The Value of Microbiome-targeted Therapy on Lipid Indices of Patients with Type 2 Diabetes Mellitus: An Umbrella Meta-analysis of Randomized Controlled Trials

Article ID: e180124225761

  • * (Excluding Mailing and Handling)

Abstract

Background: Type 2 diabetes mellitus (T2DM) is considered a global health challenge with increasing prevalence in recent years. One of the key elements in managing T2DM patients is controlling their lipid profile. Recent studies suggest microbiome-targeted therapy (MTT) as a treatment strategy for enhancing lipid profiles in these patients.

Objective: The current study aimed to investigate the impact of MTT on lipid indices of T2DM patients by performing an umbrella approach.

Methods: Three international databases including PubMed, Scopus, and Web of Sciences were searched from inception up to April 2023 to find meta-analyses evaluating the impact of MTT (prebiotics, probiotics, and synbiotics) on the lipid profile of T2DM patients. Two independent researchers extracted data from the relevant meta-analyses. To find the source of heterogeneity various subgroup analyses were performed. Comprehensive Meta-Analyses (CMA) software version 3 was utilized for the final analysis.

Results: Based on the results of the current study MTT had a significant effect on total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) (ES: - 0.092; 95%CI: -0.111, -0.074; P< 0.001, ES: -0.109; 95%CI: -0.137, -0.081; P< 0.001, ES: -0.036; 95%CI: -0.068, -0.005; P= 0.024, ES: 0.109; 95%CI: 0.056, 0.162; P<0.000, respectively). In subgroup analysis, probiotics showed the most substantial effect on all lipid biomarkers.

Conclusion: This research has provided promising insights into the potential impact of MTT on lipid levels in patients diagnosed with T2DM. Notably, MTT had the greatest impact on HDL levels, followed by TG, TC, and LDL. As a result of our study, MTT is recommended as an adjunctive therapeutic option for T2DM treatment due to its capability to regulate lipid profiles.

[1]
Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37 (Suppl. 1): S81-90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[2]
Introduction: Standards of medical care in diabetes-2018. Diabetes Care 2018; 41 (Suppl. 1): S1-2.
[http://dx.doi.org/10.2337/dc18-Sint01] [PMID: 29222369]
[3]
Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022; 183: 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[4]
Organization WH. Diabetes 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
[5]
Sapra ABP. Diabetes 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551501/
[6]
Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes - global burden of disease and forecasted trends. J Epidemiol Glob Health 2020; 10(1): 107-11.
[http://dx.doi.org/10.2991/jegh.k.191028.001] [PMID: 32175717]
[7]
Bommer C, Sagalova V, Heesemann E, et al. Global economic burden of diabetes in adults: Projections from 2015 to 2030. Diabetes Care 2018; 41(5): 963-70.
[http://dx.doi.org/10.2337/dc17-1962] [PMID: 29475843]
[8]
Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci Rep 2020; 10(1): 14790.
[http://dx.doi.org/10.1038/s41598-020-71908-9] [PMID: 32901098]
[9]
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020; 21(17): 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[10]
Han JL, Lin HL. Intestinal microbiota and type 2 diabetes: From mechanism insights to therapeutic perspective. World J Gastroenterol 2014; 20(47): 17737-45.
[http://dx.doi.org/10.3748/wjg.v20.i47.17737] [PMID: 25548472]
[11]
Florez JC, Udler MS, Hanson RL. Genetics of type 2 diabetes. In: Cowie CC, Casagrande SS, Menke A, Cissell MA, Eberhardt MS, Meigs JB, Eds. Diabetes in America Bethesda (MD). US: National Institute of Diabetes and Digestive and Kidney Diseases 2018.
[12]
Klein S, Gastaldelli A, Yki-Järvinen H, Scherer PE. Why does obesity cause diabetes? Cell Metab 2022; 34(1): 11-20.
[http://dx.doi.org/10.1016/j.cmet.2021.12.012] [PMID: 34986330]
[13]
Maddatu J, Anderson-Baucum E, Evans-Molina C. Smoking and the risk of type 2 diabetes. Transl Res 2017; 184: 101-7.
[http://dx.doi.org/10.1016/j.trsl.2017.02.004] [PMID: 28336465]
[14]
Balti EV, Echouffo-Tcheugui JB, Yako YY, Kengne AP. Air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Res Clin Pract 2014; 106(2): 161-72.
[http://dx.doi.org/10.1016/j.diabres.2014.08.010] [PMID: 25262110]
[15]
Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: Where we are and where to go? J Nutr Biochem 2019; 63: 101-8.
[http://dx.doi.org/10.1016/j.jnutbio.2018.10.003] [PMID: 30366260]
[16]
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474(11): 1823-36.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[17]
Kaźmierczak-Siedlecka K, Daca A, Fic M, van de Wetering T, Folwarski M, Makarewicz W. Therapeutic methods of gut microbiota modification in colorectal cancer management - fecal microbiota transplantation, prebiotics, probiotics, and synbiotics. Gut Microbes 2020; 11(6): 1518-30.
[http://dx.doi.org/10.1080/19490976.2020.1764309] [PMID: 32453670]
[18]
Kaźmierczak-Siedlecka K, Roviello G, Catalano M, Polom K. Gut microbiota modulation in the context of immune-related aspects of lactobacillus spp. and bifidobacterium spp. in gastrointestinal cancers. Nutrients 2021; 13(8): 2674.
[http://dx.doi.org/10.3390/nu13082674] [PMID: 34444834]
[19]
Iatcu CO, Steen A, Covasa M. Gut microbiota and complications of type-2 diabetes. Nutrients 2021; 14(1): 166.
[http://dx.doi.org/10.3390/nu14010166] [PMID: 35011044]
[20]
Hrncir T, Hrncirova L, Kverka M, et al. Gut microbiota and NAFLD: Pathogenetic mechanisms, microbiota signatures, and therapeutic interventions. Microorganisms 2021; 9(5): 957.
[http://dx.doi.org/10.3390/microorganisms9050957] [PMID: 33946843]
[21]
Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 2021; 19(1): 55-71.
[http://dx.doi.org/10.1038/s41579-020-0433-9] [PMID: 32887946]
[22]
Huang Y, Wang X, Zhang L, et al. Effect of probiotics therapy on nonalcoholic fatty liver disease. Comput Math Methods Med 2022; 2022: 7888076.
[http://dx.doi.org/10.1155/2022/7888076] [PMID: 35677177]
[23]
Mahapatro A, Bawna F, Kumar V, et al. Anti-inflammatory effects of probiotics and synbiotics on patients with non-alcoholic fatty liver disease: An umbrella study on meta-analyses. Clin Nutr ESPEN 2023; 57: 475-86.
[http://dx.doi.org/10.1016/j.clnesp.2023.07.087] [PMID: 37739694]
[24]
Perna S, Ilyas Z, Giacosa A, et al. Is probiotic supplementation useful for the management of body weight and other anthropometric measures in adults affected by overweight and obesity with metabolic related diseases? A systematic review and meta-analysis. Nutrients 2021; 13(2): 666.
[http://dx.doi.org/10.3390/nu13020666] [PMID: 33669580]
[25]
Guo J, Shao J, Yang Y, et al. Gut microbiota in patients with polycystic ovary syndrome: A systematic review. Reprod Sci 2022; 29(1): 69-83.
[http://dx.doi.org/10.1007/s43032-020-00430-0] [PMID: 33409871]
[26]
Amini-Salehi E, Hassanipour S, Keivanlou MH, et al. The impact of gut microbiome-targeted therapy on liver enzymes in patients with nonalcoholic fatty liver disease: An umbrella meta-analysis. Nutr Rev 2023; nuad086.
[http://dx.doi.org/10.1093/nutrit/nuad086] [PMID: 37550264]
[27]
Naghipour A, Amini-Salehi E, Orang Gorabzarmakhi M, et al. Effects of gut microbial therapy on lipid profile in individuals with non-alcoholic fatty liver disease: An umbrella meta-analysis study. Syst Rev 2023; 12(1): 144.
[http://dx.doi.org/10.1186/s13643-023-02299-x] [PMID: 37605283]
[28]
Goldberg IJ. Clinical review 124: Diabetic dyslipidemia: Causes and consequences. J Clin Endocrinol Metab 2001; 86(3): 965-71.
[http://dx.doi.org/10.1210/jcem.86.3.7304] [PMID: 11238470]
[29]
Ma CX, Ma XN, Guan CH, Li YD, Mauricio D, Fu SB. Cardiovascular disease in type 2 diabetes mellitus: Progress toward personalized management. Cardiovasc Diabetol 2022; 21(1): 74.
[http://dx.doi.org/10.1186/s12933-022-01516-6] [PMID: 35568946]
[30]
Zhou H, Zhang X, Lu J. Progress on diabetic cerebrovascular diseases. Bosn J Basic Med Sci 2014; 14(4): 185-90.
[PMID: 25428668]
[31]
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021; 372(71): n71.
[PMID: 33782057]
[32]
Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. bmj 2017; 358.
[33]
He J, Zhang F, Han Y. Effect of probiotics on lipid profiles and blood pressure in patients with type 2 diabetes: A meta-analysis of RCTs. Medicine 2017; 96(51): e9166.
[http://dx.doi.org/10.1097/MD.0000000000009166]
[34]
Hu YM, Zhou F, Yuan Y, Xu YC. Effects of probiotics supplement in patients with type 2 diabetes mellitus: A meta-analysis of randomized trials. Med Clin 2017; 148(8): 362-70.
[http://dx.doi.org/10.1016/j.medcli.2016.11.036] [PMID: 28237613]
[35]
Li C, Li X, Han H, Cui H, Peng M, Wang G, et al. Effect of probiotics on metabolic profiles in type 2 diabetes mellitus. In: Medicine 2016; 95(26)
[http://dx.doi.org/10.1097/MD.0000000000004088]
[36]
Liang T, Xie X, Wu L, et al. Comparative analysis of the efficacies of probiotic supplementation and glucose-lowering drugs for the treatment of type 2 diabetes: A systematic review and meta-analysis. Front Nutr 2022; 9: 825897.
[http://dx.doi.org/10.3389/fnut.2022.825897] [PMID: 35923194]
[37]
Wang C, Zhang C, Li S, et al. Effects of probiotic supplementation on dyslipidemia in type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Foods 2020; 9(11): 1540.
[http://dx.doi.org/10.3390/foods9111540] [PMID: 33114518]
[38]
Wang X, Juan QF, He YW, Zhuang L, Fang YY, Wang YH. Multiple effects of probiotics on different types of diabetes: A systematic review and meta-analysis of randomized, placebo-controlled trials. J Pediatr Endocrinol Metab 2017; 30(6): 611-22.
[http://dx.doi.org/10.1515/jpem-2016-0230] [PMID: 28599375]
[39]
Yao K, Zeng L, He Q, Wang W, Lei J, Zou X. Effect of probiotics on glucose and lipid metabolism in type 2 diabetes mellitus: A meta-analysis of 12 randomized controlled trials. Med Sci Monit 2017; 23: 3044-53.
[http://dx.doi.org/10.12659/MSM.902600] [PMID: 28638006]
[40]
Hendijani F, Akbari V. Probiotic supplementation for management of cardiovascular risk factors in adults with type II diabetes: A systematic review and meta-analysis. Clin Nutr 2018; 37(2): 532-41.
[http://dx.doi.org/10.1016/j.clnu.2017.02.015] [PMID: 28318686]
[41]
Mahboobi S, Rahimi F, Jafarnejad S. Effects of prebiotic and synbiotic supplementation on glycaemia and lipid profile in type 2 diabetes: A meta-analysis of randomized controlled trials. Adv Pharm Bull 2018; 8(4): 565-74.
[http://dx.doi.org/10.15171/apb.2018.065] [PMID: 30607329]
[42]
Naseri K, Saadati S, Yari Z, et al. Beneficial effects of probiotic and synbiotic supplementation on some cardiovascular risk factors among individuals with prediabetes and type 2 diabetes mellitus: A grade-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials. Pharmacol Res 2022; 182: 106288.
[http://dx.doi.org/10.1016/j.phrs.2022.106288] [PMID: 35680009]
[43]
Tabrizi R, Moosazadeh M, Lankarani KB, et al. The effects of synbiotic supplementation on glucose metabolism and lipid profiles in patients with diabetes: A systematic review and meta-analysis of randomized controlled trials. Probiotics Antimicrob Proteins 2018; 10(2): 329-42.
[http://dx.doi.org/10.1007/s12602-017-9299-1] [PMID: 28677046]
[44]
Abdel Qadir YH, Hamdallah A, Sibaey EA, et al. Efficacy of probiotic supplementation in patients with diabetic nephropathy: A systematic review and meta-analysis. Clin Nutr ESPEN 2020; 40: 57-67.
[http://dx.doi.org/10.1016/j.clnesp.2020.06.019] [PMID: 33183573]
[45]
Bock PM, Telo GH, Ramalho R, et al. The effect of probiotics, prebiotics or synbiotics on metabolic outcomes in individuals with diabetes: A systematic review and meta-analysis. Diabetologia 2021; 64(1): 26-41.
[http://dx.doi.org/10.1007/s00125-020-05295-1] [PMID: 33047170]
[46]
Kasińska MA, Drzewoski J. Effectiveness of probiotics in type 2 diabetes: A meta-analysis. Pol Arch Intern Med 2015; 125(11): 803-13.
[http://dx.doi.org/10.20452/pamw.3156] [PMID: 26431318]
[47]
Kocsis T, Molnár B, Németh D, et al. Probiotics have beneficial metabolic effects in patients with type 2 diabetes mellitus: A meta-analysis of randomized clinical trials. Sci Rep 2020; 10(1): 11787.
[http://dx.doi.org/10.1038/s41598-020-68440-1] [PMID: 32678128]
[48]
Ojo O, Ojo OO, Zand N, Wang X. The effect of dietary fibre on gut microbiota, lipid profile, and inflammatory markers in patients with type 2 diabetes: A systematic review and meta-analysis of randomised controlled trials. Nutrients 2021; 13(6): 1805.
[http://dx.doi.org/10.3390/nu13061805] [PMID: 34073366]
[49]
Rittiphairoj T, Pongpirul K, Janchot K, Mueller NT, Li T. Probiotics contribute to glycemic control in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Adv Nutr 2021; 12(3): 722-34.
[http://dx.doi.org/10.1093/advances/nmaa133] [PMID: 33126241]
[50]
Sillars A, Sattar N. Management of lipid abnormalities in patients with diabetes. Curr Cardiol Rep 2019; 21(11): 147.
[http://dx.doi.org/10.1007/s11886-019-1246-1] [PMID: 31758270]
[51]
Rosenblit PD. Common medications used by patients with type 2 diabetes mellitus: What are their effects on the lipid profile? Cardiovasc Diabetol 2016; 15(1): 95.
[http://dx.doi.org/10.1186/s12933-016-0412-7] [PMID: 27417914]
[52]
Ghafouri A, Heshmati J, Heydari I, et al. Effect of synbiotic bread containing lactic acid on blood lipids and apolipoproteins in patients with type 2 diabetes: A randomized controlled trial. Food Sci Nutr 2022; 10(12): 4419-30.
[http://dx.doi.org/10.1002/fsn3.3039] [PMID: 36514747]
[53]
Sabico S, Al-Mashharawi A, Al-Daghri NM, et al. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: A randomized, double-blind, placebo-controlled trial. Clin Nutr 2019; 38(4): 1561-9.
[http://dx.doi.org/10.1016/j.clnu.2018.08.009] [PMID: 30170781]
[54]
Dehghan P, Abbasalizad Farhangi M, Tavakoli F, Aliasgarzadeh A, Akbari A. Impact of prebiotic supplementation on T-cell subsets and their related cytokines, anthropometric features and blood pressure in patients with type 2 diabetes mellitus: A randomized placebo-controlled Trial. Complement Ther Med 2015; 24.
[PMID: 26860809]
[55]
Shakeri H, Hadaegh H, Abedi F, et al. Consumption of synbiotic bread decreases triacylglycerol and VLDL levels while increasing HDL levels in serum from patients with type-2 diabetes. Lipids 2014; 49(7): 695-701.
[http://dx.doi.org/10.1007/s11745-014-3901-z] [PMID: 24706266]
[56]
Moroti C, Souza Magri LF, de Rezende Costa M, Cavallini DCU, Sivieri K. Effect of the consumption of a new symbiotic shake on glycemia and cholesterol levels in elderly people with type 2 diabetes mellitus. Lipids Health Dis 2012; 11(1): 29.
[http://dx.doi.org/10.1186/1476-511X-11-29] [PMID: 22356933]
[57]
Bayat A, Azizi-Soleiman F, Heidari-Beni M, et al. Effect of cucurbita ficifolia and probiotic yogurt consumption on blood glucose, lipid profile, and inflammatory marker in type 2 diabetes. Int J Prev Med 2016; 7(1): 30.
[http://dx.doi.org/10.4103/2008-7802.175455] [PMID: 26955460]
[58]
Mirjalili M, Salari Sharif A, Sangouni AA, Emtiazi H, Mozaffari-Khosravi H. Effect of probiotic yogurt consumption on glycemic control and lipid profile in patients with type 2 diabetes mellitus: A randomized controlled trial. Clin Nutr ESPEN 2023; 54: 144-9.
[http://dx.doi.org/10.1016/j.clnesp.2023.01.014] [PMID: 36963856]
[59]
Gargari BP, Namazi N, Khalili M, Sarmadi B, Jafarabadi MA, Dehghan P. Is there any place for resistant starch, as alimentary prebiotic, for patients with type 2 diabetes? Complement Ther Med 2015; 23(6): 810-5.
[http://dx.doi.org/10.1016/j.ctim.2015.09.005] [PMID: 26645521]
[60]
Feizollahzadeh S, Ghiasvand R, Rezaei A, Khanahmad H, Sadeghi A, Hariri M. Effect of probiotic soy milk on serum levels of adiponectin, inflammatory mediators, lipid profile, and fasting blood glucose among patients with type II diabetes mellitus. Probiotics Antimicrob Proteins 2017; 9(1): 41-7.
[http://dx.doi.org/10.1007/s12602-016-9233-y] [PMID: 27757829]
[61]
Salazar J, Angarita L, Morillo V, et al. Microbiota and diabetes mellitus: Role of lipid mediators. Nutrients 2020; 12(10): 3039.
[http://dx.doi.org/10.3390/nu12103039] [PMID: 33023000]
[62]
Gurung M, Li Z, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020; 51: 102590.
[http://dx.doi.org/10.1016/j.ebiom.2019.11.051] [PMID: 31901868]
[63]
Ghosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal barrier dysfunction, LPS translocation, and disease development. J Endocr Soc 2020; 4(2): bvz039.
[http://dx.doi.org/10.1210/jendso/bvz039] [PMID: 32099951]
[64]
Mohammad S, Thiemermann C. Role of metabolic endotoxemia in systemic inflammation and potential interventions. Front Immunol 2021; 11: 594150.
[http://dx.doi.org/10.3389/fimmu.2020.594150] [PMID: 33505393]
[65]
Stephens M, von der Weid PY. Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner. Gut Microbes 2020; 11(3): 421-32.
[http://dx.doi.org/10.1080/19490976.2019.1629235] [PMID: 31203717]
[66]
Randeria SN, Thomson GJA, Nell TA, Roberts T, Pretorius E. Inflammatory cytokines in type 2 diabetes mellitus as facilitators of hypercoagulation and abnormal clot formation. Cardiovasc Diabetol 2019; 18(1): 72.
[http://dx.doi.org/10.1186/s12933-019-0870-9] [PMID: 31164120]
[67]
Liang H, Hussey SE, Sanchez-Avila A, Tantiwong P, Musi N. Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS One 2013; 8(5): e63983.
[http://dx.doi.org/10.1371/journal.pone.0063983] [PMID: 23704966]
[68]
Yoshida N, Emoto T, Yamashita T, et al. Bacteroides vulgatus and bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation 2018; 138(22): 2486-98.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.033714] [PMID: 30571343]
[69]
Zhu C, Song K, Shen Z, et al. Roseburia intestinalis inhibits interleukin 17 excretion and promotes regulatory T cells differentiation in colitis. Mol Med Rep 2018; 17(6): 7567-74.
[http://dx.doi.org/10.3892/mmr.2018.8833] [PMID: 29620246]
[70]
Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 2021; 13(1): 1-24.
[http://dx.doi.org/10.1080/19490976.2021.1897212] [PMID: 33764858]
[71]
Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 2019; 10: 277.
[http://dx.doi.org/10.3389/fimmu.2019.00277] [PMID: 30915065]
[72]
Ma Q, Li Y, Wang J, et al. Investigation of gut microbiome changes in type 1 diabetic mellitus rats based on high-throughput sequencing. Biomed Pharmacother 2020; 124: 109873.
[http://dx.doi.org/10.1016/j.biopha.2020.109873] [PMID: 31986412]
[73]
Lau WL, Vaziri ND. Gut microbial short-chain fatty acids and the risk of diabetes. Nat Rev Nephrol 2019; 15(7): 389-90.
[http://dx.doi.org/10.1038/s41581-019-0142-7] [PMID: 30918350]
[74]
Hernández MAG, Canfora EE, Jocken JWE, Blaak EE. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 2019; 11(8): 1943.
[http://dx.doi.org/10.3390/nu11081943] [PMID: 31426593]
[75]
Larasati RA, Harbuwono DS, Rahajeng E, et al. The role of butyrate on monocyte migration and inflammation response in patient with type 2 diabetes mellitus. Biomedicines 2019; 7(4): 74.
[http://dx.doi.org/10.3390/biomedicines7040074] [PMID: 31554278]
[76]
Snelson M, de Pasquale C, Ekinci EI, Coughlan MT. Gut microbiome, prebiotics, intestinal permeability and diabetes complications. Best Pract Res Clin Endocrinol Metab 2021; 35(3): 101507.
[http://dx.doi.org/10.1016/j.beem.2021.101507] [PMID: 33642218]
[77]
Iqbal Z, Ahmed S, Tabassum N, Bhattacharya R, Bose D. Role of probiotics in prevention and treatment of enteric infections: A comprehensive review. 3 Biotech 2021; 11(5): 342.
[78]
Jiang S, Xie S, Lv D, et al. A reduction in the butyrate producing species Roseburia spp. and Faecalibacterium prausnitzii is associated with chronic kidney disease progression. Antonie van Leeuwenhoek 2016; 109(10): 1389-96.
[http://dx.doi.org/10.1007/s10482-016-0737-y] [PMID: 27431681]
[79]
Lee B, Moon KM, Kim CY. Tight junction in the intestinal epithelium: Its association with diseases and regulation by phytochemicals. J Immunol Res 2018; 2018: 2645465.
[http://dx.doi.org/10.1155/2018/2645465] [PMID: 30648119]
[80]
Chelakkot C, Choi Y, Kim DK, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med 2018; 50(2): e450.
[http://dx.doi.org/10.1038/emm.2017.282] [PMID: 29472701]
[81]
Wang Q, Guo H, Mao W, Qian X, Liu Y. The oral delivery system of modified GLP-1 by probiotics for T2DM. Pharmaceutics 2023; 15(4): 1202.
[http://dx.doi.org/10.3390/pharmaceutics15041202] [PMID: 37111687]
[82]
Yadav H, Lee JH, Lloyd J, Walter P, Rane SG. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem 2013; 288(35): 25088-97.
[http://dx.doi.org/10.1074/jbc.M113.452516] [PMID: 23836895]
[83]
Müller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30: 72-130.
[http://dx.doi.org/10.1016/j.molmet.2019.09.010] [PMID: 31767182]
[84]
Zhang Y, Parajuli KR, Fava GE, et al. GLP-1 receptor in pancreatic α-cells regulates glucagon secretion in a glucose-dependent bidirectional manner. Diabetes 2019; 68(1): 34-44.
[http://dx.doi.org/10.2337/db18-0317] [PMID: 30389749]
[85]
Halim MA, Degerblad M, Sundbom M, et al. Glucagon-like peptide-1 inhibits prandial gastrointestinal motility through myenteric neuronal mechanisms in humans. J Clin Endocrinol Metab 2018; 103(2): 575-85.
[http://dx.doi.org/10.1210/jc.2017-02006] [PMID: 29177486]
[86]
Aldawsari M, Almadani FA, Almuhammadi N, Algabsani S, Alamro Y, Aldhwayan M. The efficacy of GLP-1 analogues on appetite parameters, gastric emptying, food preference and taste among adults with obesity: systematic review of randomized controlled trials. Diabetes Metab Syndr Obes 2023; 16: 575-95.
[http://dx.doi.org/10.2147/DMSO.S387116] [PMID: 36890965]
[87]
Niibo M, Shirouchi B, Umegatani M, et al. Probiotic Lactobacillus gasseri SBT2055 improves insulin secretion in a diabetic rat model. J Dairy Sci 2019; 102(2): 997-1006.
[http://dx.doi.org/10.3168/jds.2018-15203] [PMID: 30471910]
[88]
Zhang J, Wang S, Zeng Z, Qin Y, Shen Q, Li P. Anti-diabetic effects of Bifidobacterium animalis 01 through improving hepatic insulin sensitivity in type 2 diabetic rat model. J Funct Foods 2020; 67: 103843.
[http://dx.doi.org/10.1016/j.jff.2020.103843]
[89]
Khalili L, Alipour B, Asghari Jafar-Abadi M, et al. The effects of lactobacillus casei on glycemic response, serum sirtuin1 and fetuina levels in patients with type 2 diabetes mellitus: A randomized controlled trial. Iran Biomed J 2019; 23(1): 68-77.
[http://dx.doi.org/10.29252/ibj.23.1.68] [PMID: 29803203]