The Potential of Epigallocatechin Gallate in Targeting Cancer Stem Cells: A Comprehensive Review

Page: [5255 - 5280] Pages: 26

  • * (Excluding Mailing and Handling)

Abstract

The dreadful scenario of cancer prevails due to the presence of cancer stem cells (CSCs), which contribute to tumor growth, metastasis, invasion, resistance to chemo- and radiotherapy, and recurrence. CSCs are a small subpopulation of cells within the tumor that are characterized by self-renewal capability and have the potential to manifest heterogeneous lineages of cancer cells that constitute the tumor. The major bioactive green tea polyphenol (-)-epigallocatechin gallate (EGCG) has been fruitful in downgrading cancer stemness signaling and CSC biomarkers in cancer progression. EGCG has been evidenced to maneuver extrinsic and intrinsic apoptotic pathways in order to decrease the viability of CSCs. Cancer stemness is intricately related to epithelial-mesenchymal transition (EMT), metastasis and therapy resistance, and EGCG has been evidenced to regress all these CSC-related effects. By inhibiting CSC characteristics EGCG has also been evidenced to sensitize the tumor cells to radiotherapy and chemotherapy. However, the use of EGCG in in vitro and in vivo cancer models raises concern about its bioavailability, stability and efficacy against spheroids raised from parental cells. Therefore, novel nano formulations of EGCG and adjuvant therapy of EGCG with other phytochemicals or drugs or small molecules may have a better prospect in targeting CSCs. However, extensive clinical research is still awaited to elucidate a full proof impact of EGCG in cancer therapy.

[1]
Lapidot, T.; Sirard, C.; Vormoor, J.; Murdoch, B.; Hoang, T.; Caceres-Cortes, J.; Minden, M.; Paterson, B.; Caligiuri, M.A.; Dick, J.E. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367(6464), 645-648.
[http://dx.doi.org/10.1038/367645a0] [PMID: 7509044]
[2]
Visvader, J.E.; Lindeman, G.J. Cancer stem cells: Current status and evolving complexities. Cell Stem Cell, 2012, 10(6), 717-728.
[http://dx.doi.org/10.1016/j.stem.2012.05.007] [PMID: 22704512]
[3]
Greene, R.; Pisano, M.M. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. Birth Defects Res. C Embryo Today, 2012, 90(2), 133-154.
[http://dx.doi.org/10.1002/bdrc.20180] [PMID: 20544696]
[4]
Zhou, B.B.S.; Zhang, H.; Damelin, M.; Geles, K.G.; Grindley, J.C.; Dirks, P.B. Tumour-initiating cells: Challenges and opportunities for anticancer drug discovery. Nat. Rev. Drug Discov., 2009, 8(10), 806-823.
[http://dx.doi.org/10.1038/nrd2137] [PMID: 19794444]
[5]
Fujiki, H.; Sueoka, E.; Rawangkan, A.; Suganuma, M. Human cancer stem cells are a target for cancer prevention using (−)-epigallocatechin gallate J. Cancer. Res. Clin. Oncol2, 2017, 143(12), 2401-2412.
[6]
Fujiki, H.; Watanabe, T.; Sueoka, E.; Rawangkan, A.; Suganuma, M. Cancer prevention with green tea and its principal constituent, EGCG: From early investigations to current focus on human cancer stem cells. Mol. Cells, 2018, 41(2), 73-82.
[PMID: 29429153]
[7]
Gan, R.Y.; Li, H.B.; Sui, Z.Q.; Corke, H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit. Rev. Food Sci. Nutr., 2018, 58(6), 924-941.
[http://dx.doi.org/10.1080/10408398.2016.1231168] [PMID: 27645804]
[8]
Cione, E.; La Torre, C.; Cannataro, R.; Caroleo, M.C.; Plastina, P.; Gallelli, L. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: From dietary sources to human MicroRNA modulation. Molecules, 2019, 25(1), 63.
[http://dx.doi.org/10.3390/molecules25010063] [PMID: 31878082]
[9]
Chung, S.S.; Vadgama, J.V. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling. Anticancer Res., 2015, 35(1), 39-46.
[PMID: 25550533]
[10]
Rather, R.A.; Bhagat, M. Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities. Front. Cell Dev. Biol., 2018, 6, 10.
[http://dx.doi.org/10.3389/fcell.2018.00010] [PMID: 29497610]
[11]
Appari, M.; Babu, K.R.; Kaczorowski, A.; Gros, W.; Her, I. Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int. J. Oncol., 2014, 45(4), 1391-1400.
[http://dx.doi.org/10.3892/ijo.2014.2539] [PMID: 25017900]
[12]
Chen, D.; Pamu, S.; Cui, Q.; Chan, T.H.; Dou, Q.P. Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells. Bioorg. Med. Chem., 2012, 20(9), 3031-3037.
[http://dx.doi.org/10.1016/j.bmc.2012.03.002] [PMID: 22459208]
[13]
Fujiki, H.; Suganuma, M.; Imai, K.; Nakachi, K. Green tea: Cancer preventive beverage and/or drug. Cancer Lett., 2002, 188(1-2), 9-13.
[http://dx.doi.org/10.1016/S0304-3835(02)00379-8] [PMID: 12406542]
[14]
Granja, A.; Pinheiro, M.; Reis, S. Epigallocatechin gallate nanodelivery systems for cancer therapy. Nutrients, 2016, 8(5), 307.
[http://dx.doi.org/10.3390/nu8050307] [PMID: 27213442]
[15]
Andreu Fernández, V.; Almeida Toledano, L.; Pizarro Lozano, N.; Navarro Tapia, E.; Gómez Roig, M.D.; De la Torre Fornell, R.; García Algar, Ó. Bioavailability of epigallocatechin gallate administered with different nutritional strategies in healthy volunteers. Antioxidants, 2020, 9(5), 440.
[http://dx.doi.org/10.3390/antiox9050440] [PMID: 32438698]
[16]
Shirakami, Y.; Shimizu, M. Possible mechanisms of green tea and its constituents against cancer. Molecules, 2018, 23(9), 2284.
[http://dx.doi.org/10.3390/molecules23092284] [PMID: 30205425]
[17]
Wang, L.; Li, P.; Feng, K. EGCG adjuvant chemotherapy: Current status and future perspectives. Eur. J. Med. Chem., 2023, 250, 115197.
[http://dx.doi.org/10.1016/j.ejmech.2023.115197] [PMID: 36780831]
[18]
Farabegoli, F.; Pinheiro, M. Epigallocatechin-3-gallate delivery in lipid-based nanoparticles: Potentiality and perspectives for future applications in cancer chemoprevention and therapy. Front. Pharmacol., 2022, 13, 809706.
[http://dx.doi.org/10.3389/fphar.2022.809706] [PMID: 35496283]
[19]
Eng, Q.Y.; Thanikachalam, P.V.; Ramamurthy, S. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J. Ethnopharmacol., 2018, 210, 296-310.
[http://dx.doi.org/10.1016/j.jep.2017.08.035] [PMID: 28864169]
[20]
Yong Feng, W. Metabolism of green tea catechins: An overview. Curr. Drug Metab., 2006, 7(7), 755-809.
[http://dx.doi.org/10.2174/138920006778520552] [PMID: 17073579]
[21]
Li, C.; Lee, M.J.; Sheng, S.; Meng, X.; Prabhu, S.; Winnik, B.; Huang, B.; Chung, J.Y.; Yan, S.; Ho, C.T.; Yang, C.S. Structural identification of two metabolites of catechins and their kinetics in human urine and blood after tea ingestion. Chem. Res. Toxicol., 2000, 13(3), 177-184.
[http://dx.doi.org/10.1021/tx9901837] [PMID: 10725114]
[22]
Li, S.; Lo, C.Y.; Pan, M.H.; Lai, C.S.; Ho, C.T. Black tea: Chemical analysis and stability. Food Funct., 2013, 4(1), 10-18.
[http://dx.doi.org/10.1039/C2FO30093A] [PMID: 23037977]
[23]
Takagaki, A.; Nanjo, F. Metabolism of (-)-epigallocatechin gallate by rat intestinal flora. J. Agric. Food Chem., 2010, 58(2), 1313-1321.
[http://dx.doi.org/10.1021/jf903375s] [PMID: 20043675]
[24]
Mereles, D.; Hunstein, W. Epigallocatechin-3-gallate (EGCG) for clinical trials: More pitfalls than promises? Int. J. Mol. Sci., 2011, 12(9), 5592-5603.
[http://dx.doi.org/10.3390/ijms12095592] [PMID: 22016611]
[25]
Ishii, T.; Ichikawa, T.; Minoda, K.; Kusaka, K.; Ito, S.; Suzuki, Y.; Akagawa, M.; Mochizuki, K.; Goda, T.; Nakayama, T. Human serum albumin as an antioxidant in the oxidation of (-)-epigallocatechin gallate: Participation of reversible covalent binding for interaction and stabilization. Biosci. Biotechnol. Biochem., 2011, 75(1), 100-106.
[http://dx.doi.org/10.1271/bbb.100600] [PMID: 21228463]
[26]
Lee, M.J.; Maliakal, P.; Chen, L.; Meng, X.; Bondoc, F.Y.; Prabhu, S.; Lambert, G.; Mohr, S.; Yang, C.S. Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans: Formation of different metabolites and individual variability. Cancer Epidemiol. Biomarkers Prev., 2002, 11(10 Pt 1), 1025-1032.
[PMID: 12376503]
[27]
Giunta, B.; Hou, H.; Zhu, Y.; Salemi, J.; Ruscin, A.; Shytle, R.D.; Tan, J. Fish oil enhances anti-amyloidogenic properties of green tea EGCG in Tg2576 mice. Neurosci. Lett., 2010, 471(3), 134-138.
[http://dx.doi.org/10.1016/j.neulet.2010.01.026] [PMID: 20096749]
[28]
Landis-Piwowar, K.R.; Wan, S.B.; Wiegand, R.A.; Kuhn, D.J.; Chan, T.H.; Dou, Q.P. Methylation suppresses the proteasome- inhibitory function of green tea polyphenols. J. Cell. Physiol., 2007, 213(1), 252-260.
[http://dx.doi.org/10.1002/jcp.21124] [PMID: 17477351]
[29]
Yoshizawa, S.; Horiuchi, T.; Fujiki, H.; Yoshida, T.; Okuda, T.; Sugimura, T. Antitumor promoting activity of (−)- epigallocatechin gallate, the main constituent of “Tannin” in green tea. Phytother. Res., 1987, 1(1), 44-47.
[http://dx.doi.org/10.1002/ptr.2650010110]
[30]
Watanabe, T.; Kuramochi, H.; Takahashi, A.; Imai, K.; Katsuta, N.; Nakayama, T.; Fujiki, H.; Suganuma, M. Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (−)-epigallocatechin gallate-treated cells. J. Cancer Res. Clin. Oncol., 2012, 138(5), 859-866.
[http://dx.doi.org/10.1007/s00432-012-1159-5] [PMID: 22297840]
[31]
Suganuma, M.; Takahashi, A.; Watanabe, T.; Iida, K.; Matsuzaki, T.; Yoshikawa, H.; Fujiki, H. Biophysical approach to mechanisms of cancer prevention and treatment with green tea catechins. Molecules, 2016, 21(11), 1566.
[http://dx.doi.org/10.3390/molecules21111566] [PMID: 27869750]
[32]
Nakachi, K.; Matsuyama, S.; Miyake, S.; Suganuma, M.; Imai, K. Preventive effects of drinking green tea on cancer and cardiovascular disease: Epidemiological evidence for multiple targeting prevention. Biofactors, 2000, 13(1-4), 49-54.
[http://dx.doi.org/10.1002/biof.5520130109] [PMID: 11237198]
[33]
Seufferlein, T.; Ettrich, T.J.; Menzler, S.; Messmann, H.; Kleber, G.; Zipprich, A.; Frank-Gleich, S.; Algül, H.; Metter, K.; Odemar, F.; Heuer, T.; Hügle, U.; Behrens, R.; Berger, A.W.; Scholl, C.; Schneider, K.L.; Perkhofer, L.; Rohlmann, F.; Muche, R.; Stingl, J.C. Green tea extract to prevent colorectal adenomas, results of a randomized, placebo-controlled clinical trial. Am. J. Gastroenterol., 2022, 117(6), 884-894.
[http://dx.doi.org/10.14309/ajg.0000000000001706] [PMID: 35213393]
[34]
Mineva, N.D.; Paulson, K.E.; Naber, S.P.; Yee, A.S.; Sonenshein, G.E. Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells. PLoS One, 2013, 8(9), e73464.
[http://dx.doi.org/10.1371/journal.pone.0073464] [PMID: 24039951]
[35]
Giró-Perafita, A.; Rabionet, M.; Planas, M.; Feliu, L.; Ciurana, J.; Ruiz-Martínez, S.; Puig, T. EGCG-derivative G28 shows high efficacy inhibiting the mammosphere-forming capacity of sensitive and resistant TNBC models. Molecules, 2019, 24(6), 1027.
[http://dx.doi.org/10.3390/molecules24061027] [PMID: 30875891]
[36]
Hajipour, H.; Hamishehkar, H.; Nazari Soltan Ahmad, S.; Barghi, S.; Maroufi, N. F.; Taheri, R. A. Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers. Artif. Cells, Nanomedicine Biotechnol., 2018, 46(sup1), 283-292.
[http://dx.doi.org/10.1080/21691401.2017.1423493]
[37]
Jiang, P.; Xu, C.; Chen, L.; Chen, A.; Wu, X.; Zhou, M.; Haq, I.; Mariyam, Z.; Feng, Q. EGCG inhibits CSC- like properties through targeting miR- 485/CD44 axis in A549- cisplatin resistant cells. Mol. Carcinog., 2018, 57(12), 1835-1844.
[http://dx.doi.org/10.1002/mc.22901] [PMID: 30182373]
[38]
Zhang, L.; Xie, J.; Gan, R.; Wu, Z.; Luo, H.; Chen, X.; Lu, Y.; Wu, L.; Zheng, D. Synergistic inhibition of lung cancer cells by EGCG and NF-κB inhibitor BAY11-7082. J. Cancer, 2019, 10(26), 6543-6556.
[http://dx.doi.org/10.7150/jca.34285] [PMID: 31777584]
[39]
Sakamoto, Y.; Terashita, N.; Muraguchi, T.; Fukusato, T.; Kubota, S. Effects of epigallocatechin-3-gallate (EGCG) on A549 lung cancer tumor growth and angiogenesis. Biosci. Biotechnol. Biochem., 2013, 77(9), 1799-1803.
[http://dx.doi.org/10.1271/bbb.120882] [PMID: 24018658]
[40]
Li, M.; Li, J.J.; Gu, Q.H.; an, J.; Cao, L.M.; Yang, H.P.; Hu, C.P. EGCG induces lung cancer A549 cell apoptosis by regulating Ku70 acetylation. Oncol. Rep., 2016, 35(4), 2339-2347.
[http://dx.doi.org/10.3892/or.2016.4587] [PMID: 26794417]
[41]
Chen, B.H.; Hsieh, C.H.; Tsai, S.Y.; Wang, C.Y.; Wang, C.C. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. Sci. Rep., 2020, 10(1), 5163.
[http://dx.doi.org/10.1038/s41598-020-62136-2] [PMID: 32198390]
[42]
Toden, S.; Tran, H.M.; Tovar-Camargo, O.A.; Okugawa, Y.; Goel, A. Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer. Oncotarget, 2016, 7(13), 16158-16171.
[http://dx.doi.org/10.18632/oncotarget.7567] [PMID: 26930714]
[43]
Datta, S.; Sinha, D. Low dose epigallocatechin- 3- gallate revives doxorubicin responsiveness by a redox- sensitive pathway in A549 lung adenocarcinoma cells. J. Biochem. Mol. Toxicol., 2022, 36(4), e22999.
[http://dx.doi.org/10.1002/jbt.22999] [PMID: 35218280]
[44]
Datta, S.; Bishayee, A.; Sinha, D. Black tea bioactive phytoconstituents realign NRF2 for anticancer activity in lung adenocarcinoma. Front. Pharmacol., 2023, 14, 1176819.
[http://dx.doi.org/10.3389/fphar.2023.1176819] [PMID: 37305533]
[45]
Datta, S.; Sinha, D. EGCG maintained Nrf2-mediated redox homeostasis and minimized etoposide resistance in lung cancer cells. J. Funct. Foods, 2019, 62, 103553.
[http://dx.doi.org/10.1016/j.jff.2019.103553]
[46]
Pan, T.; Han, D.; Xu, Y.; Peng, W.; Bai, L.; Zhou, X.; He, H. LC–MS based metabolomics study of the effects of EGCG on A549 cells. Front. Pharmacol., 2021, 12, 732716.
[http://dx.doi.org/10.3389/fphar.2021.732716] [PMID: 34650434]
[47]
Chen, Y.; Wang, X.Q.; Zhang, Q.; Zhu, J.Y.; Li, Y.; Xie, C.F.; Li, X.T.; Wu, J.S.; Geng, S.S.; Zhong, C.Y.; Han, H.Y. (−)-Epigallocatechin-3-Gallate inhibits colorectal cancer stem cells by suppressing wnt/β-catenin pathway. Nutrients, 2017, 9(6), 572.
[http://dx.doi.org/10.3390/nu9060572] [PMID: 28587207]
[48]
Seok, J.H.; Kim, D.H.; Kim, H.J.; Jo, H.H.; Kim, E.Y.; Jeong, J.H.; Park, Y.S.; Lee, S.H.; Kim, D.J.; Nam, S.Y.; Lee, B.J.; Lee, H.J. Epigallocatechin-3-gallate suppresses hemin-aggravated colon carcinogenesis through Nrf2-inhibited mitochondrial reactive oxygen species accumulation. J. Vet. Sci., 2022, 23(5), e74.
[http://dx.doi.org/10.4142/jvs.22097] [PMID: 36174978]
[49]
Kassouri, C.; Rodriguez Torres, S.; Gonzalez Suarez, N.; Duhamel, S.; Annabi, B. EGCG prevents the transcriptional reprogramming of an inflammatory and immune-suppressive molecular signature in macrophage-like differentiated human HL60 promyelocytic leukemia cells. Cancers, 2022, 14(20), 5065.
[http://dx.doi.org/10.3390/cancers14205065] [PMID: 36291849]
[50]
Roy, M.; Chakrabarty, S.; Sinha, D.; Bhattacharya, R.K.; Siddiqi, M. Anticlastogenic, antigenotoxic and apoptotic activity of epigallocatechin gallate: A green tea polyphenol. Mutat. Res., 2003, 523-524, 33-41.
[http://dx.doi.org/10.1016/S0027-5107(02)00319-6] [PMID: 12628501]
[51]
Chiou, Y.S.; Sang, S.; Cheng, K.H.; Ho, C.T.; Wang, Y.J.; Pan, M.H. Peracetylated (−)-epigallocatechin-3-gallate (AcEGCG) potently prevents skin carcinogenesis by suppressing the PKD1-dependent signaling pathway in CD34 + skin stem cells and skin tumors. Carcinogenesis, 2013, 34(6), 1315-1322.
[http://dx.doi.org/10.1093/carcin/bgt042] [PMID: 23385063]
[52]
da Silva-Diz, V.; Lorenzo-Sanz, L.; Bernat-Peguera, A.; Lopez-Cerda, M.; Muñoz, P. Cancer cell plasticity: Impact on tumor progression and therapy response. Semin. Cancer Biol., 2018, 53, 48-58.
[http://dx.doi.org/10.1016/j.semcancer.2018.08.009] [PMID: 30130663]
[53]
He, K.; Xu, T.; Xu, Y.; Ring, A.; Kahn, M.; Goldkorn, A. Cancer cells acquire a drug resistant, highly tumorigenic, cancer stem- like phenotype through modulation of the PI3K/Akt/β- catenin/CBP pathway. Int. J. Cancer, 2014, 134(1), 43-54.
[http://dx.doi.org/10.1002/ijc.28341] [PMID: 23784558]
[54]
Lau, E.Y.T.; Ho, N.P.Y.; Lee, T.K.W. Cancer stem cells and their microenvironment: Biology and therapeutic implications. Stem Cells Int., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/3714190] [PMID: 28337221]
[55]
Takebe, N.; Miele, L.; Harris, P.J.; Jeong, W.; Bando, H.; Kahn, M.; Yang, S.X.; Ivy, S.P. Targeting notch, hedgehog, and wnt pathways in cancer stem cells: Clinical update. Nat. Rev. Clin. Oncol., 2015, 12(8), 445-464.
[http://dx.doi.org/10.1038/nrclinonc.2015.61] [PMID: 25850553]
[56]
Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[57]
Shiozawa, Y.; Nie, B.; Pienta, K.J.; Morgan, T.M.; Taichman, R.S. Cancer stem cells and their role in metastasis. Pharmacol. Ther., 2013, 138(2), 285-293.
[http://dx.doi.org/10.1016/j.pharmthera.2013.01.014] [PMID: 23384596]
[58]
Schatton, T.; Frank, M.H. Cancer stem cells and human malignant melanoma. Pigment Cell Melanoma Res., 2008, 21(1), 39-55.
[http://dx.doi.org/10.1111/j.1755-148X.2007.00427.x] [PMID: 18353142]
[59]
Zhang, D.; Tang, D.G.; Rycaj, K. Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Semin. Cancer Biol., 2018, 52(Pt 2), 94-106.
[http://dx.doi.org/10.1016/j.semcancer.2018.05.001] [PMID: 29752993]
[60]
Mamun, M.A.; Mannoor, K.; Cao, J.; Qadri, F.; Song, X. SOX2 in cancer stemness: Tumor malignancy and therapeutic potentials. J. Mol. Cell Biol., 2020, 12(2), 85-98.
[http://dx.doi.org/10.1093/jmcb/mjy080] [PMID: 30517668]
[61]
Mei, Y.; Liu, Y. Bin; Cao, S.; Tian, Z. W.; Zhou, H. H. RIF1 promotes tumor growth and cancer stem cell-like traits in NSCLC by protein phosphatase 1-mediated activation of Wnt/β-Catenin signaling. Cell Death Dis., 2021, 12(9), 812.
[http://dx.doi.org/10.1038/s41419-021-04097-6] [PMID: 34453036]
[62]
Medema, J.P.; Vermeulen, L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature, 2011, 474(7351), 318-326.
[http://dx.doi.org/10.1038/nature10212] [PMID: 21677748]
[63]
Huang, H.; Wang, C.; Liu, F.; Li, H.Z.; Peng, G.; Gao, X.; Dong, K.Q.; Wang, H.R.; Kong, D.P.; Qu, M.; Dai, L.H.; Wang, K.J.; Zhou, Z.; Yang, J.; Yang, Z.Y.; Cheng, Y.Q.; Tian, Q.Q.; Liu, D.; Xu, C.L.; Xu, D.F.; Cui, X.G.; Sun, Y.H. Reciprocal network between cancer stem-like cells and macrophages facilitates the progression and androgen deprivation therapy resistance of prostate cancer. Clin. Cancer Res., 2018, 24(18), 4612-4626.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0461] [PMID: 29691294]
[64]
Ji, C.; Yang, L.; Yi, W.; Xiang, D.; Wang, Y.; Zhou, Z.; Qian, F.; Ren, Y.; Cui, W.; Zhang, X.; Zhang, P.; Wang, J.M.; Cui, Y.; Bian, X. Capillary morphogenesis gene 2 maintains gastric cancer stem-like cell phenotype by activating a Wnt/β-catenin pathway. Oncogene, 2018, 37(29), 3953-3966.
[http://dx.doi.org/10.1038/s41388-018-0226-z] [PMID: 29662192]
[65]
Nakano, M.; Kikushige, Y.; Miyawaki, K.; Kunisaki, Y.; Mizuno, S.; Takenaka, K.; Tamura, S.; Okumura, Y.; Ito, M.; Ariyama, H.; Kusaba, H.; Nakamura, M.; Maeda, T.; Baba, E.; Akashi, K. Dedifferentiation process driven by TGF-beta signaling enhances stem cell properties in human colorectal cancer. Oncogene, 2019, 38(6), 780-793.
[http://dx.doi.org/10.1038/s41388-018-0480-0] [PMID: 30181548]
[66]
Pan, X.; Zhao, B.; Song, Z.; Han, S.; Wang, M. Estrogen receptor-α36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells. J. Pharmacol. Sci., 2016, 130(2), 85-93.
[http://dx.doi.org/10.1016/j.jphs.2015.12.003] [PMID: 26810571]
[67]
Chaffer, C.L.; San Juan, B.P.; Lim, E.; Weinberg, R.A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev., 2016, 35(4), 645-654.
[http://dx.doi.org/10.1007/s10555-016-9648-7] [PMID: 27878502]
[68]
Bierie, B.; Pierce, S.E.; Kroeger, C.; Stover, D.G.; Pattabiraman, D.R.; Thiru, P.; Liu Donaher, J.; Reinhardt, F.; Chaffer, C.L.; Keckesova, Z.; Weinberg, R.A. Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc. Natl. Acad. Sci. USA, 2017, 114(12), E2337-E2346.
[http://dx.doi.org/10.1073/pnas.1618298114] [PMID: 28270621]
[69]
Marquardt, S.; Solanki, M.; Spitschak, A.; Vera, J.; Pützer, B.M. Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin. Cancer Biol., 2018, 53, 90-109.
[http://dx.doi.org/10.1016/j.semcancer.2018.06.006] [PMID: 29966677]
[70]
El Hout, M.; Dos Santos, L.; Hamaï, A.; Mehrpour, M. A promising new approach to cancer therapy: Targeting iron metabolism in cancer stem cells. Semin. Cancer Biol., 2018, 53, 125-138.
[http://dx.doi.org/10.1016/j.semcancer.2018.07.009] [PMID: 30071257]
[71]
Xu, F.; Wang, F.; Yang, T.; Sheng, Y.; Zhong, T.; Chen, Y. Differential drug resistance acquisition to doxorubicin and paclitaxel in breast cancer cells. Cancer Cell Int., 2014, 14(1), 538.
[http://dx.doi.org/10.1186/s12935-014-0142-4] [PMID: 25550688]
[72]
Xu, X.; Chai, S.; Wang, P.; Zhang, C.; Yang, Y.; Yang, Y.; Wang, K. Aldehyde dehydrogenases and cancer stem cells. Cancer Lett., 2015, 369(1), 50-57.
[http://dx.doi.org/10.1016/j.canlet.2015.08.018] [PMID: 26319899]
[73]
Wang, Y.H.; Scadden, D.T. Harnessing the apoptotic programs in cancer stem- like cells. EMBO Rep., 2015, 16(9), 1084-1098.
[http://dx.doi.org/10.15252/embr.201439675] [PMID: 26253117]
[74]
Bao, S.; Wu, Q.; McLendon, R.E.; Hao, Y.; Shi, Q.; Hjelmeland, A.B.; Dewhirst, M.W.; Bigner, D.D.; Rich, J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444(7120), 756-760.
[http://dx.doi.org/10.1038/nature05236] [PMID: 17051156]
[75]
Lee, H.H.; Bellat, V.; Law, B. Chemotherapy induces adaptive drug resistance and metastatic potentials via phenotypic CXCR4-expressing cell state transition in ovarian cancer. PLoS One, 2017, 12(2), e0171044.
[http://dx.doi.org/10.1371/journal.pone.0171044] [PMID: 28196146]
[76]
Goldman, A.; Majumder, B.; Dhawan, A.; Ravi, S.; Goldman, D.; Kohandel, M.; Majumder, P.K.; Sengupta, S. Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nat. Commun., 2015, 6(1), 6139.
[http://dx.doi.org/10.1038/ncomms7139] [PMID: 25669750]
[77]
Gammon, L.; Biddle, A.; Heywood, H.K.; Johannessen, A.C.; Mackenzie, I.C. Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. PLoS One, 2013, 8(4), e62493.
[http://dx.doi.org/10.1371/journal.pone.0062493] [PMID: 23638097]
[78]
Liu, P-P.; Liao, J.; Tang, Z-J.; Wu, W-J.; Yang, J.; Zeng, Z-L.; Hu, Y.; Wang, P.; Ju, H-Q.; Xu, R-H.; Huang, P. Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death Differ., 2014, 21(1), 124-135.
[http://dx.doi.org/10.1038/cdd.2013.131] [PMID: 24096870]
[79]
Yu, C.C.; Chen, P.N.; Peng, C.Y.; Yu, C.H.; Chou, M.Y. Suppression of miR-204 enables oral squamous cell carcinomas to promote cancer stemness, EMT traits, and lymph node metastasis. Oncotarget, 2016, 7(15), 20180-20192.
[http://dx.doi.org/10.18632/oncotarget.7745] [PMID: 26933999]
[80]
Jiang, P.; Xu, C.; Zhang, P.; Ren, J.; Mageed, F.; Wu, X.; Chen, L.; Zeb, F.; Feng, Q.; Li, S. Epigallocatechin-3-gallate inhibits self-renewal ability of lung cancer stem-like cells through inhibition of CLOCK. Int. J. Mol. Med., 2020, 46(6), 2216-2224.
[http://dx.doi.org/10.3892/ijmm.2020.4758] [PMID: 33125096]
[81]
Zhu, J.; Jiang, Y.; Yang, X.; Wang, S.; Xie, C.; Li, X.; Li, Y.; Chen, Y.; Wang, X.; Meng, Y.; Zhu, M.; Wu, R.; Huang, C.; Ma, X.; Geng, S.; Wu, J.; Zhong, C. Wnt/β-catenin pathway mediates (−)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells. Biochem. Biophys. Res. Commun., 2017, 482(1), 15-21.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.038] [PMID: 27836540]
[82]
Jiang, P.; Chen, A.; Wu, X.; Zhou, M.; ul Haq, I.; Mariyam, Z.; Feng, Q. NEAT1 acts as an inducer of cancer stem cell- like phenotypes in NSCLC by inhibiting EGCG- upregulated CTR1. J. Cell. Physiol., 2018, 233(6), 4852-4863.
[http://dx.doi.org/10.1002/jcp.26288] [PMID: 29152741]
[83]
Namiki, K.; Wongsirisin, P.; Yokoyama, S.; Sato, M.; Rawangkan, A.; Sakai, R.; Iida, K.; Suganuma, M. (−)-Epigallocatechin gallate inhibits stemness and tumourigenicity stimulated by AXL receptor tyrosine kinase in human lung cancer cells. Sci. Rep., 2020, 10(1), 2444.
[http://dx.doi.org/10.1038/s41598-020-59281-z] [PMID: 32051483]
[84]
Gresseau, L.; Roy, M.E.; Duhamel, S.; Annabi, B. A signaling crosstalk links SNAIL to the 37/67 kDa Laminin-1 receptor ribosomal protein SA and regulates the acquisition of a cancer stem cell molecular signature in U87 glioblastoma neurospheres. Cancers, 2022, 14(23), 5944.
[http://dx.doi.org/10.3390/cancers14235944] [PMID: 36497426]
[85]
Nishimura, N.; Hartomo, T.B.; Pham, T.V.H.; Lee, M.J.; Yamamoto, T.; Morikawa, S.; Hasegawa, D.; Takeda, H.; Kawasaki, K.; Kosaka, Y.; Yamamoto, N.; Kubokawa, I.; Mori, T.; Yanai, T.; Hayakawa, A.; Takeshima, Y.; Iijima, K.; Matsuo, M.; Nishio, H. Epigallocatechin gallate inhibits sphere formation of neuroblastoma BE(2)-C cells. Environ. Health Prev. Med., 2012, 17(3), 246-251.
[http://dx.doi.org/10.1007/s12199-011-0239-5] [PMID: 21909813]
[86]
Li, Y.J.; Wu, S.L.; Lu, S.M.; Chen, F.; Guo, Y.; Gan, S.M.; Shi, Y.L.; Liu, S.; Li, S.L. (-)-Epigallocatechin-3-gallate inhibits nasopharyngeal cancer stem cell self-renewal and migration and reverses the epithelial–mesenchymal transition via NF-κB p65 inactivation. Tumour Biol., 2015, 36(4), 2747-2761.
[http://dx.doi.org/10.1007/s13277-014-2899-4] [PMID: 25487615]
[87]
Lin, C.H.; Chao, L.K.; Hung, P.H.; Chen, Y.J. EGCG inhibits the growth and tumorigenicity of nasopharyngeal tumor-initiating cells through attenuation of STAT3 activation. Int. J. Clin. Exp. Pathol., 2014, 7(5), 2372-2381.
[PMID: 24966947]
[88]
Sun, X.; Song, J.; Li, E.; Geng, H.; Li, Y.; Yu, D.; Zhong, C. (-)-Epigallocatechin-3-gallate inhibits bladder cancer stem cells via suppression of sonic hedgehog pathway. Oncol. Rep., 2019, 42(1), 425-435.
[http://dx.doi.org/10.3892/or.2019.7170] [PMID: 31180522]
[89]
Tang, S.N.; Fu, J.; Nall, D.; Rodova, M.; Shankar, S.; Srivastava, R.K. Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int. J. Cancer, 2012, 131(1), 30-40.
[http://dx.doi.org/10.1002/ijc.26323] [PMID: 21796625]
[90]
Wubetu, G.Y.; Shimada, M.; Morine, Y.; Ikemoto, T.; Ishikawa, D.; Iwahashi, S.; Yamada, S.; Saito, Y.; Arakawa, Y.; Imura, S. Epigallocatechin gallate hinders human hepatoma and colon cancer sphere formation. J. Gastroenterol. Hepatol., 2016, 31(1), 256-264.
[http://dx.doi.org/10.1111/jgh.13069] [PMID: 26241688]
[91]
Kumazoe, M.; Takai, M.; Hiroi, S.; Takeuchi, C.; Yamanouchi, M.; Nojiri, T.; Onda, H.; Bae, J.; Huang, Y.; Takamatsu, K.; Yamashita, S.; Yamada, S.; Kangawa, K.; Takahashi, T.; Tanaka, H.; Tachibana, H. PDE3 inhibitor and EGCG combination treatment suppress cancer stem cell properties in pancreatic ductal adenocarcinoma. Sci. Rep., 2017, 7(1), 1917.
[http://dx.doi.org/10.1038/s41598-017-02162-9] [PMID: 28507327]
[92]
Farabegoli, F.; Govoni, M.; Ciavarella, C.; Orlandi, M.; Papi, A. A RXR ligand 6-OH-11-O-hydroxyphenanthrene with antitumour properties enhances (-)-epigallocatechin-3-gallate activity in three human breast carcinoma cell lines. BioMed Res. Int., 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/853086] [PMID: 25013807]
[93]
Kumazoe, M.; Takai, M.; Bae, J.; Hiroi, S.; Huang, Y.; Takamatsu, K.; Won, Y.; Yamashita, M.; Hidaka, S.; Yamashita, S.; Yamada, S.; Murata, M.; Tsukamoto, S.; Tachibana, H. FOXO3 is essential for CD44 expression in pancreatic cancer cells. Oncogene, 2017, 36(19), 2643-2654.
[http://dx.doi.org/10.1038/onc.2016.426] [PMID: 27893718]
[94]
Jiang, P.; Xu, C.; Chen, L.; Chen, A.; Wu, X.; Zhou, M.; Haq, I.U.; Mariyam, Z.; Feng, Q. Epigallocatechin- 3- gallate inhibited cancer stem cell–like properties by targeting hsa- mir- 485- 5p/RXRα in lung cancer. J. Cell. Biochem., 2018, 119(10), 8623-8635.
[http://dx.doi.org/10.1002/jcb.27117] [PMID: 30058740]
[95]
Wang, W.; Chen, D.; Zhu, K. SOX2OT variant 7 contributes to the synergistic interaction between EGCG and Doxorubicin to kill osteosarcoma via autophagy and stemness inhibition. J. Exp. Clin. Cancer Res., 2018, 37(1), 37.
[http://dx.doi.org/10.1186/s13046-018-0689-3] [PMID: 29475441]
[96]
Tang, S.N.; Singh, C.; Nall, D.; Meeker, D.; Shankar, S.; Srivastava, R.K. The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J. Mol. Signal., 2010, 5, 14.
[http://dx.doi.org/10.1186/1750-2187-5-14] [PMID: 20718984]
[97]
Palinkas, L.; Horwitz, S.; Green, C. Sensitization to docetaxel in prostate cancer cells by green tea and quercetin. Physiol. Behav., 2016, 176(1), 139-148.
[98]
Lee, S.H.; Nam, H.J.; Kang, H.J.; Kwon, H.W.; Lim, Y.C. Epigallocatechin-3-gallate attenuates head and neck cancer stem cell traits through suppression of Notch pathway. Eur. J. Cancer, 2013, 49(15), 3210-3218.
[http://dx.doi.org/10.1016/j.ejca.2013.06.025] [PMID: 23876835]
[99]
Wang, X.; Jiang, P.; Wang, P.; Yang, C.S.; Wang, X.; Feng, Q. Correction: EGCG enhances cisplatin sensitivity by regulating expression of the copper and cisplatin influx transporter CTR1 in ovary cancer. PLoS One, 2015, 10(6), e0132086.
[http://dx.doi.org/10.1371/journal.pone.0132086] [PMID: 26121483]
[100]
Jiang, P.; Wu, X.; Wang, X.; Huang, W.; Feng, Q. NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget, 2016, 7(28), 43337-43351.
[http://dx.doi.org/10.18632/oncotarget.9712] [PMID: 27270317]
[101]
Zhang, Y.; Wang, S.X.; Ma, J.W.; Li, H.Y.; Ye, J.C.; Xie, S.M.; Du, B.; Zhong, X.Y. EGCG inhibits properties of glioma stem-like cells and synergizes with temozolomide through downregulation of P-glycoprotein inhibition. J. Neurooncol., 2015, 121(1), 41-52.
[http://dx.doi.org/10.1007/s11060-014-1604-1] [PMID: 25173233]
[102]
Farabegoli, F.; Govoni, M.; Spisni, E.; Papi, A. Epigallocatechin-3-gallate and 6-OH-11-O-Hydroxyphenanthrene Limit BE(2)-C neuroblastoma cell growth and neurosphere formation in vitro. Nutrients, 2018, 10(9), 1141.
[http://dx.doi.org/10.3390/nu10091141] [PMID: 30135355]
[103]
Nagle, D.G.; Ferreira, D.; Zhou, Y.D. Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives. Phytochemistry, 2006, 67(17), 1849-1855.
[http://dx.doi.org/10.1016/j.phytochem.2006.06.020] [PMID: 16876833]
[104]
Ullmann, U.; Haller, J.; Decourt, J.P.; Girault, N.; Girault, J.; Richard-Caudron, A.S.; Pineau, B.; Weber, P. A single ascending dose study of epigallocatechin gallate in healthy volunteers. J. Int. Med. Res., 2003, 31(2), 88-101.
[http://dx.doi.org/10.1177/147323000303100205] [PMID: 12760312]
[105]
Shutava, T.G.; Balkundi, S.S.; Vangala, P.; Steffan, J.J.; Bigelow, R.L.; Cardelli, J.A.; O’Neal, D.P.; Lvov, Y.M. Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano, 2009, 3(7), 1877-1885.
[http://dx.doi.org/10.1021/nn900451a] [PMID: 19534472]
[106]
Janle, E.M.; Morré, D.M.; Morré, D.J.; Zhou, Q.; Zhu, Y. Pharmacokinetics of green tea catechins in extract and sustained-release preparations. J. Diet. Suppl., 2008, 5(3), 248-263.
[http://dx.doi.org/10.1080/19390210802414279] [PMID: 19885387]
[107]
Jatoi, A.; Ellison, N.; Burch, P.A.; Sloan, J.A.; Dakhil, S.R.; Novotny, P.; Tan, W.; Fitch, T.R.; Rowland, K.M.; Young, C.Y.F.; Flynn, P.J. A Phase II trial of green tea in the treatment of patients with androgen independent metastatic prostate carcinoma. Cancer, 2003, 97(6), 1442-1446.
[http://dx.doi.org/10.1002/cncr.11200] [PMID: 12627508]
[108]
Hou, Z.; Sang, S.; You, H.; Lee, M.J.; Hong, J.; Chin, K.V.; Yang, C.S. Mechanism of action of (-)-epigallocatechin-3-gallate: Auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res., 2005, 65(17), 8049-8056.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0480] [PMID: 16140980]
[109]
de Pace, R.C.C.; Liu, X.; Sun, M.; Nie, S.; Zhang, J.; Cai, Q.; Gao, W.; Pan, X.; Fan, Z.; Wang, S. Anticancer activities of ( )-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. J. Liposome Res., 2013, 23(3), 187-196.
[http://dx.doi.org/10.3109/08982104.2013.788023] [PMID: 23600473]
[110]
Lin, C.H.; Shen, Y.A.; Hung, P.H.; Yu, Y.B.; Chen, Y.J. Epigallocathechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines. BMC Complement. Altern. Med., 2012, 12(1), 201.
[http://dx.doi.org/10.1186/1472-6882-12-201] [PMID: 23110507]
[111]
Zhou, Y.; Li, N.; Zhuang, W.; Liu, G.; Wu, T.; Yao, X.; Du, L.; Wei, M.; Wu, X. Green tea and gastric cancer risk: Meta-analysis of epidemiologic studies. Asia Pac. J. Clin. Nutr., 2008, 17(1), 159-165.
[PMID: 18364341]
[112]
Lin, Y.; Kikuchi, S.; Tamakoshi, A.; Yagyu, K.; Obata, Y.; Kurosawa, M.; Inaba, Y.; Kawamura, T.; Motohashi, Y.; Ishibashi, T. Green tea consumption and the risk of pancreatic cancer in Japanese adults. Pancreas, 2008, 37(1), 25-30.
[http://dx.doi.org/10.1097/MPA.0b013e318160a5e2] [PMID: 18580440]
[113]
Sasazuki, S.; Tamakoshi, A.; Matsuo, K.; Ito, H.; Wakai, K.; Nagata, C.; Mizoue, T.; Tanaka, K.; Tsuji, I.; Inoue, M.; Tsugane, S. Green tea consumption and gastric cancer risk: An evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn. J. Clin. Oncol., 2012, 42(4), 335-346.
[http://dx.doi.org/10.1093/jjco/hys009] [PMID: 22371426]
[114]
Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol., 2011, 82(12), 1807-1821.
[http://dx.doi.org/10.1016/j.bcp.2011.07.093] [PMID: 21827739]
[115]
Fujiki, H. Two stages of cancer prevention with green tea. J. Cancer Res. Clin. Oncol., 1999, 125(11), 589-597.
[http://dx.doi.org/10.1007/s004320050321] [PMID: 10541965]
[116]
Fujiki, H.; Suganuma, M.; Okabe, S.; Sueoka, E.; Suga, K.; Imai, K.; Nakachi, K.; Kimura, S. Mechanistic findings of green tea as cancer preventive for humans. Proc. Soc. Exp. Biol. Med., 1999, 220(4), 225-228.
[http://dx.doi.org/10.1046/j.1525-1373.1999.d01-38.x] [PMID: 10202393]
[117]
Shankar, S.; Suthakar, G.; Srivastava, R.K. Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. Front. Biosci., 2007, 12(12), 5039-5051.
[http://dx.doi.org/10.2741/2446] [PMID: 17569628]
[118]
Shahriari Felordi, M.; Alikhani, M.; Farzaneh, Z.; Alipour Choshali, M.; Ebrahimi, M.; Aboulkheyr Es, H.; Piryaei, A.; Najimi, M.; Vosough, M. (-)-Epigallocatechin-3-gallate induced apoptosis by dissociation of C-FLIP /Ku70 complex in gastric cancer cells. J. Cell. Mol. Med., 2023, 27(17), 2572-2582.
[http://dx.doi.org/10.1111/jcmm.17873] [PMID: 37537749]
[119]
Sonoda, J.I.; Ikeda, R.; Baba, Y.; Narumi, K.; Kawachi, A.; Tomishige, E.; Nishihara, K.; Takeda, Y.; Yamada, K.; Sato, K.; Motoya, T. Green tea catechin, epigallocatechin-3-gallate, attenuates the cell viability of human non-small-cell lung cancer A549 cells via reducing Bcl-xL expression. Exp. Ther. Med., 2014, 8(1), 59-63.
[http://dx.doi.org/10.3892/etm.2014.1719] [PMID: 24944597]
[120]
Della Via, F.I.; Alvarez, M.C.; Basting, R.T.; Saad, S.T.O. The effects of green tea catechins in hematological malignancies. Pharmaceuticals, 2023, 16(7), 1021.
[http://dx.doi.org/10.3390/ph16071021] [PMID: 37513933]
[121]
Demeule, M.; Brossard, M.; Pagé, M.; Gingras, D.; Béliveau, R. Matrix metalloproteinase inhibition by green tea catechins. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 2000, 1478(1), 51-60.
[http://dx.doi.org/10.1016/S0167-4838(00)00009-1] [PMID: 10719174]
[122]
Thomas, F.; Holly, J.M.P.; Persad, R.; Bahl, A.; Perks, C.M. Green tea extract (epigallocatechin-3-gallate) reduces efficacy of radiotherapy on prostate cancer cells. Urology, 2011, 78(2), 475.e15-475.e21.
[http://dx.doi.org/10.1016/j.urology.2011.03.031] [PMID: 21676444]
[123]
Li, K.; Teng, C.; Min, Q. Advanced nanovehicles-enabled delivery systems of epigallocatechin gallate for cancer therapy. Front Chem., 2020, 8, 573297.
[http://dx.doi.org/10.3389/fchem.2020.573297] [PMID: 33195062]
[124]
Materials, N.R. Let’s talk about lipid nanoparticles. Nat. Rev. Mater., 2021, 6(2), 99.
[http://dx.doi.org/10.1038/s41578-021-00281-4]
[125]
Granja, A.; Neves, A.R.; Sousa, C.T.; Pinheiro, M.; Reis, S. EGCG intestinal absorption and oral bioavailability enhancement using folic acid-functionalized nanostructured lipid carriers. Heliyon, 2019, 5(7), e02020.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02020] [PMID: 31317081]
[126]
Fang, J.Y.; Hung, C.F.; Hwang, T.L.; Huang, Y.L. Physicochemical characteristics and in vivo deposition of liposome-encapsulated tea catechins by topical and intratumor administrations. J. Drug Target., 2005, 13(1), 19-27.
[http://dx.doi.org/10.1080/10611860400015977] [PMID: 15848951]
[127]
Radhakrishnan, R.; Pooja, D.; Kulhari, H.; Gudem, S.; Ravuri, H.G.; Bhargava, S.; Ramakrishna, S. Bombesin conjugated solid lipid nanoparticles for improved delivery of epigallocatechin gallate for breast cancer treatment. Chem. Phys. Lipids, 2019, 224, 104770.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.04.005] [PMID: 30965023]
[128]
Hsieh, D.S.; Wang, H.; Tan, S.W.; Huang, Y.H.; Tsai, C.Y.; Yeh, M.K.; Wu, C.J. The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles. Biomaterials, 2011, 32(30), 7633-7640.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.073] [PMID: 21782236]
[129]
Chen, C.; Hsieh, D. Improving anticancer efficacy of nanoparticles in murine B16F10 melanoma cells. Drug Des. Devel. Ther., 2014, 8, 459-474.
[PMID: 24855338]
[130]
Sanna, V.; Pala, N.; Dessì, G.; Manconi, P.; Mariani, A.; Dedola, S.; Rassu, M.; Crosio, C.; Iaccarino, C.; Sechi, M. Single-step green synthesis and characterization of gold-conjugated polyphenol nanoparticles with antioxidant and biological activities. Int. J. Nanomedicine, 2014, 9(1), 4935-4951.
[PMID: 25364251]
[131]
Gonzalez Suarez, N.; Rodriguez Torres, S.; Ouanouki, A.; El Cheikh-Hussein, L.; Annabi, B. EGCG inhibits adipose-derived mesenchymal stem cells differentiation into adipocytes and prevents a STAT3-mediated paracrine oncogenic control of triple-negative breast cancer cell invasive phenotype. Molecules, 2021, 26(6), 1506.
[http://dx.doi.org/10.3390/molecules26061506] [PMID: 33801973]
[132]
Gonzalez Suarez, N.; Fernandez-Marrero, Y.; Torabidastgerdooei, S.; Annabi, B. EGCG prevents the onset of an inflammatory and cancer-associated adipocyte-like phenotype in adipose-derived mesenchymal stem/stromal cells in response to the triple-negative breast cancer secretome. Nutrients, 2022, 14(5), 1099.
[http://dx.doi.org/10.3390/nu14051099] [PMID: 35268073]
[133]
Jeong, J.Y.; Suresh, S.; Jang, M.; Park, M.N.; Gobianand, K.; You, S.; Yeon, S.H.; Lee, H.J. Epigallocatechin-3-gallate suppresses the lipid deposition through the apoptosis during differentiation in bovine bone marrow mesenchymal stem cells. Cell Biol. Int., 2015, 39(1), 52-64.
[http://dx.doi.org/10.1002/cbin.10343] [PMID: 25044539]