Mini-Reviews in Organic Chemistry

Author(s): Mazen Almehmadi, Mamdouh Allahyani, Ahad Amer Alsaiari, Mohammad Asif* and Sachin Kumar

DOI: 10.2174/0118756298277743231213065544

DownloadDownload PDF Flyer Cite As
Neuropharmacological Potential of Different Piperazine Analogs: A Recent Prospective

Page: [65 - 84] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Heterocyclic moiety is a key part of some enzymes and vitamins and plays a vital role in various biochemical and enzymatic processes. Piperazine ring is a heterocyclic moiety present in various well-known drugs and is effective against different types of diseases by acting on a variety of receptors. Various piperazine analogs possess diverse biological activities, especially in central nervous system disorders, which involve the activation of neurotransmitter receptors and targeting various enzymes and act as antianxiety, antipsychotic, antidepressant, etc. This review is focused on the piperazine derivatives and their diverse therapeutic potential against different types of diseases particularly against neuronal disorders.

Keywords: Piperazine, pharmacological activities, neurotransmitter receptors, CNS disorders, neuronal disorders, enzymatic processes.

Graphical Abstract

[1]
Duarte, C.; Barreiro, E.; Fraga, C. Privileged structures: A useful concept for the rational design of new lead drug candidates. Mini Rev. Med. Chem., 2007, 7(11), 1108-1119.
[http://dx.doi.org/10.2174/138955707782331722] [PMID: 18045214]
[2]
Jalageri, M.D.; Nagaraja, A.; Puttaiahgowda, Y.M. Piperazine based antimicrobial polymers: A review. RSC Advances, 2021, 11(25), 15213-15230.
[http://dx.doi.org/10.1039/D1RA00341K] [PMID: 35424074]
[3]
Sajadikhah, S.S.; Nassiri, M. Recent developments in the synthesis of piperazines (microreview). Chem. Heterocycl. Compd., 2021, 57(9), 905-907.
[http://dx.doi.org/10.1007/s10593-021-02998-0]
[4]
Alghamdi, S.; Alshehri, M.M.; Asif, M. The neuropharmacological potential of piperazine derivatives: A mini- review. Mini Rev. Org. Chem., 2022, 19(7), 798-810.
[http://dx.doi.org/10.2174/1570193X19666220119120211]
[5]
Arbo, M.D.; Bastos, M.L.; Carmo, H.F. Piperazine compounds as drugs of abuse. Drug Alcohol Depend., 2012, 122(3), 174-185.
[http://dx.doi.org/10.1016/j.drugalcdep.2011.10.007] [PMID: 22071119]
[6]
Asif, M. Piperazine and Pyrazine containing molecules and their diverse pharmacological activities. Int. J. Adv. Sci. Res., 2015, 1(1), 05.
[http://dx.doi.org/10.7439/ijasr.v1i1.1766]
[7]
Mekky, A.E.M.; Sanad, S.M.H. Synthesis of novel bis(chromenes) and bis(chromeno[3,4- C ]pyridine) incorporating piperazine moiety. Synth. Commun., 2019, 49(11), 1385-1395.
[http://dx.doi.org/10.1080/00397911.2019.1595658]
[8]
Chauhan, N.; Pradhan, S.; Ghorai, M.K. Stereospecific synthesis of highly substituted piperazines via a one-pot three component ring-opening cyclization from N-activated aziridines, anilines, and propargyl carbonates. J. Org. Chem., 2019, 84(4), 1757-1765.
[http://dx.doi.org/10.1021/acs.joc.8b02259] [PMID: 30362348]
[9]
Rathi, A.K.; Syed, R.; Shin, H.S.; Patel, R.V. Piperazine derivatives for therapeutic use: A patent review (2010-present). Expert Opin. Ther. Pat., 2016, 26(7), 777-797.
[http://dx.doi.org/10.1080/13543776.2016.1189902] [PMID: 27177234]
[10]
Kharb, R.; Bansal, K.; Sharma, A.K. A valuable insight into recent advances on antimicrobial activity of piperazine derivatives. Pharma Chem., 2012, 4(6), 2470-2488.
[11]
Singh, K.; Siddiqui, H.H.; Shakya, P.; Kumar, A.; Khalid, M.; Arif, M.; Alok, S. Piperazine-a biologically active scaffold. Int. J. Pharm. Sci. Res., 2015, 6, 4145.
[12]
Stephenson, F.A.; Hawkins, L.M. Neurotransmitter receptors in the postsynpaptic neuron. Encycloped. Life Sci., 2001, 2001, 1-7.
[13]
Brito, A.F.; Braga, P.C.C.S.; Moreira, L.K.S.; Silva, D.M.; Silva, D.P.B.; Sanz, G.; Vaz, B.G.; de Carvalho, F.S.; Lião, L.M.; Silva, R.R.; Noël, F.; Neri, H.F.S.; Ghedini, P.C.; de Carvalho, M.F.; de S Gil, E.; Costa, E.A.; Menegatti, R. A new piperazine derivative: 1-(4-(3,5-di-tert-butyl-4-hydroxybenzyl) piperazin-1-yl)-2-methoxyethan-1-one with antioxidant and central activity. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(3), 255-269.
[http://dx.doi.org/10.1007/s00210-017-1451-7] [PMID: 29260264]
[14]
Brito, A.F.; Fajemiroye, J.O.; Neri, H.F.S.; Silva, D.M.; Silva, D.P.B.; Sanz, G.; Vaz, B.G.; de Carvalho, F.S.; Ghedini, P.C.; Lião, L.M.; Menegatti, R.; Costa, E.A. Anxiolytic‐like effect of 2‐(4‐((1‐phenyl‐1 H ‐pyrazol‐4‐yl)methyl)piperazin‐1‐yl)ethan‐1‐ol is mediated through the benzodiazepine and nicotinic pathways. Chem. Biol. Drug Des., 2017, 90(3), 432-442.
[http://dx.doi.org/10.1111/cbdd.12961] [PMID: 28160425]
[15]
de Brito, A.F.; Martins, J.L.R.; Fajemiroye, J.O.; Galdino, P.M.; De Lima, T.C.M.; Menegatti, R.; Costa, E.A. Central pharmacological activity of a new piperazine derivative: 4-(1-Phenyl-1h-pyrazol-4-ylmethyl)-piperazine-1-carboxylic acid ethyl ester. Life Sci., 2012, 90(23-24), 910-916.
[http://dx.doi.org/10.1016/j.lfs.2012.04.037] [PMID: 22564406]
[16]
Galdino, P.M.; de Oliveira, D.R.; Florentino, I.F.; Fajemiroye, J.O.; Valadares, M.C.; de Moura, S.S.; da Rocha, F.F.; de Lima, T.C.M.; Costa, E.A.; Menegatti, R. Involvement of the monoamine system in antidepressant-like properties of 4-(1-phenyl-1h-pyrazol-4-ylmethyl)-piperazine-1-carboxylic acid ethyl ester. Life Sci., 2015, 143, 187-193.
[http://dx.doi.org/10.1016/j.lfs.2015.11.009] [PMID: 26569034]
[17]
Malawska, K.; Rak, A.; Gryzło, B.; Sałat, K.; Michałowska, M.; Żmudzka, E.; Lodarski, K.; Malawska, B.; Kulig, K. Search for new potential anticonvulsants with anxiolytic and antidepressant properties among derivatives of 4,4-diphenylpyrrolidin-2-one. Pharmacol. Rep., 2017, 69(1), 105-111.
[http://dx.doi.org/10.1016/j.pharep.2016.09.020] [PMID: 27915183]
[18]
Mishra, C.B.; Kumari, S.; Tiwari, M. Design and synthesis of some new 1-phenyl-3/4-[4-(aryl/heteroaryl/alkyl-piperazine1-yl)-phenyl-ureas as potent anticonvulsant and antidepressant agents. Arch. Pharm. Res., 2016, 39(5), 603-617.
[http://dx.doi.org/10.1007/s12272-016-0720-1] [PMID: 26891908]
[19]
Kavraiskyi, D.P.; Shtrygol, S.Y.; Gorbach, T.V.; Shtrygol, D.V. The effect of 1-(4-metoxyphenyl)-5-{2-[4-(4-metoxyphenyl)piperazine-1-yl]-2-oxoethyl}-1,5-dihydro-4H-pyrazole [3,4-d]pyrydine-4-one and sodium valproate on the level of inhibitory and excitatory neurotransmitters in the brain in the hemispheric asymmetry. Clin. Pharm., 2017, 21(1), 30-39.
[http://dx.doi.org/10.24959/cphj.17.1412]
[20]
Rybka, S.; Obniska, J.; Żmudzki, P.; Koczurkiewicz, P.; Wójcik-Pszczoła, K.; Pękala, E.; Bryła, A.; Rapacz, A. Synthesis and determination of lipophilicity, anticonvulsant activity, and preliminary safety of 3‐substituted and 3‐unsubstituted N‐[(4‐aryl piperazin‐1‐yl) alkyl] pyrrolidine‐2,5‐dione derivatives. ChemMedChem, 2017, 12(22), 1848-1856.
[http://dx.doi.org/10.1002/cmdc.201700539] [PMID: 29045762]
[21]
Athar Abbasi, M.; Hussain, G.; Rehman, A.; Zahra Siddiqui, S.; Ali Shah, S.A.; Arif Lodhi, M.; Ali Khan, F.; Ashraf, M.; Ain, Q.; Ahmad, I.; Malik, R.; Shahid, M.; Mushtaq, Z. Synthesis of some unique carbamate derivatives bearing 2-Furoyl-1-piperazine as valuable therapeutic agents. Acta Chim. Slov., 2017, 64(1), 159-169.
[http://dx.doi.org/10.17344/acsi.2016.2986] [PMID: 28380217]
[22]
Kumar, J.; Meena, P.; Singh, A.; Jameel, E.; Maqbool, M.; Mobashir, M.; Shandilya, A.; Tiwari, M.; Hoda, N.; Jayaram, B. Synthesis and screening of triazolopyrimidine scaffold as multi-functional agents for Alzheimer’s disease therapies. Eur. J. Med. Chem., 2016, 119, 260-277.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.053] [PMID: 27227482]
[23]
Yurttaş, L.; Abu Mohsen, U.; Ozkan, Y.; Cobanoglu, S.; Levent, S.; Kaplancikli, Z.A. Synthesis and biological evaluation of some dibenzofuran-piperazine derivatives. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1177-1183.
[http://dx.doi.org/10.3109/14756366.2015.1108971] [PMID: 26581445]
[24]
Zhang, J.; Jiang, C.S. Synthesis and evaluation of coumarin/piperazine hybrids as acetylcholinesterase inhibitors. Med. Chem. Res., 2018, 27(6), 1717-1727.
[http://dx.doi.org/10.1007/s00044-018-2185-x]
[25]
Can, N.Ö. Investigation of monoamine oxidase inhibitory activities of new chalcone derivatives. Cukurova Med. J., 2018, 43(2), 371-380.
[http://dx.doi.org/10.17826/cumj.341883]
[26]
Słoczyńska, K.; Pańczyk, K.; Waszkielewicz, A.M.; Marona, H.; Pękala, E. In vitro mutagenic, antimutagenic, and antioxidant activities evaluation and biotransformation of some bioactive 4‐substituted 1‐(2‐methoxyphenyl)piperazine derivatives. J. Biochem. Mol. Toxicol., 2016, 30(12), 593-601.
[http://dx.doi.org/10.1002/jbt.21826] [PMID: 27450225]
[27]
Zagórska, A.; Bucki, A.; Kołaczkowski, M.; Siwek, A.; Głuch-Lutwin, M.; Starowicz, G.; Kazek, G.; Partyka, A.; Wesołowska, A.; Słoczyńska, K. Synthesis and biological evaluation of 2-fluoro and 3-trifluoromethyl-phenyl-piperazinylalkyl derivatives of 1 H-imidazo [2, 1-f] purine-2, 4 (3H,8H)-dione as potential antidepressant agents. J. Enz. Inhib. Med Chem., 2016, 31(S3), 10-24.
[http://dx.doi.org/10.1080/14756366.2016.1198902]
[28]
Zagórska, A.; Partyka, A.; Bucki, A.; Kołaczkowski, M.; Jastrzębska-Więsek, M.; Czopek, A.; Siwek, A.; Głuch-Lutwin, M.; Bednarski, M.; Bajda, M.; Jończyk, J.; Piska, K.; Koczurkiewicz, P.; Wesołowska, A.; Pawłowski, M. Characteristics of metabolic stability and the cell permeability of 2‐pyrimidinyl‐piperazinyl‐alkyl derivatives of 1H‐imidazo[2,1 ‐f ]purine‐2,4(3 H, 8 H )‐dione with antidepressant‐ and anxiolytic‐like activities. Chem. Biol. Drug Des., 2019, 93(4), 511-521.
[http://dx.doi.org/10.1111/cbdd.13442] [PMID: 30422400]
[29]
da Silva, D.M.; Sanz, G.; Vaz, B.G.; de Carvalho, F.S.; Lião, L.M.; de Oliveira, D.R.; Moreira, L.K.S.; Cardoso, C.S.; de Brito, A.F.; da Silva, D.P.B.; da Rocha, F.F.; Santana, I.G.C.; Galdino, P.M.; Costa, E.A.; Menegatti, R. Tert-butyl 4-((1-phenyl-1H-pyrazol-4-yl) methyl) piperazine-1-carboxylate (LQFM104)– New piperazine derivative with antianxiety and antidepressant-like effects: Putative role of serotonergic system. Biomed. Pharmacother., 2018, 103, 546-552.
[http://dx.doi.org/10.1016/j.biopha.2018.04.077] [PMID: 29677541]
[30]
Gu, Z.S.; Xiao, Y.; Zhang, Q.W.; Li, J.Q. Synthesis and antidepressant activity of a series of arylalkanol and aralkyl piperazine derivatives targeting SSRI/5-HT 1A /5-HT 7. Bioorg. Med. Chem. Lett., 2017, 27(24), 5420-5423.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.007] [PMID: 29138029]
[31]
Rhein, C.; Löber, S.; Gmeiner, P.; Gulbins, E.; Tripal, P.; Kornhuber, J. Derivatization of common antidepressant drugs increases inhibition of acid sphingomyelinase and reduces induction of phospholipidosis. J. Neural Transm., 2018, 125(12), 1837-1845.
[http://dx.doi.org/10.1007/s00702-018-1923-z] [PMID: 30191367]
[32]
Khan, I.; Tantray, M.A.; Hamid, H.; Alam, M.S.; Kalam, A.; Shaikh, F.; Shah, A.; Hussain, F. Synthesis of novel pyrimidin‐4‐one bearing piperazine ring‐based amides as glycogen synthase kinase‐3 β inhibitors with antidepressant activity. Chem. Biol. Drug Des., 2016, 87(5), 764-772.
[http://dx.doi.org/10.1111/cbdd.12710] [PMID: 26714831]
[33]
Kubacka, M.; Mogilski, S.; Bednarski, M.; Nowiński, L.; Dudek, M.; Żmudzka, E.; Siwek, A.; Waszkielewicz, A.M.; Marona, H.; Satała, G.; Bojarski, A.; Filipek, B.; Pytka, K. Antidepressant-like activity of aroxyalkyl derivatives of 2-methoxyphenylpiperazine and evidence for the involvement of serotonin receptor subtypes in their mechanism of action. Pharmacol. Biochem. Behav., 2016, 141, 28-41.
[http://dx.doi.org/10.1016/j.pbb.2015.11.013] [PMID: 26647362]
[34]
Kucwaj-Brysz, K.; Kurczab, R.; Jastrzębska-Więsek, M.; Żesławska, E.; Satała, G.; Nitek, W.; Partyka, A.; Siwek, A.; Jankowska, A.; Wesołowska, A.; Kieć-Kononowicz, K.; Handzlik, J. Computer-aided insights into receptor-ligand interaction for novel 5-arylhydantoin derivatives as serotonin 5-HT 7 receptor agents with antidepressant activity. Eur. J. Med. Chem., 2018, 147, 102-114.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.093] [PMID: 29425815]
[35]
Kumar, J.; Chawla, G.; Akhtar, M.; Sahu, K.; Rathore, V.; Sahu, S. Design, synthesis and pharmacological evaluation of some novel derivatives of 1-[3-(furan-2-yl)-5-phenyl-4,5-dihydro-1,2-oxazol-4-yl]methyl-4-methyl piperazine. Arab. J. Chem., 2017, 10(1), 141-149.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.027]
[36]
Kumar, B.; Sheetal; Mantha, A.K.; Kumar, V. Synthesis, biological evaluation and molecular modeling studies of phenyl-/benzhydrylpiperazine derivatives as potential MAO inhibitors. Bioorg. Chem., 2018, 77, 252-262.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.020] [PMID: 29421700]
[37]
Kumari, S.; Mishra, C.B.; Tiwari, M. Pharmacological evaluation of novel 1-[4-(4-benzo[1,3]dioxol-5-ylmethyl-piperazin-1-yl)-phenyl]-3-phenyl-urea as potent anticonvulsant and antidepressant agent. Pharmacol. Rep., 2016, 68(2), 250-258.
[http://dx.doi.org/10.1016/j.pharep.2015.08.013] [PMID: 26922524]
[38]
Demir Özkay, Ü.; Kaya, C.; Acar Çevik, U.; Can, Ö. Synthesis and antidepressant activity profile of some novel benzothiazole derivatives. Molecules, 2017, 22(9), 1490.
[http://dx.doi.org/10.3390/molecules22091490] [PMID: 28880242]
[39]
Kaya, B.; Yurttaş, L.; Sağlik, B.N.; Levent, S.; Özkay, Y.; Kaplancikli, Z.A. Novel 1-(2-pyrimidin-2-yl)piperazine derivatives as selective monoamine oxidase (MAO)-A inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 193-202.
[http://dx.doi.org/10.1080/14756366.2016.1247054] [PMID: 28097890]
[40]
Ostrowska, K.; Młodzikowska, K.; Głuch-Lutwin, M.; Gryboś, A.; Siwek, A. Synthesis of a new series of aryl/heteroarylpiperazinyl derivatives of 8-acetyl-7-hydroxy-4-methylcoumarin with low nanomolar 5-HT 1A affinities. Eur. J. Med. Chem., 2017, 137, 108-116.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.047] [PMID: 28575721]
[41]
Kędzierska, E.; Fiorino, F.; Gibuła, E.; Corvino, A.; Giordano, F.; Herbet, M.; Dudka, J.; Poleszak, E.; Wlaź, P.; Kotlińska, J.H. Anxiolytic‐like effects of the new arylpiperazine derivatives containing isonicotinic and picolinic nuclei: behavioral and biochemical studies. Fundam. Clin. Pharmacol., 2019, 33(3), 254-266.
[http://dx.doi.org/10.1111/fcp.12443] [PMID: 30506804]
[42]
Pańczyk, K.; Pytka, K.; Jakubczyk, M.; Rapacz, A.; Sałat, K.; Furgała, A.; Siwek, A.; Głuch-Lutwin, M.; Gryboś, A.; Słoczyńska, K.; Pękala, E.; Żmudzki, P.; Bucki, A.; Kołaczkowski, M.; Żelaszczyk, D.; Marona, H.; Waszkielewicz, A.M. Synthesis and activity of di- or trisubstituted N -(phenoxyalkyl)- or N -2-[2-(phenoxy)ethoxy]ethylpiperazine derivatives on the central nervous system. Bioorg. Med. Chem. Lett., 2018, 28(11), 2039-2049.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.059] [PMID: 29730027]
[43]
Johnstone, A.C.; Lea, R.A.; Brennan, K.A.; Schenk, S.; Kennedy, M.A.; Fitzmaurice, P.S. Review: Benzylpiperazine: A drug of abuse? J. Psychopharmacol., 2007, 21(8), 888-894.
[http://dx.doi.org/10.1177/0269881107077260] [PMID: 17606471]
[44]
Monteiro, M.S.; Bastos, M.L.; Guedes de Pinho, P.; Carvalho, M. Update on 1-benzylpiperazine (BZP) party pills. Arch. Toxicol., 2013, 87(6), 929-947.
[http://dx.doi.org/10.1007/s00204-013-1057-x] [PMID: 23685794]
[45]
Herbert, C.E.; Hughes, R.N. A comparison of 1-benzylpiperazine and methamphetamine in their acute effects on anxiety-related behavior of hooded rats. Pharmacol. Biochem. Behav., 2009, 92(2), 243-250.
[http://dx.doi.org/10.1016/j.pbb.2008.12.003] [PMID: 19111568]
[46]
Biney, R.P.; Benneh, C.K.; Ameyaw, E.O.; Boakye-Gyasi, E.; Woode, E. Xylopia aethiopica fruit extract exhibits antidepressant-like effect via interaction with serotonergic neurotransmission in mice. J. Ethnopharmacol., 2016, 184, 49-57.
[http://dx.doi.org/10.1016/j.jep.2016.02.023] [PMID: 26902831]
[47]
NIMH-National Institute of Mental Health. Anxiety Disorders. 2016. Available from: https://www.nimh.nih.gov/health/topics/anxiety-disorders/index.shtml#part_145338
[48]
Gilhotra, N.; Dhingra, D. GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res., 2010, 1352, 167-175.
[http://dx.doi.org/10.1016/j.brainres.2010.07.007] [PMID: 20633542]
[49]
Bockaert, J.; Dumuis, A.; Bouhelal, R.; Sebben, M.; Cory, R. Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn Schmiedebergs Arch. Pharmacol., 1987, 335(5), 588-592.
[http://dx.doi.org/10.1007/BF00169129] [PMID: 2886925]
[50]
Mokrosz, J.L.; Pietrasiewicz, M.; Duszyńska, B.; Cegła, M.T. Structure-activity relationship studies of central nervous system (CNS) agents. 5. Effect of the hydrocarbon chain on the affinity of 4-substituted 1-(3-chlorophenyl)piperazines for 5-HT1A receptor sites. J. Med. Chem., 1992, 35(13), 2369-2374.
[http://dx.doi.org/10.1021/jm00091a004] [PMID: 1535661]
[51]
Hasler, G. Pathophysiology of depression: Do we have any solid evidence of interest to clinicians? World Psychiatry, 2010, 9(3), 155-161.
[http://dx.doi.org/10.1002/j.2051-5545.2010.tb00298.x] [PMID: 20975857]
[52]
Villanueva, R. Neurobiology of major depressive disorder. Neural Plast., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/873278] [PMID: 24222865]
[53]
Locke, A.B.; Kirst, N.; Shultz, C.G. Diagnosis and management of generalized anxiety disorder and panic disorder in adults. Am. Fam. Physician, 2015, 91(9), 617-624.
[PMID: 25955736]
[54]
Yevich, J.P.; New, J.S.; Smith, D.W.; Lobeck, W.G.; Catt, J.D.; Minielli, J.L.; Eison, M.S.; Taylor, D.P.; Riblet, L.A.; Temple, D.L., Jr Synthesis and biological evaluation of 1-(1,2-benzisothiazol-3-yl)- and (1,2-benzisoxazol-3-yl)piperazine derivatives as potential antipsychotic agents. J. Med. Chem., 1986, 29(3), 359-369.
[http://dx.doi.org/10.1021/jm00153a010] [PMID: 2869146]
[55]
Warnez, S.; Alessi-Severini, S. Clozapine: A review of clinical practice guidelines and prescribing trends. BMC Psychiatry, 2014, 14(1), 102.
[http://dx.doi.org/10.1186/1471-244X-14-102] [PMID: 24708834]
[56]
Kimura, M.; Masuda, T.; Yamada, K.; Kawakatsu, N.; Kubota, N.; Mitani, M.; Kishii, K.; Inazu, M.; Kiuchi, Y.; Oguchi, K.; Namiki, T. Antioxidative activities of novel diphenylalkyl piperazine derivatives with high affinities for the dopamine transporter. Bioorg. Med. Chem. Lett., 2004, 14(16), 4287-4290.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.091] [PMID: 15261288]
[57]
Gomes, T.F.; Pompeu, T.E.T.; Rodrigues, D.A.; Noël, F.; Menegatti, R.; Andrade, C.H.; Sabino, J.R.; Gil, E.S.; Dalla Costa, T.; Betti, A.H.; Antonio, C.B.; Rates, S.M.K.; Fraga, C.A.M.; Barreiro, E.J.; de Oliveira, V. Biotransformation of LASSBio-579 and pharmacological evaluation of p -hydroxylated metabolite a N -phenylpiperazine antipsychotic lead compound. Eur. J. Med. Chem., 2013, 62, 214-221.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.011] [PMID: 23353740]
[58]
Neves, G.; Antonio, C.B.; Betti, A.H.; Pranke, M.A.; Fraga, C.A.M.; Barreiro, E.J.; Noël, F.; Rates, S.M.K. New insights into pharmacological profile of LASSBio-579, a multi-target N-phenylpiperazine derivative active on animal models of schizophrenia. Behav. Brain Res., 2013, 237, 86-95.
[http://dx.doi.org/10.1016/j.bbr.2012.09.016] [PMID: 23000351]
[59]
NIH. Current Medication Information for Clozapine (clozapine tablet), 2015. Available from: http://dailymed.nlm.nih.gov/ dailymed/drugInfo.cfm?setid=d5c8a456-6f3c-4963-b321-4ed746f690e4
[60]
Siskind, D.; McCartney, L.; Goldschlager, R.; Kisely, S. Clozapine v. first- and second-generation antipsychotics in treatment-refractory schizophrenia: Systematic review and meta-analysis. Br. J. Psychiatry, 2016, 209(5), 385-392.
[http://dx.doi.org/10.1192/bjp.bp.115.177261] [PMID: 27388573]
[61]
Montastruc, F.; Benevent, J.; Touafchia, A.; Chebane, L.; Araujo, M.; Guitton-Bondon, E.; Durrieu, G.; Arbus, C.; Schmitt, L.; Begaud, B.; Montastruc, J.L. Atropinic (anticholinergic) burden in antipsychotic‐treated patients. Fundam. Clin. Pharmacol., 2018, 32(1), 114-119.
[http://dx.doi.org/10.1111/fcp.12321] [PMID: 28887902]
[62]
Seba, M.C.; Sandhya, S.M.; Prasobh, G.R. Piperazine derivatives: A review of activity on neurotransmitter receptors. Inter. J. Res. & Rev., 2019, 6(11), 570-580.
[63]
Clark, R.B.; Lamppu, D.; Libertine, L.; McDonough, A.; Kumar, A.; LaRosa, G.; Rush, R.; Elbaum, D. Discovery of novel 2-((pyridin-3-yloxy)methyl)piperazines as α7 nicotinic acetylcholine receptor modulators for the treatment of inflammatory disorders. J. Med. Chem., 2014, 57(10), 3966-3983.
[http://dx.doi.org/10.1021/jm5004599] [PMID: 24814197]
[64]
He, Y.; Li, Y.; Wang, X.; He, X.; Jun, L.; Chuai, M.; Lee, K.K.H.; Wang, J.; Wang, L.; Yang, X. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis. Exp. Cell Res., 2014, 320(2), 354-364.
[http://dx.doi.org/10.1016/j.yexcr.2013.10.009] [PMID: 24162003]
[65]
Chen, J.; Norrholm, S.; Dwoskin, L.P.; Crooks, P.A.; Bai, D. N,N-Disubstituted piperazines: synthesis and affinities at α4β2∗ and α7∗ neuronal nicotinic acetylcholine receptors. Bioorg. Med. Chem. Lett., 2003, 13(1), 97-100.
[http://dx.doi.org/10.1016/S0960-894X(02)00849-1] [PMID: 12467625]
[66]
Post-Munson, D.J.; Pieschl, R.L.; Molski, T.F.; Graef, J.D.; Hendricson, A.W.; Knox, R.J.; McDonald, I.M.; Olson, R.E.; Macor, J.E.; Weed, M.R.; Bristow, L.J.; Kiss, L.; Ahlijanian, M.K.; Herrington, J. B-973, a novel piperazine positive allosteric modulator of the α7 nicotinic acetylcholine receptor. Eur. J. Pharmacol., 2017, 799, 16-25.
[http://dx.doi.org/10.1016/j.ejphar.2017.01.037] [PMID: 28132910]
[67]
McCreary, A.C.; Glennon, J.C.; Ashby, C.R.; Herbert, Y.M.; Zhu, L.; Jan-Hendrik, R.; Mayke, B.H.; Stephen, K.L.; Arnoud, H.H.; Herman van, S.; Rolf, W.F.; Chris, G.K. SLV313 (1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4[5-(4-fluoro-phenyl)-pyridin-3-ylmethyl]-piperazine monohydrochloride): A novel dopamine d2 receptor antagonist and 5-ht1a receptor agonist potential antipsychotic. Neuropsychopharmacol, 2007, 32, 78-94.
[http://dx.doi.org/10.1038/sj.npp.1301098] [PMID: 16710314]
[68]
Szalai, G.B.; Csongor, E.A.; Domany, G.; Gyertyan, I.; Kiss, B.; Laszy, J.; Saghy, K.; Schmidt, E.; Farkas, S.; Komlodi, Z. Pyrimidnyl-piperazines useful as D3/D2 receptor ligands. United States Patent No. US7,875,610B2, 2011.
[69]
Squires, R.F.; Saederup, E. Mono N-Aryl ethylenediamine and piperazine derivatives are GABAA receptor blockers: Implications for psychiatry. Neurochem. Res., 1993, 18(7), 787-793.
[http://dx.doi.org/10.1007/BF00966774] [PMID: 8103578]
[70]
Nicolay, F.; Harder, A.; von Samson-Himmelstjerna, G.; Mehlhorn, H. Synergistic action of a cyclic depsipeptide and piperazine on nematodes. Parasitol. Res., 2000, 86(12), 982-992.
[http://dx.doi.org/10.1007/PL00008530] [PMID: 11133114]
[71]
Feng, B.; Tse, H.W.; Skifter, D.A.; Morley, R.; Jane, D.E.; Monaghan, D.T. Structure–activity analysis of a novel NR2C/NR2D‐preferring NMDA receptor antagonist: 1‐(phenanthrene‐2‐carbonyl) piperazine‐2,3‐dicarboxylic acid. Br. J. Pharmacol., 2004, 141(3), 508-516.
[http://dx.doi.org/10.1038/sj.bjp.0705644] [PMID: 14718249]
[72]
Irvine, M.W.; Costa, B.M.; Dlaboga, D.; Culley, G.R.; Hulse, R.; Scholefield, C.L.; Atlason, P.; Fang, G.; Eaves, R.; Morley, R.; Mayo-Martin, M.B.; Amici, M.; Bortolotto, Z.A.; Donaldson, L.; Collingridge, G.L.; Molnár, E.; Monaghan, D.T.; Jane, D.E. Piperazine-2,3-dicarboxylic acid derivatives as dual antagonists of NMDA and GluK1-containing kainate receptors. J. Med. Chem., 2012, 55(1), 327-341.
[http://dx.doi.org/10.1021/jm201230z] [PMID: 22111545]
[73]
Gregory, K.J.; Herman, E.J.; Ramsey, A.J.; Hammond, A.S.; Byun, N.E.; Stauffer, S.R.; Manka, J.T.; Jadhav, S.; Bridges, T.M.; Weaver, C.D.; Niswender, C.M.; Steckler, T.; Drinkenburg, W.H.; Ahnaou, A.; Lavreysen, H.; Macdonald, G.J.; Bartolomé, J.M.; Mackie, C.; Hrupka, B.J.; Caron, M.G.; Daigle, T.L.; Lindsley, C.W.; Conn, P.J.; Jones, C.K. N-aryl piperazine metabotropic glutamate receptor 5 positive allosteric modulators possess efficacy in preclinical models of NMDA hypofunction and cognitive enhancement. J. Pharmacol. Exp. Ther., 2013, 347(2), 438-457.
[http://dx.doi.org/10.1124/jpet.113.206623] [PMID: 23965381]
[74]
Harvey, R.J.; Yee, B.K. Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat. Rev. Drug Discov., 2013, 12(11), 866-885.
[http://dx.doi.org/10.1038/nrd3893] [PMID: 24172334]
[75]
Orjales, A.; Gil-Sánchez, J.C.; Alonso-Cires, L.; Labeaga, L.; Mosquera, R.; Berisa, A.; Ucelay, M.; Innerárity, A.; Corcóstegui, R. Synthesis and histamine H1-receptor antagonist activity of 4-(diphenylmethyl)-1-piperazine derivatives with a terminal heteroaryl or cycloalkyl amide fragment. Eur. J. Med. Chem., 1996, 31(10), 813-818.
[http://dx.doi.org/10.1016/0223-5234(96)83975-4] [PMID: 22026937]
[76]
Terzioglu, N.; van Rijn, R.M.; Bakker, R.A.; De Esch, I.J.P.; Leurs, R. Synthesis and structure–activity relationships of indole and benzimidazole piperazines as histamine H4 receptor antagonists. Bioorg. Med. Chem. Lett., 2004, 14(21), 5251-5256.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.035] [PMID: 15454206]
[77]
Venable, J.D.; Cai, H.; Chai, W.; Dvorak, C.A.; Grice, C.A.; Jablonowski, J.A.; Shah, C.R.; Kwok, A.K.; Ly, K.S.; Pio, B.; Wei, J.; Desai, P.J.; Jiang, W.; Nguyen, S.; Ling, P.; Wilson, S.J.; Dunford, P.J.; Thurmond, R.L.; Lovenberg, T.W.; Karlsson, L.; Carruthers, N.I.; Edwards, J.P. Preparation and biological evaluation of indole, benzimidazole, and thienopyrrole piperazine carboxamides: potent human histamine h(4) antagonists. J. Med. Chem., 2005, 48(26), 8289-8298.
[http://dx.doi.org/10.1021/jm0502081] [PMID: 16366610]
[78]
Arlette, J.P. Cetirizine: A piperazine antihistamine. Clin. Dermatol., 1991, 9(4), 511-513.
[http://dx.doi.org/10.1016/0738-081X(91)90080-5] [PMID: 1688018]
[79]
Plobeck, N.; Delorme, D.; Wei, Z.Y.; Yang, H.; Zhou, F.; Schwarz, P.; Gawell, L.; Gagnon, H.; Pelcman, B.; Schmidt, R.; Yue, S.Y.; Walpole, C.; Brown, W.; Zhou, E.; Labarre, M.; Payza, K.; St-Onge, S.; Kamassah, A.; Morin, P.E.; Projean, D.; Ducharme, J.; Roberts, E. New diarylmethylpiperazines as potent and selective nonpeptidic δ opioid receptor agonists with increased In vitro metabolic stability. J. Med. Chem., 2000, 43(21), 3878-3894.
[http://dx.doi.org/10.1021/jm000228x] [PMID: 11052793]
[80]
Bender, A.M.; Clark, M.J.; Agius, M.P.; Traynor, J.R.; Mosberg, H.I. Synthesis and evaluation of 4-substituted piperidines and piperazines as balanced affinity μ opioid receptor (MOR) agonist/δ opioid receptor (DOR) antagonist ligands. Bioorg. Med. Chem. Lett., 2014, 24(2), 548-551.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.021] [PMID: 24365161]
[81]
McCauley, J.P., Jr; Dantzman, C.L.; King, M.M.; Ernst, G.E.; Wang, X.; Brush, K.; Palmer, W.E.; Frietze, W.; Andisik, D.W.; Hoesch, V.; Doring, K.; Hulsizer, J.; Bui, K.H.; Liu, J.; Hudzik, T.J.; Wesolowski, S.S. Multiparameter exploration of piperazine derivatives as δ-opioid receptor agonists for CNS indications. Bioorg. Med. Chem. Lett., 2012, 22(2), 1169-1173.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.088] [PMID: 22197139]
[82]
Carroll, F.I.; Cueva, J.P.; Thomas, J.B.; Mascarella, S.W.; Runyon, S.P.; Navarro, H.A. 1-substituted 4-(3-hydroxyphenyl)piperazines are pure opioid receptor antagonists. ACS Med. Chem. Lett., 2010, 1(7), 365-369.
[http://dx.doi.org/10.1021/ml100126b] [PMID: 21116435]
[83]
McMillen, B.A.; Scott, S.M.; Williams, H.L.; Sanghera, M.K. Effects of gepirone, an aryl-piperazine anxiolytic drug, on aggressive behavior and brain monoaminergic neurotransmission. Naunyn Schmiedebergs Arch. Pharmacol., 1987, 335(4), 454-464.
[http://dx.doi.org/10.1007/BF00165563] [PMID: 2439924]
[84]
Orjales, A.; Alonso-Cires, L.; Labeaga, L.; Corcóstegui, R. New (2-methoxyphenyl)piperazine derivatives as 5-HT1A receptor ligands with reduced α 1-adrenergic activity. Synthesis and structure-affinity relationships. J. Med. Chem., 1995, 38(8), 1273-1277.
[http://dx.doi.org/10.1021/jm00008a005] [PMID: 7731013]
[85]
Frances, H. Psychopharmacological profile of 1-(m-(trifluoromethyl) phenyl) piperazine (TFMPP). Pharmacol. Biochem. Behav., 1988, 31(1), 37-41.
[http://dx.doi.org/10.1016/0091-3057(88)90308-5] [PMID: 3252258]
[86]
Simmler, L.D.; Rickli, A.; Schramm, Y.; Hoener, M.C.; Liechti, M.E. Pharmacological profiles of aminoindanes, piperazines, and pipradrol derivatives. Biochem. Pharmacol., 2014, 88(2), 237-244.
[http://dx.doi.org/10.1016/j.bcp.2014.01.024] [PMID: 24486525]
[87]
Song, L.; Liu, Y.; Liu, F.; Zhang, R.; Ji, H.; Jia, Y. Vilazodone for major depressive disorder in adults. Cochrane Libr., 2016, 2016(9), CD012350.
[http://dx.doi.org/10.1002/14651858.CD012350]
[88]
Nishitsuji, K.; To, H.; Murakami, Y.; Kodama, K.; Kob́ayashi, D.; Yamada, T.; Kubo, C.; Mine, K. Tandospirone in the treatment of generalised anxiety disorder and mixed anxiety-depression : Results of a comparatively high dosage trial. Clin. Drug Investig., 2004, 24(2), 121-126.
[http://dx.doi.org/10.2165/00044011-200424020-00007] [PMID: 17516698]
[89]
Schep, L.J.; Slaughter, R.J.; Vale, J.A.; Beasley, D.M.G.; Gee, P. The clinical toxicology of the designer “party pills” benzylpiperazine and trifluoromethylphenylpiperazine. Clin. Toxicol., 2011, 49(3), 131-141.
[http://dx.doi.org/10.3109/15563650.2011.572076] [PMID: 21495881]
[90]
Prochlorperazine monograph for professionals; American Society of Health-System Pharmacists, 2019.
[91]
Bawa, R.; Scarff, J.R. Lurasidone: A new treatment option for bipolar depression-a review. Innov. Clin. Neurosci., 2015, 12(1-2), 21-23.
[PMID: 25852975]
[92]
Brito, A.F.; Moreira, L.K.S.; Menegatti, R.; Costa, E.A. Piperazine derivatives with central pharmacological activity used as therapeutic tools. Fundam. Clin. Pharmacol., 2019, 33(1), 13-24.
[http://dx.doi.org/10.1111/fcp.12408] [PMID: 30151922]
[93]
Amita, T.; Mridula, M.; Manju, V. Piperazine: The molecule of diverse pharmacological importance. Int. J. Res. Ayurveda Pharm., 2011, 2, 1547-1548.
[94]
Rathore, A.; Asati, V.; Kashaw, S.K.; Agarwal, S.; Parwani, D.; Bhattacharya, S.; Mallick, C. The recent development of piperazine and piperidine derivatives as antipsychotic agents. Mini Rev. Med. Chem., 2021, 21(3), 362-379.
[http://dx.doi.org/10.2174/1389557520666200910092327] [PMID: 32912125]
[95]
Lin, H.H.; Wu, W.Y.; Cao, S.L.; Liao, J.; Ma, L.; Gao, M.; Li, Z.F.; Xu, X. Synthesis and antiproliferative evaluation of piperazine-1-carbothiohydrazide derivatives of indolin-2-one. Bioorg. Med. Chem. Lett., 2013, 23(11), 3304-3307.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.099] [PMID: 23602441]
[96]
Chen, H.; Liang, X.; Sun, T.; Qiao, X.; Zhan, Z.; Li, Z.; He, C.; Ya, H.; Yuan, M. Synthesis and biological evaluation of estrone 3- O -ether derivatives containing the piperazine moiety. Steroids, 2018, 134, 101-109.
[http://dx.doi.org/10.1016/j.steroids.2018.02.002] [PMID: 29476759]
[97]
Mistry, B.; Patel, R.V.; Keum, Y.S.; Kim, D.H. Synthesis of N-Mannich bases of berberine linking piperazine moieties revealing anticancer and antioxidant effects. Saudi J. Biol. Sci., 2017, 24(1), 36-44.
[http://dx.doi.org/10.1016/j.sjbs.2015.09.005] [PMID: 28053569]
[98]
Mistry, B.; Keum, Y.S.; Pandurangan, M.; Patel, R.V.; Kim, D.H. Synthesis of berberine-piperazine conjugates as potential antioxidant and cytotoxic agents. Med. Chem. Res., 2016, 25(11), 2461-2470.
[http://dx.doi.org/10.1007/s00044-016-1662-3]
[99]
Dileep, K.; Katiki, M.R.; Rao, B.R.; Vardhan, V.P.S.V.; Sistla, R.; Nanubolu, B.; Murty, M.S.R. Regioselective synthesis and preliminary cytotoxic activity properties of tetrazole appendage N-substituted piperazine derivatives. Org. Comm., 2017, 10(3), 178-189.
[http://dx.doi.org/10.25135/acg.oc.20.17.04.018]
[100]
Zhang, Y.; Yang, C.R.; Tang, X.; Cao, S.L.; Ren, T.T.; Gao, M.; Liao, J.; Xu, X. Synthesis and antitumor activity evaluation of quinazoline derivatives bearing piperazine-1-carbodithioate moiety at C4-position. Bioorg. Med. Chem. Lett., 2016, 26(19), 4666-4670.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.060] [PMID: 27575478]
[101]
Xu, F.; Yang, Z.; Jiang, J.; Pan, W.; Yang, X.; Wu, J.; Zhu, Y.; Wang, J.; Shou, Q.Y.; Wu, H. Synthesis, antitumor evaluation and molecular docking studies of [1,2,4]triazolo[4,3- b ][1,2,4,5]tetrazine derivatives. Bioorg. Med. Chem. Lett., 2016, 26(13), 3042-3047.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.007] [PMID: 27184766]
[102]
Venkatesh, R.; Kasaboina, S.; Jain, N.; Janardhan, S.; Holagunda, U.D.; Nagarapu, L. Design and synthesis of novel sulphamide tethered quinazolinone hybrids as potential antitumor agents. J. Mol. Struct., 2019, 1181, 403-411.
[http://dx.doi.org/10.1016/j.molstruc.2018.12.098]
[103]
Sun, W.X.; Ji, Y.J.; Wan, Y.; Han, H.W.; Lin, H.Y.; Lu, G.H.; Qi, J.L.; Wang, X.M.; Yang, Y.H. Design and synthesis of piperazine acetate podophyllotoxin ester derivatives targeting tubulin depolymerization as new anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(17), 4066-4074.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.047] [PMID: 28757065]
[104]
Pavase, L.S.; Mane, D.V. Synthesis and anticancer activities of novel (tetrahydrobenzo [4,5] thieno [2,3-d] pyrimidine-4-yl)-pyrolidine-2-carboxylic acid derivatives. Med. Chem. Res., 2016, 25(10), 2380-2391.
[http://dx.doi.org/10.1007/s00044-016-1692-x]
[105]
Mao, Z.W.; Zheng, X.; Lin, Y.P.; Hu, C.Y.; Wang, X.L.; Wan, C.P.; Rao, G.X. Design, synthesis and anticancer activity of novel hybrid compounds between benzofuran and N-aryl piperazine. Bioorg. Med. Chem. Lett., 2016, 26(15), 3421-3424.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.055] [PMID: 27371110]
[106]
Bhati, S.; Kaushik, V.; Singh, J. In silico identification of piperazine linked thiohydantoin derivatives as novel androgen antagonist in prostate cancer treatment. Int. J. Pept. Res. Ther., 2019, 25(3), 845-860.
[http://dx.doi.org/10.1007/s10989-018-9734-5]
[107]
Bao, X.; Peng, Y.; Lu, X.; Yang, J.; Zhao, W.; Tan, W.; Dong, X. Synthesis and evaluation of novel benzylphthalazine derivatives as hedgehog signaling pathway inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(13), 3048-3051.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.009] [PMID: 27180012]
[108]
Jiang, B.; Wang, E.S.; Donovan, K.A.; Liang, Y.; Fischer, E.S.; Zhang, T.; Gray, N.S. Development of dual and selective degraders of cyclin‐dependent kinases 4 and 6. Angew. Chem. Int. Ed., 2019, 58(19), 6321-6326.
[http://dx.doi.org/10.1002/anie.201901336] [PMID: 30802347]
[109]
Wu, J.; Wang, A.; Li, X.; Chen, C.; Qi, Z.; Hu, C.; Wang, W.; Wu, H.; Huang, T.; Zhao, M.; Wang, W.; Hu, Z.; Liu, Q.; Wang, B.; Wang, L.; Li, L.; Ge, J.; Ren, T.; Xia, R.; Liu, J.; Liu, Q. Discovery and characterization of a novel highly potent and selective type II native and drug-resistant V299L mutant BCR-ABL inhibitor (CHMFL-ABL-039) for Chronic Myeloid Leukemia (CML). Cancer Biol. Ther., 2019, 20(6), 877-885.
[http://dx.doi.org/10.1080/15384047.2019.1579958] [PMID: 30894066]
[110]
Hu, G.; Wang, C.; Xin, X.; Li, S.; Li, Z.; Zhao, Y.; Gong, P. Design, synthesis and biological evaluation of novel 2,4-diaminopyrimidine derivatives as potent antitumor agents. New J. Chem., 2019, 43(25), 10190-10202.
[http://dx.doi.org/10.1039/C9NJ02154J]
[111]
Cai, G.; Yu, W.; Song, D.; Zhang, W.; Guo, J.; Zhu, J.; Ren, Y.; Kong, L. Discovery of fluorescent coumarin-benzo[b]thiophene 1, 1-dioxide conjugates as mitochondria-targeting antitumor STAT3 inhibitors. Eur. J. Med. Chem., 2019, 174, 236-251.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.024] [PMID: 31048139]
[112]
Yu, J.Y.; Li, X.Q.; Wei, M.X. Synthesis and biological activities of artemisinin-piperazine-dithiocarbamate derivatives. Eur. J. Med. Chem., 2019, 169, 21-28.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.071] [PMID: 30852384]
[113]
Zeidan, M.A.; Mostafa, A.S.; Gomaa, R.M.; Abou-zeid, L.A.; El-Mesery, M.; El-Sayed, M.A.A.; Selim, K.B. Design, synthesis and docking study of novel picolinamide derivatives as anticancer agents and VEGFR-2 inhibitors. Eur. J. Med. Chem., 2019, 168, 315-329.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.050] [PMID: 30826508]
[114]
Borisova, M.S.; Yarovaya, O.I.; Semenova, M.D.; Tolstikova, T.G.; Salakhutdinov, N.F. Antiulcerogenic activity of borneol derivatives. Russ. Chem. Bull., 2018, 67(3), 558-561.
[http://dx.doi.org/10.1007/s11172-018-2110-y]
[115]
Corrêa, M.F.; Barbosa, Á.J.R.; Teixeira, L.B.; Duarte, D.A.; Simões, S.C.; Parreiras-e-Silva, L.T.; Balbino, A.M.; Landgraf, R.G.; Bouvier, M.; Costa-Neto, C.M.; Fernandes, J.P.S. Pharmacological characterization of 5-substituted 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazines: Novel antagonists for the histamine H3 and H4 receptors with anti-inflammatory potential. Front. Pharmacol., 2017, 8, 825.
[http://dx.doi.org/10.3389/fphar.2017.00825] [PMID: 29184503]
[116]
Szczepańska, K.; Karcz, T.; Mogilski, S.; Siwek, A.; Kuder, K.J.; Latacz, G.; Kubacka, M.; Hagenow, S.; Lubelska, A.; Olejarz, A.; Kotańska, M.; Sadek, B.; Stark, H.; Kieć-Kononowicz, K. Synthesis and biological activity of novel tert-butyl and tert-pentylphenoxyalkyl piperazine derivatives as histamine H3R ligands. Eur. J. Med. Chem., 2018, 152, 223-234.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.043] [PMID: 29723785]
[117]
Tahir, S.; Mahmood, T.; Dastgir, F.; Haq, I.; Waseem, A.; Rashid, U. Design, synthesis and anti-bacterial studies of piperazine derivatives against drug resistant bacteria. Eur. J. Med. Chem., 2019, 166, 224-231.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.062] [PMID: 30711832]
[118]
Wang, L.L.; Battini, N.; Bheemanaboina, R.R.Y.; Zhang, S.L.; Zhou, C.H. Design and synthesis of aminothiazolyl norfloxacin analogues as potential antimicrobial agents and their biological evaluation. Eur. J. Med. Chem., 2019, 167, 105-123.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.072] [PMID: 30769240]
[119]
Borys, K.M.; Matuszewska, A.; Wieczorek, D.; Kopczyńska, K.; Lipok, J.; Madura, I.D.; Adamczyk-Woźniak, A. Synthesis and structural elucidation of novel antifungal N-(fluorophenyl)piperazinyl benzoxaboroles and their analogues. J. Mol. Struct., 2019, 1181, 587-598.
[http://dx.doi.org/10.1016/j.molstruc.2019.01.018]
[120]
Mermer, A.; Bayrak, H.; Şirin, Y.; Emirik, M.; Demirbaş, N. Synthesis of novel Azol-β-lactam derivatives starting from phenyl piperazine and investigation of their antiurease activity and antioxidant capacity comparing with their molecular docking studies. J. Mol. Struct., 2019, 1189, 279-287.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.039]
[121]
Bhati, S.; Kumar, V.; Singh, S.; Singh, J. Synthesis, biological activities and docking studies of piperazine incorporated 1, 3, 4-oxadiazole derivatives. J. Mol. Struct., 2019, 1191, 197-205.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.106]
[122]
Bhatt, J.J.; Dhakhda, S.K.; Trivedi, M.H. Synthesis, characterization and anti-microbial activity of pyrazole capped 2-azitidinone derivatives. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci., 2019, 5, 647-662.
[123]
Bhatt, A.; Kant, R.; Singh, R. Synthesis of some bioactive sulfonamide and amide derivatives of piperazine incorporating imidazo[1,2-B] pyridazine moiety. Med. Chem., 2016, 6, 257-263.
[124]
Naidu, K.M.; Srinivasarao, S.; Agnieszka, N.; Ewa, A.K.; Kumar, M.M.K.; Chandra Sekhar, K.V.G. Seeking potent anti-tubercular agents: Design, synthesis, anti-tubercular activity and docking study of various ((triazoles/indole)-piperazin-1-yl/1,4-diazepan-1-yl)benzo[d]isoxazole derivatives. Bioorg. Med. Chem. Lett., 2016, 26(9), 2245-2250.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.059] [PMID: 27020525]
[125]
Sun, J.; He, W.; Liu, H.Y.; Qin, J.; Ye, C.L. Design, synthesis and molecular docking of 1,4-benzodioxane thiazolidinedione piperazine derivatives as FabH inhibitors. Bioorg. Chem., 2019, 88, 102958.
[http://dx.doi.org/10.1016/j.bioorg.2019.102958] [PMID: 31054434]
[126]
Pankaj, M.; Anil, M.; Vikas, S.; Abhishek, S. Synthesis, biological evaluation and comparative study of some cinnoline derivatives. UK. J. Pharm. Biosci., 2016, 4, 74-80.
[http://dx.doi.org/10.20510/ukjpb/4/i3/108391]
[127]
Zhang, L.Y.; Wang, B.L.; Zhan, Y.Z.; Zhang, Y.; Zhang, X.; Li, Z.M. Synthesis and biological activities of some fluorine- and piperazine-containing 1,2,4-triazole thione derivatives. Chin. Chem. Lett., 2016, 27(1), 163-167.
[http://dx.doi.org/10.1016/j.cclet.2015.09.015]
[128]
Aouad, M.R. Click Synthesis and antimicrobial screening of novel isatin-1,2,3-triazoles with piperidine, morpholine, or piperazine moieties. Org. Prep. Proced. Int., 2017, 49(3), 216-227.
[http://dx.doi.org/10.1080/00304948.2017.1320515]
[129]
El Faydy, M.; Dahaief, N.; Rbaa, M.; Ounine, K.; Lakhrissi, B. Synthesis, characterization and biological activity of some novel 5-((4-alkyl piperazin-1-yl) methyl) quinolin-8-ol derivatives. Chem, 2016, 17, 18.
[130]
Vekariya, M.K.; Patel, D.B.; Pandya, P.A.; Vekariya, R.H.; Shah, P.U.; Rajani, D.P.; Shah, N.K. Novel N-thioamide analogues of pyrazolylpyrimidine based piperazine: Design, synthesis, characterization, in-silico molecular docking study and biological evaluation. J. Mol. Struct., 2019, 1175, 551-565.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.018]
[131]
Kono, M.; Matsumoto, T.; Imaeda, T.; Kawamura, T.; Fujimoto, S.; Kosugi, Y.; Odani, T.; Shimizu, Y.; Matsui, H.; Shimojo, M.; Kori, M. Design, synthesis, and biological evaluation of a series of piperazine ureas as fatty acid amide hydrolase inhibitors. Bioorg. Med. Chem., 2014, 22(4), 1468-1478.
[http://dx.doi.org/10.1016/j.bmc.2013.12.023] [PMID: 24440478]
[132]
Pudukulatham, Z.; Zhang, F.X.; Gadotti, V.M.; M’Dahoma, S.; Swami, P.; Tamboli, Y.; Zamponi, G.W. Synthesis and characterization of a disubstituted piperazine derivative with T-type channel blocking action and analgesic properties. Mol. Pain, 2016, 12, 1744806916641678.
[http://dx.doi.org/10.1177/1744806916641678] [PMID: 27053601]
[133]
Shankar, B.; Jalapathi, P.; Valeru, A.; Kishor Kumar, A.; Saikrishna, B.; Kudle, K. Synthesis and biological evaluation of new 2-(6-alkyl-pyrazin-2-yl)-1H-benz[d]imidazoles as potent anti-inflammatory and antioxidant agents. Med. Chem. Res., 2017, 26(9), 1835-1846.
[http://dx.doi.org/10.1007/s00044-017-1897-7]
[134]
Liu, Z.P.; Gong, C.D.; Xie, L.Y.; Du, X.L.; Li, Y.; Qin, J. Synthesis and in vivo anti-inflammatory evaluation of piperazine derivatives containing 1,4-benzodioxan moiety. Acta Chim. Slov., 2019, 66(2), 421-426.
[http://dx.doi.org/10.17344/acsi.2018.4887] [PMID: 33855503]
[135]
Taha, M.; Irshad, M.; Imran, S.; Chigurupati, S.; Selvaraj, M.; Rahim, F.; Ismail, N.H.; Nawaz, F.; Khan, K.M. Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study. Eur. J. Med. Chem., 2017, 141, 530-537.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.028] [PMID: 29102178]
[136]
Suyoga Vardhan, D.M.; Shantharam, C.S.; Suhas, R.; Gowda, D.C. Synthesis and evaluation of novel ureido/thioureido derivatives of amino acid conjugated 2,3-dichlorophenyl piperazine as highly potent antiglycating agents. J. Saudi Chem. Soc., 2017, 21, S248-S257.
[http://dx.doi.org/10.1016/j.jscs.2014.02.006]
[137]
Kumar, C.A.; Veeresh, B.; Ramesha, K.; Raj, C.A.; Mahadevaiah, K.; Prasad, S.B.; Naveen, S.; Madaiah, M.; Rangappa, K. Antidiabetic studies of 1-benzhydryl-piperazine sulfonamide and carboxamide derivatives. J Applic Chem, 2017, 6(2), 232-240.
[138]
Özil, M.; Parlak, C.; Baltaş, N. A simple and efficient synthesis of benzimidazoles containing piperazine or morpholine skeleton at C-6 position as glucosidase inhibitors with antioxidant activity. Bioorg. Chem., 2018, 76, 468-477.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.019] [PMID: 29287256]
[139]
Ashok, P.; Chander, S.; Smith, T.K.; Sankaranarayanan, M. Design, synthesis and biological evaluation of piperazinyl-β-carbolinederivatives as anti-leishmanial agents. Eur. J. Med. Chem., 2018, 150, 559-566.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.022] [PMID: 29549840]
[140]
Shrestha, B.; Banerjee, J.; Yadav, P.K.; Gupta, A.K.; Khanal, H. Comparison of antihelminthic activity between bisaryl benzyl piperazine and benzimidazole linked piperazine derivatives. Int. J. Pharm. Sci. Res., 2016, 7(4), 1547.
[141]
Ananthan, S.; Saini, S.K.; Zhou, G.; Hobrath, J.V.; Padmalayam, I.; Zhai, L.; Bostwick, J.R.; Antonio, T.; Reith, M.E.A.; McDowell, S.; Cho, E.; McAleer, L.; Taylor, M.; Luedtke, R.R. Design, synthesis, and structure-activity relationship studies of a series of [4-(4-carboxamidobutyl)]-1-arylpiperazines: Insights into structural features contributing to dopamine D3 versus D2 receptor subtype selectivity. J. Med. Chem., 2014, 57(16), 7042-7060.
[http://dx.doi.org/10.1021/jm500801r] [PMID: 25126833]
[142]
Abate, C.; Niso, M.; Contino, M.; Colabufo, N.A.; Ferorelli, S.; Perrone, R.; Berardi, F. 1-Cyclohexyl-4-(4-arylcyclohexyl)piperazines: Mixed σ and human Δ(8)-Δ(7) sterol isomerase ligands with antiproliferative and P-glycoprotein inhibitory activity. ChemMedChem, 2011, 6(1), 73-80.
[http://dx.doi.org/10.1002/cmdc.201000371] [PMID: 21069657]
[143]
Waszkielewicz, A.M.; Kubacka, M.; Pańczyk, K.; Mogilski, S.; Siwek, A.; Głuch-Lutwin, M.; Gryboś, A.; Filipek, B. Synthesis and activity of newly designed aroxyalkyl or aroxyethoxyethyl derivatives of piperazine on the cardiovascular and the central nervous systems. Bioorg. Med. Chem. Lett., 2016, 26(21), 5315-5321.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.037] [PMID: 27692547]
[144]
Łażewska, D.; Mogilski, S.; Hagenow, S.; Kuder, K.; Głuch-Lutwin, M.; Siwek, A.; Więcek, M.; Kaleta, M.; Seibel, U.; Buschauer, A.; Filipek, B.; Stark, H.; Kieć-Kononowicz, K. Alkyl derivatives of 1,3,5-triazine as histamine H4 receptor ligands. Bioorg. Med. Chem., 2019, 27(7), 1254-1262.
[http://dx.doi.org/10.1016/j.bmc.2019.02.020] [PMID: 30792106]
[145]
Szczepańska, K.; Karcz, T.; Kotańska, M.; Siwek, A.; Kuder, K.J.; Latacz, G.; Mogilski, S.; Hagenow, S.; Lubelska, A.; Sobolewski, M.; Stark, H.; Kieć-Kononowicz, K. Optimization and preclinical evaluation of novel histamine H3receptor ligands: Acetyl and propionyl phenoxyalkyl piperazine derivatives. Bioorg. Med. Chem., 2018, 26(23-24), 6056-6066.
[http://dx.doi.org/10.1016/j.bmc.2018.11.010] [PMID: 30448256]
[146]
Martinez, J.A.; Xiao, Q.; Zakarian, A.; Miller, B.G. Antidiabetic disruptors of the glucokinase−glucokinase regulatory protein complex reorganize a coulombic interface. Biochemistry, 2017, 56(24), 3150-3157.
[http://dx.doi.org/10.1021/acs.biochem.7b00377] [PMID: 28516783]
[147]
Kawale, L.; Sonali, L.; Yadav, S.; Ahire, K. Design, synthesis & evaluation of antihypertensive activity of 2-{4-(subsituted aryl) piperazine-1-yl}-3-(4-hydroxy phenyl) quinazoline-(3H)-one derivative. World J. Pharm. Res., 2016, 5(9), 1188-1195.
[http://dx.doi.org/10.20959/wjpr20169-6951]
[148]
Angeli, A.; Chiaramonte, N.; Manetti, D.; Romanelli, M.N.; Supuran, C.T. Investigation of piperazines as human carbonic anhydrase I, II, IV and VII activators. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 303-308.
[http://dx.doi.org/10.1080/14756366.2017.1417277] [PMID: 29280407]
[149]
Martin, M.W.; Lancia, D.R., Jr; Li, H.; Schiller, S.E.R.; Toms, A.V.; Wang, Z.; Bair, K.W.; Castro, J.; Fessler, S.; Gotur, D.; Hubbs, S.E.; Kauffman, G.S.; Kershaw, M.; Luke, G.P.; McKinnon, C.; Yao, L.; Lu, W.; Millan, D.S. Discovery and optimization of novel piperazines as potent inhibitors of fatty acid synthase (FASN). Bioorg. Med. Chem. Lett., 2019, 29(8), 1001-1006.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.012] [PMID: 30803804]
[150]
Patel, R.V.; Mistry, B.M.; Syed, R.; Parekh, N.M.; Shin, H.S. Phenylsulfonyl piperazine bridged [1,3]dioxolo[4,5-g]chromenones as promising antiproliferative and antioxidant agents. Bioorg. Chem., 2019, 87, 23-30.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.002] [PMID: 30852234]
[151]
Kumara, K.; Harish, K.P.; Shivalingegowda, N.; Tandon, H.C.; Mohana, K.N.; Lokanath, N.K. Crystal structure studies, Hirshfeld surface analysis and DFT calculations of novel 1-[5-(4-methoxy-phenyl)-[1,3,4]oxadiazol-2-yl]-piperazine derivatives. Chem. Data Coll., 2017, 11-12, 40-58.
[http://dx.doi.org/10.1016/j.cdc.2017.07.007]
[152]
Gul, H.I.; Tugrak, M.; Gul, M.; Mazlumoglu, S.; Sakagami, H.; Gulcin, I.; Supuran, C.T. New phenolic Mannich bases with piperazines and their bioactivities. Bioorg. Chem., 2019, 90, 103057.
[http://dx.doi.org/10.1016/j.bioorg.2019.103057] [PMID: 31226471]