
[http://dx.doi.org/10.1016/j.jep.2021.114491] [PMID: 34364970]
[34]
Sharma, V.; Katiyar, A.; Agrawal, R.C. Glycyrrhiza glabra: Chemistry and pharmacological activity. In: Sweeteners; , 2016; pp. 1-14.
[http://dx.doi.org/10.1007/978-3-319-26478-3_21-1]
[35]
Wittschier, N.; Faller, G.; Hensel, A. Aqueous extracts and polysaccharides from Liquorice roots (Glycyrrhiza glabra L.) inhibit adhesion of Helicobacter pylori to human gastric mucosa. J. Ethnopharmacol., 2009, 125(2), 218-223.
[http://dx.doi.org/10.1016/j.jep.2009.07.009] [PMID: 19607905]
[36]
Rozi, P.; Abuduwaili, A.; Ma, S.; Bao, X.; Xu, H.; Zhu, J.; Yadikar, N.; Wang, J.; Yang, X.; Yili, A. Isolations, characterizations and bioactivities of polysaccharides from the seeds of three species Glycyrrhiza. Int. J. Biol. Macromol., 2020, 145, 364-371.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.107] [PMID: 31857172]
[37]
Mutaillifu, A.Y.P.; Bobakulov, K.; Abuduwaili, A.; Huojiaaihemaiti, H.; Nuerxiati, R.; Aisa, H.A. Structural characterization and antioxidant activities of a water soluble polysaccharide isolated from Glycyrrhiza glabra. Int. J. Biol. Macromol., 2020, 144, 751-759.
[http://dx.doi.org/10.1016/j.bbamem.2019.183135]
[38]
Ain, N.U.; Wu, S.; Li, X.; Li, D.; Zhang, Z. Isolation, characterization, pharmacology and biopolymer applications of licorice polysaccharides. Rev. Mat., 2022, 15(10), 3654.
[http://dx.doi.org/10.3390/ma15103654] [PMID: 35629680]
[39]
Li, W.; Wang, Y.; Wei, H.; Zhang, Y.; Guo, Z.; Qiu, Y.; Wen, L.; Xie, Z. Structural characterization of Lanzhou lily (Lilium davidii var. unicolor) polysaccharides and determination of their associated antioxidant activity. J. Sci. Food Agric., 2020, 100(15), 5603-5616.
[http://dx.doi.org/10.1002/jsfa.10613] [PMID: 32608519]
[40]
Huang, C.; Luo, X.; Li, L.; Xue, N.; Dang, Y.; Zhang, H.; Liu, J.; Li, J.; Li, C.; Li, F. Glycyrrhiza polysaccharide alleviates dextran sulfate sodium-induced ulcerative colitis in mice. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/1345852] [PMID: 35432562]
[41]
Leung, M.Y.K.; Fung, K.P.; Choy, Y.M. The isolation and characterization of an immunomodulatory and anti-tumor polysaccharide preparation from Flammulina velutipes. Immunopharmacology, 1997, 35(3), 255-263.
[http://dx.doi.org/10.1016/S0162-3109(96)00157-9] [PMID: 9043939]
[42]
Wang, H.; Liu, Y.; Qi, Z.; Wang, S.; Liu, S.; Li, X.; Wang, H.; Xia, X. An overview on natural polysaccharides with antioxidant properties. Curr. Med. Chem., 2013, 20(23), 2899-2913.
[http://dx.doi.org/10.2174/0929867311320230006] [PMID: 23627941]
[43]
Jhan, M.H.; Yeh, C.H.; Tsai, C.C.; Kao, C.T.; Chang, C.K.; Hsieh, C.W. Enhancing the antioxidant ability of Trametes versicolor polysaccharopeptides by an enzymatic hydrolysis process. Molecules, 2016, 21(9), 1215.
[http://dx.doi.org/10.3390/molecules21091215] [PMID: 27626400]
[44]
Hui, H.; Jin, H.; Li, X.; Yang, X.; Cui, H.; Xin, A.; Zhao, R.; Qin, B. Purification, characterization and antioxidant activities of a polysaccharide from the roots of Lilium davidii var. unicolor Cotton. Int. J. Biol. Macromol., 2019, 135, 1208-1216.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.030] [PMID: 31176857]
[45]
Chou, C.H.; Sung, T.J.; Hu, Y.N.; Lu, H.Y.; Yang, L.C.; Cheng, K.C.; Lai, P.S.; Hsieh, C.W. Chemical analysis, moisture-preserving, and antioxidant activities of polysaccharides from Pholiota nameko by fractional precipitation. Int. J. Biol. Macromol., 2019, 131, 1021-1031.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.154] [PMID: 30910671]
[46]
Hou, C.; Yin, M.; Lan, P.; Wang, H.; Nie, H.; Ji, X. Recent progress in the research of Angelica sinensis (Oliv.) Diels polysaccharides: extraction, purification, structure and bioactivities. Chem. Biol. Technol. Agric., 2021, 8(1), 13.
[http://dx.doi.org/10.1186/s40538-021-00214-x]
[47]
Nai, J.; Zhang, C.; Shao, H.; Li, B.; Li, H.; Gao, L.; Dai, M.; Zhu, L.; Sheng, H. Extraction, structure, pharmacological activities and drug carrier applications of Angelica sinensis polysaccharide. Int. J. Biol. Macromol., 2021, 183, 2337-2353.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.213] [PMID: 34090852]
[48]
Zhou, S.S.; Xu, J.; Tsang, C.K.; Yip, K.M.; Yeung, W.P.; Zhao, Z.Z.; Zhu, S.; Fushimi, H.; Chang, H.Y.; Chen, H.B. Comprehensive quality evaluation and comparison of Angelica sinensis radix and Angelica acutiloba radix by integrated metabolomics and glycomics. J. Food Drug Anal., 2018, 26(3), 1122-1137.
[http://dx.doi.org/10.1016/j.jfda.2018.01.015] [PMID: 29976405]
[49]
Ma, J.P.; Guo, Z.B.; Jin, L.; Li, Y.D. Phytochemical progress made in investigations of Angelica sinensis (Oliv.). Diels. Chin. J. Nat. Med., 2015, 13(4), 241-249.
[http://dx.doi.org/10.1016/S1875-5364(15)30010-8] [PMID: 25908620]
[50]
Hou, B.; Zhang, Y.; Liang, P.; He, Y.; Peng, B.; Liu, W.; Han, S.; Yin, J.; He, X. Inhibition of the NLRP3-inflammasome prevents cognitive deficits in experimental autoimmune encephalomyelitis mice via the alteration of astrocyte phenotype. Cell Death Dis., 2020, 11(5), 377.
[http://dx.doi.org/10.1038/s41419-020-2565-2] [PMID: 32415059]
[51]
Chen, X.P.; Li, W.; Xiao, X.F.; Zhang, L.L.; Liu, C.X. Phytochemical and pharmacological studies on Radix Angelica sinensis. Chin. J. Nat. Med., 2013, 11(6), 577-587.
[http://dx.doi.org/10.1016/S1875-5364(13)60067-9] [PMID: 24345498]
[52]
Wei, W.L.; Zeng, R.; Gu, C.M.; Qu, Y.; Huang, L.F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J. Ethnopharmacol., 2016, 190, 116-141.
[http://dx.doi.org/10.1016/j.jep.2016.05.023] [PMID: 27211015]
[53]
Duan, J.; Dong, Q.; Ding, K.; Fang, J. Characterization of a pectic polysaccharide from the leaves of Diospyros kaki and its modulating activity on lymphocyte proliferation. Biopolymers, 2010, 93(7), 649-656.
[http://dx.doi.org/10.1002/bip.21430] [PMID: 20235231]
[54]
Bi, S.J.; Fu, R.J.; Li, J.J.; Chen, Y.Y.; Tang, Y.P. The bioactivities and potential clinical values of Angelica sinensis Polysaccharides. Nat. Prod. Commun., 2021, 16(3), 1934578X2199732.
[http://dx.doi.org/10.1177/1934578X21997321]
[55]
Hwang, K.C.; Shin, H.Y.; Kim, W.J.; Seo, M.S.; Kim, H. Effects of a high-molecular-weight polysaccharides isolated from korean persimmon on the antioxidant, anti-inflammatory, and antiwrinkle activity. Molecules, 2021, 26(6), 1600.
[http://dx.doi.org/10.3390/molecules26061600] [PMID: 33805791]
[56]
Bawazeer, S.; Rauf, A. In vivo anti-inflammatory, analgesic, and sedative studies of the extract and naphthoquinone isolated from diospyros kaki (Persimmon). ACS Omega, 2021, 6(14), 9852-9856.
[http://dx.doi.org/10.1021/acsomega.1c00537] [PMID: 33869965]
[57]
Dikensoy, E.; Balat, O.; Pençe, S.; Balat, A.; Çekmen, M.; Yurekli, M. Malondialdehyde, nitric oxide and adrenomedullin levels in patients with primary dysmenorrhea. J. Obstet. Gynaecol. Res., 2008, 34(6), 1049-1053.
[http://dx.doi.org/10.1111/j.1447-0756.2008.00802.x] [PMID: 19012707]
[58]
Kondera-Anasz, Z.; Sikora, J.; Mielczarek-Palacz, A.; Jońca, M. Concentrations of interleukin (IL)-1α, IL-1 soluble receptor type II (IL-1 sRII) and IL-1 receptor antagonist (IL-1 Ra) in the peritoneal fluid and serum of infertile women with endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol., 2005, 123(2), 198-203.
[http://dx.doi.org/10.1016/j.ejogrb.2005.04.019] [PMID: 16046047]
[59]
Guo, S.W. Nuclear factor-kappab (NF-kappaB): an unsuspected major culprit in the pathogenesis of endometriosis that is still at large? Gynecol. Obstet. Invest., 2007, 63(2), 71-97.
[http://dx.doi.org/10.1159/000096047] [PMID: 17028437]
[60]
Su, Z.Y.; Khor, T.O.; Shu, L.; Lee, J.H.; Saw, C.L.L.; Wu, T.Y.; Huang, Y.; Suh, N.; Yang, C.S.; Conney, A.H.; Wu, Q.; Kong, A.N.T. Epigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and Radix angelica sinensis via promoter CpG demethylation. Chem. Res. Toxicol., 2013, 26(3), 477-485.
[http://dx.doi.org/10.1021/tx300524p] [PMID: 23441843]
[61]
Chao, W.W.; Hong, Y.H.; Chen, M.L.; Lin, B.F. Inhibitory effects of Angelica sinensis ethyl acetate extract and major compounds on NF-κB trans-activation activity and LPS-induced inflammation. J. Ethnopharmacol., 2010, 129(2), 244-249.
[http://dx.doi.org/10.1016/j.jep.2010.03.022] [PMID: 20371279]
[62]
Paik, Y.; Schwabe, R.F.; Bataller, R.; Russo, M.P.; Jobin, C.; Brenner, D.A. Toll-Like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology, 2003, 37(5), 1043-1055.
[http://dx.doi.org/10.1053/jhep.2003.50182] [PMID: 12717385]
[63]
Fujioka, S.; Niu, J.; Schmidt, C.; Sclabas, G.M.; Peng, B.; Uwagawa, T.; Li, Z.; Evans, D.B.; Abbruzzese, J.L.; Chiao, P.J. NF-kappaB and AP-1 connection: Mechanism of NF-kappaB-dependent regulation of AP-1 activity. Mol. Cell. Biol., 2004, 24(17), 7806-7819.
[http://dx.doi.org/10.1128/MCB.24.17.7806-7819.2004] [PMID: 15314185]
[64]
Kashif, M.; Akhtar, N.; Mustafa, R. An overview of dermatological and cosmeceutical benefits of Diospyros kaki and its phytoconstituents. Rev. Bras. Farmacogn., 2017, 27(5), 650-662.
[http://dx.doi.org/10.1016/j.bjp.2017.06.004]
[65]
Zhang, T.T.; Lu, C.L.; Jiang, J.G.; Wang, M.; Wang, D.M.; Zhu, W. Bioactivities and extraction optimization of crude polysaccharides from the fruits and leaves of Rubus chingii Hu. Carbohydr. Polym., 2015, 130, 307-315.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.012] [PMID: 26076631]
[66]
Yu-Hao, D.; Chun, C.; Qiang, H.; Xiong, F. Study on a novel spherical polysaccharide from Fructus Mori with good antioxidant activity. Carbohydr. Polym., 2021, 256, 117516.
[http://dx.doi.org/10.1016/j.carbpol.2020.117516] [PMID: 33483037]
[67]
Choi, J.; Kim, M.J.; Komakech, R.; Jung, H.; Kang, Y. Anti-inflammatory activities of astringent persimmons (Diospyros kaki Thunb.) stalks of various cultivar types based on the stages of maturity in the Gyeongnam province. BMC Complement. Altern. Med., 2019, 19(1), 262.
[http://dx.doi.org/10.1186/s12906-019-2659-5] [PMID: 31547810]
[68]
Kim, K.S.; Lee, D.S.; Kim, D.C.; Yoon, C.S.; Ko, W.; Oh, H.; Kim, Y.C. Anti-inflammatory effects and mechanisms of action of coussaric and betulinic acids isolated from Diospyros kaki in lipopolysaccharide-stimulated RAW 264.7 macrophages. Molecules, 2016, 21(9), 1206.
[http://dx.doi.org/10.3390/molecules21091206] [PMID: 27618005]
[69]
Li, K.; Zeng, M.; Li, Q.; Zhou, B. Identification of polyphenolic composition in the fruits of Rubus chingii Hu and its antioxidant and antiproliferative activity on human bladder cancer T24 cells. J. Food Meas. Charact., 2019, 13(1), 51-60.
[http://dx.doi.org/10.1007/s11694-018-9918-x]
[70]
Zhang, D.Y.; Wan, Y.; Hao, J-Y.; Hu, R-Z.; Chen, C.; Yao, X-H.; Zhao, W-G.; Liu, Z-Y.; Li, L. Evaluation of the alkaloid, polyphenols, and antioxidant contents of various mulberry cultivars from different planting areas in eastern China. Ind. Crops Prod., 2018, 122, 298-307.
[http://dx.doi.org/10.1016/j.indcrop.2018.05.065]
[71]
Zhang, J.; Chen, C.; Fu, X. Fructus mori L. polysaccharide-iron chelates formed by self-embedding with iron (III) as the core exhibit good antioxidant activity. Food Funct., 2019, 10(6), 3150-3160.
[http://dx.doi.org/10.1039/C9FO00540D] [PMID: 31166348]
[72]
Kobus-Cisowska, J.; Szczepaniak, O.; Szymanowska-Powałowska, D.; Piechocka, J.; Szulc, P.; Dziedziński, M. Antioxidant potential of various solvent extract from Morus alba fruits and its major polyphenols composition. Cienc. Rural, 2020, 50(1), e20190371.
[http://dx.doi.org/10.1590/0103-8478cr20190371]
[73]
Tohma, H.S.; Gulçin, I. Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.). Int. J. Food Prop., 2010, 13(4), 657-671.
[http://dx.doi.org/10.1080/10942911003773916]
[74]
Jeon, I.H.; Kang, H.J.; Lee, H-S.; Shin, J.H.; Park, Y.G.; Jeong, S-I.; Jang, S.I. Antioxidant and anti-inflammatory activities of water-soluble extracts from different parts of kojongsi persimmon (Diospyros kaki L.). Korean J. Food Sci. Technol., 2014, 46(4), 505-510.
[http://dx.doi.org/10.9721/KJFST.2014.46.4.505]
[75]
Liu, Y.; Zhang, B.; Ibrahim, S.A.; Gao, S.S.; Yang, H.; Huang, W. Purification, characterization and antioxidant activity of polysaccharides from Flammulina velutipes residue. Carbohydr. Polym., 2016, 145, 71-77.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.020] [PMID: 27106153]
[76]
Tian, S.; Hao, C.; Xu, G.; Yang, J.; Sun, R. Optimization conditions for extracting polysaccharide from Angelica sinensis and its antioxidant activities. J. Food Drug Anal., 2017, 25(4), 766-775.
[http://dx.doi.org/10.1016/j.jfda.2016.08.012] [PMID: 28987352]
[77]
Zhao, B.; Zhang, J.; Guo, X.; Wang, J. Microwave-assisted extraction, chemical characterization of polysaccharides from Lilium davidii var. unicolor Salisb and its antioxidant activities evaluation. Food Hydrocoll., 2013, 31(2), 346-356.
[http://dx.doi.org/10.1016/j.foodhyd.2012.11.021]
[78]
Bennett, J.M.; Reeves, G.; Billman, G.E.; Sturmberg, J.P. Inflammation-nature’s way to efficiently respond to all types of challenges: Implications for understanding and managing ‘the epidemic’ of chronic diseases. Front. Med., 2018, 5(NOV), 316.
[http://dx.doi.org/10.3389/fmed.2018.00316] [PMID: 30538987]
[79]
Megha, K.B.; Joseph, X.; Akhil, V.; Mohanan, P.V. Cascade of immune mechanism and consequences of inflammatory disorders. Phytomedicine, 2021, 91, 153712.
[http://dx.doi.org/10.1016/j.phymed.2021.153712] [PMID: 34511264]
[80]
Luo, B. Insights into the advances in therapeutic drugs for neuroinflammation-related diseases. Int. J. Neurosci., 2023, 1-26.
[http://dx.doi.org/10.1080/00207454.2023.2260088] [PMID: 37722706]
[81]
Pahwa, R.; Goyal, A.; Jialal, I. Inflammatory and molecular pathways in heart failure-ischemia, HFpEF and transthyretin cardiac amyloidosis. Int. J. Mol. Sci., 2023, 20(9), 2322.