Use of Pharmacophore Modeling, 3D-atom-based QSAR, ADMET, Docking, and Molecular Dynamics Studies for the Development of Psoralen-based Derivatives as Antifungal Agents

Article ID: e170124225738 Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: The mortality and morbidity rates in patients caused by fungi are extremely high. 3-4 % of species of fungi like Candida and Aspergillus are responsible for >99% of invasive fungal infections.

Aim: The goal of the current work was to use several In-silico methods, such as Pharmacophore modeling and 3D-QSAR, to design New chemical entities (NCEs) that have antifungal activity.

Materials & Methods: A dataset of 40 Psoralen derivatives was taken from available literature, and then, the pharmacophore hypothesis and 3D-QSAR model development were generated using Schrodinger 2023-1 software. After designing a library of 36 compounds, they were subjected to ADMET prediction. Screened compounds from the ADMET study were docked with 14 alpha demethylase CYP51 (PDB ID: 3LD6) using Schrödinger software. Molecular dynamics (MD) simulation studies were performed on PDB-3LD6 using Desmond-v7.2.

Results & Discussion: The top-ranked hypothesis, AHRRR_1, was taken into consideration when designing the library of potential NCEs.In order to check the drug likeliness of the compounds, all 36 designed NCEs were subjected to ADMET prediction using the QikProp tool. The majority of compounds have a good partition coefficient index (less than five). Qplog HERG value was found to be less, making them safer and less toxic. C- 4, 6, 9, 13, 15, 22, 24, 27, 31, and 33 have shown compliance with Lipinski’s rule with zero violations. Compounds C-9, C-13, C-22, C-24, and C-27 have shown better docking scores than the standard Ketoconazole. Compounds C-9, 24, and 27 have shown a greater number of hydrophobic and hydrogen bond interactions in comparison with the other compounds. Compounds 9, 24, and 27 showed good stability after 100ns molecular simulation simulations.

Conclusion: In the current work, the application of insilico methods such as pharmacophore hypothesis, 3D QSAR, ADMET study, docking, and simulation studies have helped to optimize Psoralen pharmacophore for potential antifungal activity. Therefore, the outcomes of the present study could provide insights into the discovery of new potential alpha demethylase inhibitors with improved selectivity and activity against fungal infections.

Graphical Abstract

[1]
Hussain, A.; Verma, C.K. Computational drug repurposing resources and approaches for discovering novel antifungal drugs against candida albicans n-myristoyltransferase. J. Pure Appl. Microbiol., 2021, 15(2), 556-579.
[2]
Bongomin, F.; Gago, S.; Oladele, R.; Denning, D. Global and multi-national prevalence of fungal diseasesƒ?”estimate precision. J. Fungi, 2017, 3(4), 57.
[http://dx.doi.org/10.3390/jof3040057] [PMID: 29371573]
[3]
Ray, A.; Aayilliath, K.A.; Banerjee, S.; Chakrabarti, A.; Denning, D.W. Burden of serious fungal infections in India. Open Forum Infect. Dis., 2022, 9(12), ofac603.
[http://dx.doi.org/10.1093/ofid/ofac603] [PMID: 36589484]
[4]
Shafiei, M.; Peyton, L.; Hashemzadeh, M.; Foroumadi, A. History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg. Chem., 2020, 104, 104240.
[http://dx.doi.org/10.1016/j.bioorg.2020.104240] [PMID: 32906036]
[5]
Banerjee, S.; Denning, D.; Chakrabarti, A. One Health aspects & priority roadmap for fungal diseases: A mini-review. Indian J. Med. Res., 2021, 153(3), 311-319.
[http://dx.doi.org/10.4103/ijmr.IJMR_768_21] [PMID: 33906993]
[6]
Rayens, E.; Norris, K.A. Prevalence and healthcare burden of fungal infections in the United States, 2018. Open Forum Infect. Dis., 2022, 9(1), ofab593.
[http://dx.doi.org/10.1093/ofid/ofab593] [PMID: 35036461]
[7]
Gohil, B.P.R.; Ahir, H. Prevalence of fungal infections in patients attending tertiary care teaching hospital, Middle Gujarat, India. Indian J. Microbiol. Res., 2020, 5(3), 364-367.
[http://dx.doi.org/10.18231/2394-5478.2018.0076]
[8]
Wall, G.; Lopez-Ribot, J.L. Current antimycotics, new prospects, and future approaches to antifungal therapy. Antibiotics, 2020, 9(8), 445.
[http://dx.doi.org/10.3390/antibiotics9080445] [PMID: 32722455]
[9]
Girois, S.B.; Chapuis, F.; Decullier, E.; Revol, B.G.P. Adverse effects of antifungal therapies in invasive fungal infections: Review and meta-analysis. Eur. J. Clin. Microbiol. Infect. Dis., 2006, 25(2), 138-149.
[http://dx.doi.org/10.1007/s10096-005-0080-0] [PMID: 16622909]
[10]
Kanafani, Z.A.; Perfect, J.R. Antimicrobial resistance: Resistance to antifungal agents: Mechanisms and clinical impact. Clin. Infect. Dis., 2008, 46(1), 120-128.
[http://dx.doi.org/10.1086/524071] [PMID: 18171227]
[11]
Wiederhold, N. Antifungal resistance: Current trends and future strategies to combat. Infect. Drug Resist., 2017, 10, 249-259.
[http://dx.doi.org/10.2147/IDR.S124918] [PMID: 28919789]
[12]
Zhou, B.; Yuan, X.; Fan, L.; Pan, Z.; Chang, X.; Jiang, S.; Wu, L.; Wang, C.; Yang, G.; Ji, X.; Shi, L.; Xu, C. Synthesis and antifungal activities of novel trifluoroethane derivatives with coumarin, indole and thiophene. J. Saudi Chem. Soc., 2022, 26(6), 101572.
[http://dx.doi.org/10.1016/j.jscs.2022.101572]
[13]
Li, M.; Ye, Y.; He, L.; Hui, M.; Ng, T.B.; Wong, J.H.; Tsui, G.C. Domino Cyclization/Trifluoromethylation of 2ƒ??Alknylphenols for the Synthesis of 3ƒ??(Trifluoromethyl)benzofurans and evaluation of their antibacterial and antifungal activities. Asian J. Org. Chem., 2019, 8(5), 702-709.
[http://dx.doi.org/10.1002/ajoc.201800651]
[14]
Masubuchi, M.; Ebiike, H.; Kawasaki, K.; Sogabe, S.; Morikami, K.; Shiratori, Y.; Tsujii, S.; Fujii, T.; Sakata, K.; Hayase, M.; Shindoh, H.; Aoki, Y.; Ohtsuka, T.; Shimma, N. Synthesis and biological activities of benzofuran antifungal agents targeting fungal N-myristoyltransferase. Bioorg. Med. Chem., 2003, 11(20), 4463-4478.
[http://dx.doi.org/10.1016/S0968-0896(03)00429-2] [PMID: 13129583]
[15]
Kapoor, J.K.; Prakash, R.; Kumar, A.; Saini, D.; Arora, L. Selective synthesis of 3-(αα-Dibromoacetyl)-4-Hydroxy-6-Methyl-2 H -Pyran-2-One as an excellent precursor for the synthesis of 2-substituted 4-(4-Hydroxy-6-Methyl-2 H -2-Oxopyran-3-Yl)thiazoles as antimicrobial and antifungal agents: Synthesis of 3-(αα-Dibromoacetyl)-4-Hydroxy-6-Methyl-2H-Pyran-2-One as an excellent precursor for the synthesis of 2-Substituted 4-(4-Hydroxy-6-Methy. J. Heterocycl. Chem., 2018, 55(4), 899-906.
[http://dx.doi.org/10.1002/jhet.3116]
[16]
Sayed, G.H.; Azab, M.E.; Anwer, K.E. Conventional and microwave‐assisted synthesis and biological activity study of novel heterocycles containing pyran moiety. J. Heterocycl. Chem., 2019, 56(8), 2121-2133.
[http://dx.doi.org/10.1002/jhet.3606]
[17]
Benkovic, S.; Liu, C. Synergistic benzoxaborole-containing anti-fungicidal composition. US9737075B2, 2017.
[18]
Long, J.; Gregory, V.; Gutteridge, S.; Taggi, A.; Bereznak, J. Fungicidal pyrazoles and their mixtures. WO2012031061A2, 2011.
[19]
Matsukura, M.; Inoue, S.; Tanaka, K.; Murai, N.; Shirotori, S. Pyridine derivative substituted by heteroaryl ring, and antifungal agent comprising the same; , 2011. Available from: https://patents.google.com/patent/EP2065377A4/en?oq=EP2065377A4
[20]
Meyer, K.; Renga, J.; Nugent, B.; Li, F.; Owen, J.; Yao, C.; Bravo-Altamirano, K.; Herrick, J.; Boebel, T.; Wang, N.; Graupner, P.; Heemstra, R. Macrocyclic picolinamides as fungicides. WO2013169662A2, 2013.
[21]
Nakamoto, K.; Inoue, S.; Tanaka, K.; Haneda, T. Antifungal agent containing pyridine derivative. US7829585B2, 2010.
[22]
Taggi, A.; Long, J.; Bereznak, J. Fungicidal pyrazole mixtures. WO2013116251A2, 2012.
[23]
Umamatheswari, S.; Balaji, B.; Ramanathan, M.; Kabilan, S. Synthesis, stereochemistry, antimicrobial evaluation and QSAR studies of 2,6-diaryltetrahydropyran-4-one thiosemicarbazones. Eur. J. Med. Chem., 2011, 46(4), 1415-1424.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.029]
[24]
Khare, S.P.; Deshmukh, T.R.; Sangshetti, J.N.; Khedkar, V.M.; Shingate, B.B. Ultrasound assisted rapid synthesis, biological evaluation, and molecular docking study of new 1,2,3-triazolyl pyrano[2,3- c]pyrazoles as antifungal and antioxidant agent. Synth. Commun., 2019, 49(19), 2521-2537.
[http://dx.doi.org/10.1080/00397911.2019.1631849]
[25]
Gurunanjappa, P. Ningappa, Mylarappa B; Kariyappa, Ajay Kumar Synthesis of pyrazole fused pyran analogues: Antimicrobial, antioxidant and molecular docking studies. Chemical Data Collections, 2016, 5(6), 1-11.
[http://dx.doi.org/10.1016/j.cdc.2016.09.002]
[26]
Sonak, S.; Pathare, S.; Modi, S.; Kulkarni, V. Design of anti-fungal agents by 3D-QSAR. Indian J. Chem., 2022, 61, 744-754.
[27]
Bouamrane, S.; Bouachrine, M.; Sbai, A. 3D-QSAR, molecular docking, molecular dynamic simulation, and ADMET study of bioactive compounds against candida albicans. Moroc. J. Chem., 2022, 10, 523-541.
[http://dx.doi.org/10.48317/IMIST.PRSM/MORJCHEM-V10I3.33141]
[28]
Huang, M.; Duan, W.G.; Lin, G.S.; Li, B.Y. Synthesis, antifungal activity, 3D-QSAR, and molecular docking study of novel menthol-derived 1,2,4-triazole-thioether compounds. Molecules, 2021, 26(22), 6948.
[http://dx.doi.org/10.3390/molecules26226948] [PMID: 34834038]
[29]
Yu, X.; Wen, Y.; Liang, C.G.; Liu, J.; Ding, Y.B.; Zhang, W.H. Design, synthesis and antifungal activity of psoralen derivatives. Molecules, 2017, 22(10), 1672.
[http://dx.doi.org/10.3390/molecules22101672] [PMID: 28991209]
[30]
Sardari, S.; Mori, Y.; Horita, K.; Micetich, R.G.; Nishibe, S.; Daneshtalab, M. Synthesis and antifungal activity of coumarins and angular furanocoumarins. Bioorg. Med. Chem., 1999, 7(9), 1933-1940.
[http://dx.doi.org/10.1016/S0968-0896(99)00138-8] [PMID: 10530942]
[31]
Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron, 2018, 99(6), 1129-1143.
[http://dx.doi.org/10.1016/j.neuron.2018.08.011] [PMID: 30236283]
[32]
Chen, C.Y.; Yang, T.H.; Pan, C.D.; Wang, X. Improved synthesis, X-ray structure, and antifungal activity of a sugar-psoralen conjugate: 4,4ƒ?ý-Dimethylxanthotoxol 2,3,4,6-tetra- O -Acetyl- Iý-D -glucoside. J. Carbohydr. Chem., 2019, 38(3), 179-191.
[http://dx.doi.org/10.1080/07328303.2019.1609018]
[33]
Pathare, S.; Bhansali, S.; Mahadik, K.; Kulkarni, V. Pharmacophore modeling and atom-based 3d-qsar studies of antifungal benzofurans. Int. J. Pharm. Pharm. Sci., 2015, 7(3), 453-458.
[34]
Dong, J.; Li, K.; Hong, Z.; Chen, L.; Tang, L.; Han, L.; Chen, L.; Fan, Z. Design, synthesis and fungicidal evaluation of novel psoralen derivatives containing sulfonohydrazide or acylthiourea moiety. Mol. Divers., 2022.
[http://dx.doi.org/10.1007/s11030-022-10402-y] [PMID: 35666432]
[35]
Release, S. 2023-1: MacroModel; SchrAdinger, LLC: New York, NY, 2021.
[36]
Release, S. 2023-1: LigPrep; SchrAdinger, LLC: New York, NY, 2021.
[37]
Release, S. 2023-2: Phase; SchrAdinger, LLC: New York, NY, 2023.
[38]
Dixon, S.L.; Smondyrev, A.M.; Rao, S.N. PHASE: A novel approach to pharmacophore modeling and 3D database searching. Chem. Biol. Drug Des., 2006, 67(5), 370-372.
[http://dx.doi.org/10.1111/j.1747-0285.2006.00384.x] [PMID: 16784462]
[39]
Ajay Kumar, T.V.; Athavan, A.A.S.; Loganathan, C.; Saravanan, K.; Kabilan, S.; Parthasarathy, V. Design, 3D QSAR modeling and docking of TGF-Iý type I inhibitors to target cancer. Comput. Biol. Chem., 2018, 76, 232-244.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.07.011] [PMID: 30077902]
[40]
Varpe, B.D.; Jadhav, S.B.; Chatale, B.C.; Mali, A.S.; Jadhav, S.Y.; Kulkarni, A.A. 3D-QSAR and pharmacophore modeling of 3,5-disubstituted indole derivatives as Pim kinase inhibitors. Struct. Chem., 2020, 31(5), 1675-1690.
[http://dx.doi.org/10.1007/s11224-020-01503-1]
[41]
Zhang, R.R.; Liu, J.; Zhang, Y.; Hou, M.Q.; Zhang, M.Z.; Zhou, F.; Zhang, W.H. Microwave-assisted synthesis and antifungal activity of novel coumarin derivatives: Pyrano[3,2- c]chromene-2,5-diones. Eur. J. Med. Chem., 2016, 116, 76-83.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.069] [PMID: 27060759]
[42]
Thanh, N.D.; Hai, D.S.; Ngoc Bich, V.T.; Thu Hien, P.T.; Ky Duyen, N.T.; Mai, N.T.; Dung, T.T.; Toan, V.N.; Kim Van, H.T.; Dang, L.H.; Toan, D.N.; Thanh Van, T.T. Efficient click chemistry towards novel 1H-1,2,3-triazole-tethered 4h-chromene−d-glucose conjugates: Design, synthesis and evaluation of in vitro antibacterial, MRSA and antifungal activities. Eur. J. Med. Chem., 2019, 167, 454-471.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.060] [PMID: 30784879]
[43]
Mandal, A.; Mandal, S.M.; Jana, S.; Bag, S.S.; Das, A.K.; Basak, A. Synthesis of furan-fused 1,4-dihydrocarbazoles via an unusual Garratt-Braverman Cyclization of indolyl propargyl ethers and their antifungal activity. Tetrahedron, 2018, 74(27), 3543-3556.
[http://dx.doi.org/10.1016/j.tet.2018.05.001]
[44]
Wu, X.; Pang, X.J.; Xu, L.L.; Zhao, T.; Long, X.Y.; Zhang, Q.Y.; Qin, H.L.; Yang, D.F.; Yang, X.L. Two new alkylated furan derivatives with antifungal and antibacterial activities from the plant endophytic fungus Emericella sp. XL029. Nat. Prod. Res., 2018, 32(22), 2625-2631.
[http://dx.doi.org/10.1080/14786419.2017.1374269] [PMID: 28927292]
[45]
Kawasaki, K.; Masubuchi, M.; Morikami, K.; Sogabe, S.; Aoyama, T.; Ebiike, H.; Niizuma, S.; Hayase, M.; Fujii, T.; Sakata, K.; Shindoh, H.; Shiratori, Y.; Aoki, Y.; Ohtsuka, T.; Shimma, N. Design and synthesis of novel benzofurans as a new class of antifungal agents targeting fungal N-myristoyltransferase. Part 3. Bioorg. Med. Chem. Lett., 2003, 13(1), 87-91.
[http://dx.doi.org/10.1016/S0960-894X(02)00844-2] [PMID: 12467623]
[46]
Eweis, M.; Elkholy, S.S.; Elsabee, M.Z. Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens. Int. J. Biol. Macromol., 2006, 38(1), 1-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2005.12.009] [PMID: 16413607]
[47]
Ram, V.J.; Goel, A.; Shukla, P.K.; Kapil, A. Synthesis of thiophenes and thieno[3,2-c]pyran-4-ones as antileishmanial and antifungal agents. Bioorg. Med. Chem. Lett., 1997, 7(24), 3101-3106.
[http://dx.doi.org/10.1016/S0960-894X(97)10153-6]
[48]
Vala, N.D.; Jardosh, H.H.; Patel, M.P. PS-TBD triggered general protocol for the synthesis of 4 H -chromene, pyrano[4,3- b]pyran and pyrano[3,2- c]chromene derivatives of 1 H -pyrazole and their biological activities. Chin. Chem. Lett., 2016, 27(1), 168-172.
[http://dx.doi.org/10.1016/j.cclet.2015.09.020]
[50]
Release, S. 2023-1: QikProp; SchrAdinger, LLC: New York, NY, 2021.
[51]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3ƒ?”25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[52]
Strushkevich, N.; Tempel, W.; MacKenzie, F.; Arrowsmith, H.; Edwards, M.; Bountra, C.; Weigelt, J.; Park, H. Crystal structure of human lanosterol 14alpha-demethylase (CYP51) in complex with ketoconazole. 2018.
[53]
Release, S. 2023-2: Protein preparation wizard; Epik, SchrAdinger, LLC, New York, NY, 2023; Impact, SchrAdinger, LLC, New York, NY; Prime, SchrAdinger, LLC: New York, NY, 2023.
[54]
Sabt, A.; Abdelrahman, M.T.; Abdelraof, M.; Rashdan, H.R.M. Investigation of novel mucorales fungal inhibitors: Synthesis, in‐silico study and anti‐fungal potency of novel class of coumarin‐6‐sulfonamides‐thiazole and thiadiazole hybrids. ChemistrySelect, 2022, 7(17), e202200691.
[http://dx.doi.org/10.1002/slct.202200691]
[55]
Zveaghintseva, M.; Stingaci, E.; Pogrebnoi, S.; Smetanscaia, A.; Valica, V.; Uncu, L.; Ch Kravtsov, V.; Melnic, E.; Petrou, A.; Glamo, Ž. lija, J.; SokoviŽØ, M.; Carazo, A.; MladŽ>nka, P.; Poroikov, V.; Geronikaki, A.; Macaev, F.Z. Chromenol derivatives as novel antifungal agents: Synthesis, in silico and in vitro evaluation. Molecules, 2021, 26(14), 4304.
[http://dx.doi.org/10.3390/molecules26144304] [PMID: 34299579]
[56]
Tiwari, S.; Seijas, J.; Vazquez-Tato, M.; Sarkate, A.; Karnik, K.; Nikalje, A. Facile synthesis of novel coumarin derivatives, antimicrobial analysis, enzyme assay, docking study, ADMET prediction and toxicity study. Molecules, 2017, 22(7), 1172.
[http://dx.doi.org/10.3390/molecules22071172] [PMID: 28703783]
[57]
Ursu, O.; Costescu, A.; Diudea, M. PA›rv, B. QSAR modeling of antifungal activity of some heterocyclic compounds. Croat. Chem. Acta, 2006, 79(3)
[58]
Tiwari, S.; Seijas, J.; Vazquez-Tato, M.; Sarkate, A.; Karnik, K.; Nikalje, A. Ionic liquid-promoted synthesis of novel chromone-pyrimidine coupled derivatives, antimicrobial analysis, enzyme assay, docking study and toxicity study. Molecules, 2018, 23(2), 440.
[http://dx.doi.org/10.3390/molecules23020440] [PMID: 29462951]
[59]
Bao, J.; Xu, C.; Yang, G.; Wang, C.; Zheng, X.; Yuan, X. Novel 6a,12b-Dihydro-6H,7H-chromeno[3,4-c] chromen-6-ones: Synthesis, structure and antifungal activity. Molecules, 2019, 24(9), 1745.
[http://dx.doi.org/10.3390/molecules24091745] [PMID: 31060338]
[60]
Release, S. 2023-1: Glide; SchrAdinger, LLC: New York, NY, 2021.
[61]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[62]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[63]
Schrödinger release 2023-2: Desmond molecular dynamics system. Maestro-desmond interoperability tools, 2023.
[64]
Ferreira, A.R.; Alves, D.N.; de Castro, R.D.; Perez-Castillo, Y.; de Sousa, D.P. Synthesis of coumarin and homoisoflavonoid derivatives and analogs: The search for new antifungal agents. Pharmaceuticals, 2022, 15(6), 712.
[http://dx.doi.org/10.3390/ph15060712] [PMID: 35745631]
[65]
Prabhala, P.; Sutar, S.M.; Savanur, H.M.; Joshi, S.D.; Kalkhambkar, R.G. In vitro antimicrobial combat, molecular modelling and structure activity relationship studies of novel class of aryl-ethyne tethered coumarin analogues and some 3-aryl coumarin derivatives. Eur. J. Med. Chem. Rep., 2022, 5
[http://dx.doi.org/10.1016/j.ejmcr.2022.100048]
[66]
Chen, M.; Duan, W.G.; Lin, G.S.; Fan, Z.T.; Wang, X. Synthesis, antifungal activity, and 3D-QSAR study of novel nopol-derived 1,3,4-Thiadiazole-thiourea compounds. Molecules, 2021, 26(6), 1708.
[http://dx.doi.org/10.3390/molecules26061708] [PMID: 33803890]
[67]
Kumar, P.; Bora, P.S.; Kumar, A.; Singh, A.K.; Singh, H.; Narasimhan, B. Molecular docking and QSAR studies of indole derivatives as antifungal agents. Curr. Chinese Chem., 2023, 3, e280323215084.
[http://dx.doi.org/10.2174/2666001603666230328181833]
[68]
Albano, J.M.R.; Paula, E.D.; Pickholz, M. Molecular dynamics simulations to study drug delivery systems. In: Molecular Dynamics; Vakhrushev, A., Ed.; InTech, 2018.
[http://dx.doi.org/10.5772/intechopen.75748]
[69]
Bowers, K.J.; Sacerdoti, F.D.; Salmon, J.K.; Shan, Y.; Shaw, D.E.; Chow, E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A. Molecular dynamics---scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE conference on Supercomputing, SC 2006, p. 84.
[http://dx.doi.org/10.1145/1188455.1188544]
[70]
Fatriansyah, J.F.; Rizqillah, R.K.; Yandi, M.Y. Fadilah; Sahlan, M. Molecular docking and dynamics studies on propolis sulabiroin-A as a potential inhibitor of SARS-CoV-2. J. King Saud Univ. Sci., 2022, 34(1), 101707.
[http://dx.doi.org/10.1016/j.jksus.2021.101707] [PMID: 34803333]
[71]
Katiyar, R.S.; Jha, P.K. Molecular simulations in drug delivery: Opportunities and challenges. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8(4), e1358.
[http://dx.doi.org/10.1002/wcms.1358]
[72]
Li, W.; Liu, X.; Muhammad, S.; Shi, J.; Meng, Y.; Wang, J. Computational investigation of TGF-Iý receptor inhibitors for treatment of idiopathic pulmonary fibrosis: Field-based QSAR model and molecular dynamics simulation. Comput. Biol. Chem., 2018, 76, 139-150.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.07.002] [PMID: 30015175]
[73]
Khanjiwala, Z.; Khale, A.; Prabhu, A. Docking structurally similar analogues: Dealing with the false-positive. J. Mol. Graph. Model., 2019, 93, 107451.
[http://dx.doi.org/10.1016/j.jmgm.2019.107451] [PMID: 31546174]