Moringa oleifera and its Secondary Metabolites: Chemistry, Properties and Antidiabetic Potentiality

Article ID: e160124225696 Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Secondary metabolites present in different natural resources possess multiple biological activities. Diabetes is one of the leading disease all over the world in current time, and higher in numbersthan the deadliest cancer disease. According to the WHO about 422 million people are suffering from diabetes and most of them are even unaware that they are living with the condition. In recent times research in natural medicinal plants has achieved a great success in the management of different diseases and disorders. Moringa oleifera is one of the most common medicinal and nutritious plant among the family of moringaceae, found in almost all over India. The tree with it's almost every edible part makes it a versatile natural medicinal source. The secondary metabolites present within it make this plant a rich biological resource. Among various classes of secondary metabolites alkaloids, flavonoids, glycosides, terpenoids, sterols etc. are present in moringa tree. The principle potent compound responsible for emerging antidiabetic property of Moringa is 4-(α-Lrhamnopyranosyloxy) benzyl glucosinolate. In this review we summarise specifically the antidiabetic activity of this multipurpose natural plant and it's phytochemistry. Since ancient times this plant has been used as anti-diabetic agent in sub continental regions. Mostly phytoconstituents obtained from leaves are responsible for its outstanding antidiabetic property. Research on antidiabetic property of M. oleifera by different scientists proved that Moringa is one of the finest natural medicinal plants in the management of diabetes with least toxicity.

[1]
Verpoorte, R.; Memelink, J. Engineering secondary metabolite production in plants. Curr. Opin. Biotechnol., 2002, 13(2), 181-187.
[http://dx.doi.org/10.1016/S0958-1669(02)00308-7] [PMID: 11950573]
[2]
Demain, A.L.; Fang, A. The natural functions of secondary metabolites. Int J Mod Biotechnol, 2000, 69, 1-39.
[http://dx.doi.org/10.1007/3-540-44964-7_1]
[3]
Muria-Gonzalez, M.J.; Chooi, Y.H.; Breen, S.; Solomon, P.S. The past, present and future of secondary metabolite research in the D othideomycetes. Mol. Plant Pathol., 2015, 16(1), 92-107.
[http://dx.doi.org/10.1111/mpp.12162] [PMID: 24889519]
[4]
Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragrance J., 2008, 23(4), 213-226.
[http://dx.doi.org/10.1002/ffj.1875]
[5]
Pavarini, D.P.; Pavarini, S.P.; Niehues, M.; Lopes, N.P. Exogenous influences on plant secondary metabolite levels. Anim. Feed Sci. Technol., 2012, 176(1-4), 5-16.
[http://dx.doi.org/10.1016/j.anifeedsci.2012.07.002]
[6]
Qi, L.W.; Liu, E.H.; Chu, C.; Peng, Y.B.; Cai, H.X.; Li, P. Anti-diabetic agents from natural products--an update from 2004 to 2009. Curr. Top. Med. Chem., 2010, 10(4), 434-457.
[http://dx.doi.org/10.2174/156802610790980620] [PMID: 20180758]
[7]
Vining, L.C. Functions of secondary metabolites. Annu. Rev. Microbiol., 1990, 44(1), 395-427.
[http://dx.doi.org/10.1146/annurev.mi.44.100190.002143] [PMID: 2252388]
[8]
Srivani, G.; Sharvirala, R.; Veerareddy, P.R.; Pal, D.; Kiran, G. GSK-3 inhibitors as new leads to treat type-II diabetes. Curr. Drug Targets, 2021, 22(13), 1555-1567.
[http://dx.doi.org/10.2174/1389450122666210120144428] [PMID: 33494669]
[9]
Pal, D. FDA approval new drug alogliptin: a DPP-4 inhibitor for treatment of patients with type 2 diabetes. Int J Curr Pharm, 2013, 5(2), 135-139. http://dx.doi.org/2218-273X/9/11/641#
[10]
Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: an overview. Int. J. Mol. Sci., 2015, 16(12), 12791-12835.
[http://dx.doi.org/10.3390/ijms160612791] [PMID: 26057747]
[11]
Popoola, J.O.; Obembe, O.O. Local knowledge, use pattern and geographical distribution of Moringa oleifera Lam. (Moringaceae) in Nigeria. J. Ethnopharmacol., 2013, 150(2), 682-691.
[http://dx.doi.org/10.1016/j.jep.2013.09.043] [PMID: 24096203]
[12]
Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Lorenzo, J.M.; Afolayan, A.J.; Muchenje, V. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Res. Int., 2018, 106, 317-334.
[http://dx.doi.org/10.1016/j.foodres.2017.12.079] [PMID: 29579932]
[13]
Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res., 2007, 21(1), 17-25.
[http://dx.doi.org/10.1002/ptr.2023] [PMID: 17089328]
[14]
Jaja-Chimedza, A.; Graf, B.L.; Simmler, C.; Kim, Y.; Kuhn, P.; Pauli, G.F.; Raskin, I. Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PLoS One, 2017, 12(8), e0182658.
[http://dx.doi.org/10.1371/journal.pone.0182658] [PMID: 28792522]
[15]
Lalas, S.; Athanasiadis, V.; Karageorgou, I.; Batra, G.; Nanos, G.D.; Makris, D.P. Nutritional characterization of leaves and herbal tea of Moringa oleifera cultivated in Greece. J. Herbs Spices Med. Plants, 2017, 23(4), 320-333.
[http://dx.doi.org/10.1080/10496475.2017.1334163]
[16]
Dhakad, A.K.; Ikram, M.; Sharma, S.; Khan, S.; Pandey, V.V.; Singh, A. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytother. Res., 2019, 33(11), 2870-2903.
[http://dx.doi.org/10.1002/ptr.6475] [PMID: 31453658]
[17]
Ma, Z.F.; Ahmad, J.; Zhang, H.; Khan, I.; Muhammad, S. Evaluation of phytochemical and medicinal properties of Moringa (Moringa oleifera) as a potential functional food. S. Afr. J. Bot., 2020, 129, 40-46.
[http://dx.doi.org/10.1016/j.sajb.2018.12.002]
[18]
Ferreira, P.M.P.; Farias, D.F.; Oliveira, J.T.A.; Carvalho, A.F.U. Moringa oleifera: Bioactive compounds and nutritional potential. Rev. Nutr., 2008, 21(4), 431-437.
[http://dx.doi.org/10.1590/S1415-52732008000400007]
[19]
Dhongade, H.J.; Paikra, B.K.; Gidwani, B. Phytochemistry and pharmacology of Moringa oleifera Lam. J. Pharmacopuncture, 2017, 20(3), 194-200.
[http://dx.doi.org/10.3831/KPI.2017.20.022] [PMID: 30087795]
[20]
Abd Rani, N.Z.; Husain, K.; Kumolosasi, E. Moringa genus: A review of phytochemistry and pharmacology. Front. Pharmacol., 2018, 9, 108.
[http://dx.doi.org/10.3389/fphar.2018.00108] [PMID: 29503616]
[21]
Moher, D.; Liberati, A.; Tetzlaff, J. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Rev Esp Nutr, 2014, 18(3), 172-181.
[http://dx.doi.org/10.14306/renhyd.18.3.114]
[22]
Leone, A.; Fiorillo, G.; Criscuoli, F.; Ravasenghi, S.; Santagostini, L.; Fico, G.; Spadafranca, A.; Battezzati, A.; Schiraldi, A.; Pozzi, F.; di Lello, S.; Filippini, S.; Bertoli, S. Nutritional characterization and phenolic profiling of Moringa oleifera leaves grown in Chad, Sahrawi Refugee Camps, and Haiti. Int. J. Mol. Sci., 2015, 16(8), 18923-18937.
[http://dx.doi.org/10.3390/ijms160818923] [PMID: 26274956]
[23]
Habtemariam, S.; Varghese, G. Extractability of rutin in herbal tea preparations of Moringa stenopetala leaves. Beverages, 2015, 1(3), 169-182.
[http://dx.doi.org/10.3390/beverages1030169]
[24]
Vongsak, B.; Sithisarn, P.; Gritsanapan, W. Simultaneous HPLC quantitative analysis of active compounds in leaves of Moringa oleifera Lam. J. Chromatogr. Sci., 2014, 52(7), 641-645.
[http://dx.doi.org/10.1093/chromsci/bmt093] [PMID: 23828911]
[25]
Singh, B.N.; Singh, B.R.; Singh, R.L.; Prakash, D.; Dhakarey, R.; Upadhyay, G.; Singh, H.B. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem. Toxicol., 2009, 47(6), 1109-1116.
[http://dx.doi.org/10.1016/j.fct.2009.01.034] [PMID: 19425184]
[26]
Lopez-Rodriguez, N.A.; Gaytán-Martínez, M.; de la Luz Reyes-Vega, M.; Loarca-Piña, G. Glucosinolates and isothiocyanates from Moringa oleifera: Chemical and biological approaches. Plant Foods Hum. Nutr., 2020, 75(4), 447-457.
[http://dx.doi.org/10.1007/s11130-020-00851-x] [PMID: 32909179]
[27]
Teixeira, E.M.B.; Carvalho, M.R.B.; Neves, V.A.; Silva, M.A.; Arantes-Pereira, L. Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. leaves. Food Chem., 2014, 147, 51-54.
[http://dx.doi.org/10.1016/j.foodchem.2013.09.135] [PMID: 24206684]
[28]
Lin, H.; Zhu, H.; Tan, J.; Wang, H.; Wang, Z.; Li, P.; Zhao, C.; Liu, J. Comparative analysis of chemical constituents of Moringa oleifera leaves from China and India by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Molecules, 2019, 24(5), 942.
[http://dx.doi.org/10.3390/molecules24050942] [PMID: 30866537]
[29]
Waterman, C.; Cheng, D.M.; Rojas-Silva, P.; Poulev, A.; Dreifus, J.; Lila, M.A.; Raskin, I. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochemistry, 2014, 103, 114-122.
[http://dx.doi.org/10.1016/j.phytochem.2014.03.028] [PMID: 24731259]
[30]
Abdulkarim, S.M.; Long, K.; Lai, O.M.; Muhammad, S.K.S.; Ghazali, H.M. Some physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods. Food Chem., 2005, 93(2), 253-263.
[http://dx.doi.org/10.1016/j.foodchem.2004.09.023]
[31]
Haile, M.; Duguma, H.T.; Chameno, G.; Kuyu, C.G. Effects of location and extraction solvent on physico chemical properties of Moringa stenopetala seed oil. Heliyon, 2019, 5(11), e02781.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02781] [PMID: 31844715]
[32]
Ezzat, S.M.; Hegazy, A.K.; Amer, A.M.M.; Kamel, G.M.; El-Alfy, T.S. Isolation of biologically active constituents from Moringa peregrina (Forssk.) Fiori. (family: Moringaceae) growing in Egypt. Pharmacogn. Mag., 2011, 7(26), 109-115.
[http://dx.doi.org/10.4103/0973-1296.80667] [PMID: 21716619]
[33]
Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Moringa oleifera seeds and oil: Characteristics and uses for human health. Int. J. Mol. Sci., 2016, 17(12), 2141.
[http://dx.doi.org/10.3390/ijms17122141] [PMID: 27999405]
[34]
Tumer, T.B.; Rojas-Silva, P.; Poulev, A.; Raskin, I.; Waterman, C. Direct and indirect antioxidant activity of polyphenol- and isothiocyanate-enriched fractions from Moringa oleifera. J. Agric. Food Chem., 2015, 63(5), 1505-1513.
[http://dx.doi.org/10.1021/jf505014n] [PMID: 25605589]
[35]
Waterman, C.; Rojas-Silva, P.; Tumer, T.B.; Kuhn, P.; Richard, A.J.; Wicks, S.; Stephens, J.M.; Wang, Z.; Mynatt, R.; Cefalu, W.; Raskin, I. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance, and hepatic gluconeogenesis in mice. Mol. Nutr. Food Res., 2015, 59(6), 1013-1024.
[http://dx.doi.org/10.1002/mnfr.201400679] [PMID: 25620073]
[36]
Verma, A.R.; Vijayakumar, M.; Mathela, C.S.; Rao, C.V. In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem. Toxicol., 2009, 47(9), 2196-2201.
[http://dx.doi.org/10.1016/j.fct.2009.06.005] [PMID: 19520138]
[37]
Jung, I.L. Soluble extract from Moringa oleifera leaves with a new anticancer activity. PLoS One, 2014, 9(4), e95492.
[http://dx.doi.org/10.1371/journal.pone.0095492] [PMID: 24748376]
[38]
Abd El Baky, H.H.; El-Baroty, G.S. Healthy benefit of microalgal bioactive substances. J. Aquat. Sci., 2013, 1(1), 11-23.
[http://dx.doi.org/10.12691/jas-1-1-3]
[39]
Sahakitpichan, P.; Mahidol, C.; Disadee, W.; Ruchirawat, S.; Kanchanapoom, T. Unusual glycosides of pyrrole alkaloid and 4′-hydroxyphenylethanamide from leaves of Moringa oleifera. Phytochemistry, 2011, 72(8), 791-795.
[http://dx.doi.org/10.1016/j.phytochem.2011.02.021] [PMID: 21439596]
[40]
Faizi, S.; Siddiqui, B.S.; Saleem, R.; Siddiqui, S.; Aftab, K.; Gilani, A.H. Isolation and structure elucidation of new nitrile and mustard oil glycosides from Moringa oleifera and their effect on blood pressure. J. Nat. Prod., 1994, 57(9), 1256-1261.
[http://dx.doi.org/10.1021/np50111a011] [PMID: 7798960]
[41]
Khusro, A.; Aarti, C.; Salem, A.Z.M.; Pliego, A.B.; Rivas-Caceres, R.R. Methyl-coenzyme M reductase (MCR) receptor as potential drug target for inhibiting methanogenesis in horses using Moringa oleifera L.: An in silico docking study. J. Equine Vet. Sci., 2020, 88, 102949.
[http://dx.doi.org/10.1016/j.jevs.2020.102949] [PMID: 32303297]
[42]
Lesten, E.C.C.; Emmanuel, C.M. Proximate, physical and chemical composition of leaves and seeds of Moringa (Moringa oleifera) from Central Malawi: A potential for increasing animal food supply in the 21st century. Afr. J. Agric. Res., 2018, 13(51), 2872-2880.
[http://dx.doi.org/10.5897/AJAR2018.13535]
[43]
Valdés-Rodríguez, O.A. Metabolites in Moringa oleifera and their associated health potentials. Stud. Nat. Prod. Chem., 2023, 76, 299-330.
[http://dx.doi.org/10.1016/B978-0-323-91296-9.00003-4]
[44]
van den Berg, J.; Kuipers, S. The antibacterial action of Moringa oleifera: A systematic review. S. Afr. J. Bot., 2022, 151, 224-233.
[http://dx.doi.org/10.1016/j.sajb.2022.09.034]
[45]
Govender, K.; Moodley, I.; Parboosing, R. Cytotoxic and anti-proliferative effects of Moringa oleifera Lam. on HeLa Cells. Nat. Prod. J., 2023, 13(1), e260821195857.
[http://dx.doi.org/10.2174/2210315511666210826165242]
[46]
Shabnam, F.; Rani, I.; Vivek, D.; Goyal, R.; Kumar Gautam, R. Therapeutic benefits of miracle tree Moringa oleifera: A complete overview. Curr. Tradit. Med., 2023, 9(2), e270622206405.
[http://dx.doi.org/10.2174/2215083808666220627121322]
[47]
Singh, S.; Dubey, S.; Rana, N. Phytochemistry and pharmacological profile of drumstick tree Moringa oleifera Lam: An overview. Curr. Nutr. Food Sci., 2023, 19(5), 529-548.
[http://dx.doi.org/10.2174/1573401319666221226144613]
[48]
Widiany, F.L.; Sja’bani, M. Susetyowati; Soesatyo, M.; Lestari, L.A.; Pratiwi, W.R.; Wahyuningsih, M.S.H.; Huriyati, E. Potential benefits of pila ampullacea, tempeh, Moringa oleifera leaves as nutritional support for hemodialysis. Curr. Nutr. Food Sci., 2022, 18(8), 706-714.
[http://dx.doi.org/10.2174/1573401318666220401113211]
[49]
Mona, K.; Shivangini, P.; Nisha, P. Comprehensive review: Miracle tree Moringa oleifera Lam. Curr. Nutr. Food Sci., 2022, 18(2), 166-180.
[http://dx.doi.org/10.2174/1573401318666211221115735]
[50]
Hu, X.H.; Yang, X.Y.; Lian, J.; Chen, Y.; Zheng, C.Y.; Tao, S.Y.; Liu, N.N.; Liu, Q.; Jiang, G.J. Moringa oleifera leaf attenuate osteoporosis in ovariectomized rats by modulating gut microbiota composition and MAPK signaling pathway. Biomed. Pharmacother., 2023, 161, 114434.
[http://dx.doi.org/10.1016/j.biopha.2023.114434] [PMID: 36841025]
[51]
Arif, Y.; Bajguz, A.; Hayat, S. Moringa oleifera extract as a natural plant biostimulant. J. Plant Growth Regul., 2023, 42(3), 1291-1306.
[http://dx.doi.org/10.1007/s00344-022-10630-4]
[52]
Rodríguez, I.A.; Serafini, M.; Alves, I.A.; Lang, K.L.; Silva, F.R.M.B.; Aragón, D.M. Natural products as outstanding alternatives in diabetes mellitus: A patent review. Pharmaceutics, 2022, 15(1), 85.
[http://dx.doi.org/10.3390/pharmaceutics15010085] [PMID: 36678714]
[53]
Hamed, H.S.; Amen, R.M.; Elelemi, A.H.; Mahboub, H.H.; Elabd, H.; Abdelfattah, A.M.; Moniem, H.A.; El-Beltagy, M.A.; Alkafafy, M.; Yassin, E.M.M.; Ismail, A.K. Effect of dietary Moringa oleifera leaves nanoparticles on growth performance, physiological, immunological responses, and liver antioxidant biomarkers in nile tilapia (Oreochromis niloticus) against Zinc oxide nanoparticles toxicity. Fishes, 2022, 7(6), 360.
[http://dx.doi.org/10.3390/fishes7060360]
[54]
Kumar, R.; Varghese, S.; Ramamurthy, S.; Varadarajan, S.; Balaji, T.M.; Karthick, B.P.; Thiagarajan, K. Assessing the in vitro antioxidant and anti-inflammatory activity of Moringa oleifera crude extract. J. Contemp. Dent. Pract., 2022, 23(4), 437-442.
[http://dx.doi.org/10.5005/jp-journals-10024-3323] [PMID: 35945838]
[55]
Álvarez, R.; Vaz, B.; Gronemeyer, H.; de Lera, Á.R. Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem. Rev., 2014, 114(1), 1-125.
[http://dx.doi.org/10.1021/cr400126u] [PMID: 24266866]
[56]
Ndabigengesere, A.; Subba, N.K. Quality of water treated by coagulation using Moringa oleifera seeds. Water Res., 1998, 32(3), 781-791.
[http://dx.doi.org/10.1016/S0043-1354(97)00295-9]
[57]
Padmarao, P.; Acharya, B.M.; Dennis, T.J. Pharmacognostic study on stembark of Moringa oleifera Lam. Bull Med-Ethno-Bot Res, 1996, 17, 141-151.
[http://dx.doi.org/10.3831/KPI.2017.20.022]
[58]
Ruckmani, K.; Kavimani, S.; Anandan, R.; Jaykar, B. Effect of Moringa oleifera Lam on paracetamol-induced hepatotoxicity. Indian J. Pharm. Sci., 1998, 60(1), 33-35.
[59]
Shah, D.P.; Jain, V.C.; Daldavi, H.P. A preliminary investigation of Moringa oleifera Lam gum as a pharmaceutical excipient. IJPRT, 2019, 1(1), 12-16.
[http://dx.doi.org/10.31838/ijprt/01.01.03]
[60]
Wang, Y.; Gao, Y.; Ding, H.; Liu, S.; Han, X.; Gui, J.; Liu, D. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chem., 2017, 218, 152-158.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.058] [PMID: 27719892]
[61]
Gothai, S.; Arulselvan, P.; Tan, W.; Fakurazi, S. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts. J. Intercult. Ethnopharmacol., 2016, 5(1), 1-6.
[http://dx.doi.org/10.5455/jice.20160201055629] [PMID: 27069722]
[62]
Al Juhaimi, F.; Ghafoor, K.; Babiker, E.E.; Matthäus, B.; Özcan, M.M. The biochemical composition of the leaves and seeds meals of moringa species as non-conventional sources of nutrients. J. Food Biochem., 2017, 41(1), e12322.
[http://dx.doi.org/10.1111/jfbc.12322]
[63]
Bhattacharya, SB.; Das, AK.; Banerji, N. Chemical investigations on the gum exudate from sajna (Moringa oleifera). Carbohydr. Res., 1982, 102(1), 253-262.
[http://dx.doi.org/10.1016/S0008-6215(00)88067-2]
[64]
Mehta, K.; Balaraman, R.; Amin, A.H.; Bafna, P.A.; Gulati, O.D. Effect of fruits of Moringa oleifera on the lipid profile of normal and hypercholesterolaemic rabbits. J. Ethnopharmacol., 2003, 86(2-3), 191-195.
[http://dx.doi.org/10.1016/S0378-8741(03)00075-8] [PMID: 12738086]
[65]
Ramachandran, C.; Peter, K.V.; Gopalakrishnan, P.K. Drumstick (Moringa oleifera): A multipurpose Indian vegetable. Econ. Bot., 1980, 34(3), 276-283.
[http://dx.doi.org/10.1007/BF02858648]
[66]
Trigo, C.; Castelló, M.L.; Ortolá, M.D.; García-Mares, F.J.; Desamparados, S.M. Moringa oleifera: An unknown crop in developed countries with great potential for industry and adapted to climate change. Foods, 2020, 10(1), 31.
[http://dx.doi.org/10.3390/foods10010031] [PMID: 33374455]
[67]
Ajayi, C.A.; Williams, O.A.; Famuyide, O.O.; Adebayo, O. Economic potential of Moringa oleifera as a commercial tree species and its suitability for forest management intervention in taungya farming system. Agrosearch, 2014, 13(3), 242-255.
[http://dx.doi.org/10.4314/agrosh.v13i3.7S]
[68]
Patil, S.V.; Mohite, B.V.; Marathe, K.R.; Salunkhe, N.S.; Marathe, V.; Patil, V.S. Moringa tree, gift of nature: A review on nutritional and industrial potential. Curr. Pharmacol. Rep., 2022, 8(4), 262-280.
[http://dx.doi.org/10.1007/s40495-022-00288-7] [PMID: 35600137]
[69]
Attakpa, E.S.; Sangaré, M.M.; Béhanzin, G.J.; Ategbo, J.M.; Seri, B.; Khan, N.A. Moringa olifeira Lam. stimulates activation of the insulin-dependent akt pathway antidiabetic effect in a diet-induced obesity (DIO) mouse model. Folia Biol., 2017, 63(2), 42-51.
[PMID: 28557705]
[70]
Olurishe, C.; Kwanashie, H.; Zezi, A.; Danjuma, N.; Mohammed, B. Chronic administration of ethanol leaf extract of Moringa oleifera Lam. (Moringaceae) may compromise glycaemic efficacy of Sitagliptin with no significant effect in retinopathy in a diabetic rat model. J. Ethnopharmacol., 2016, 194, 895-903.
[http://dx.doi.org/10.1016/j.jep.2016.10.065] [PMID: 27789327]
[71]
Ndong, M.; Uehara, M.; Katsumata, S.; Suzuki, K. Effects of oral administration of Moringa oleifera Lam on glucose tolerance in Goto-Kakizaki and Wistar rats. J. Clin. Biochem. Nutr., 2007, 40(3), 229-233.
[http://dx.doi.org/10.3164/jcbn.40.229] [PMID: 18398501]
[72]
Jaiswal, D.; Kumar Rai, P.; Kumar, A.; Mehta, S.; Watal, G. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J. Ethnopharmacol., 2009, 123(3), 392-396.
[http://dx.doi.org/10.1016/j.jep.2009.03.036] [PMID: 19501271]
[73]
Yassa, H.D.; Tohamy, A.F. Extract of Moringa oleifera leaves ameliorates streptozotocin-induced diabetes mellitus in adult rats. Acta Histochem., 2014, 116(5), 844-854.
[http://dx.doi.org/10.1016/j.acthis.2014.02.002] [PMID: 24657072]
[74]
Abd Eldaim, M.A.; Shaban Abd, E.A.; Abd Elaziz, S.A. An aqueous extract from Moringa oleifera leaves ameliorates hepatotoxicity in alloxan-induced diabetic rats. Biochem. Cell Biol., 2017, 95(4), 524-530.
[http://dx.doi.org/10.1139/bcb-2016-0256] [PMID: 28423281]
[75]
Irfan, H.M.; Asmawi, M.Z.; Khan, N.A.K.; Sadikun, A.; Mordi, M.N. Anti-diabetic activity-guided screening of aqueous-ethanol Moringa oleifera extracts and fractions: Identification of marker compounds. Trop. J. Pharm. Res., 2017, 16(3), 543-552.
[http://dx.doi.org/10.4314/tjpr.v16i3.7]
[76]
Paula, P.; Sousa, D.; Oliveira, J.; Carvalho, A.; Alves, B.; Pereira, M.; Farias, D.; Viana, M.; Santos, F.; Morais, T.; Vasconcelos, I. A protein isolate from Moringa oleifera leaves has hypoglycemic and antioxidant effects in alloxan-induced diabetic mice. Molecules, 2017, 22(2), 271.
[http://dx.doi.org/10.3390/molecules22020271] [PMID: 28208654]
[77]
López, M.; Ríos-Silva, M.; Huerta, M.; Cárdenas, Y.; Bricio-Barrios, J.A.; Díaz-Reval, M.I.; Urzúa, Z.; Huerta-Trujillo, M.; López-Quezada, K.; Trujillo, X. Effects of Moringa oleifera leaf powder on metabolic syndrome induced in male Wistar rats: A preliminary study. J. Int. Med. Res., 2018, 46(8), 3327-3336.
[http://dx.doi.org/10.1177/0300060518781726] [PMID: 29962304]
[78]
Villarruel-López, A.; López-de la Mora, D.A.; Vázquez-Paulino, O.D.; Puebla-Mora, A.G.; Torres-Vitela, M.R.; Guerrero-Quiroz, L.A.; Nuño, K. Effect of Moringa oleifera consumption on diabetic rats. BMC Complement. Altern. Med., 2018, 18(1), 127.
[http://dx.doi.org/10.1186/s12906-018-2180-2] [PMID: 29636032]
[79]
Prajapati, C.; Ankola, M.; Upadhyay, T.K.; Sharangi, A.B.; Alabdallah, N.M.; Al-Saeed, F.A.; Muzammil, K.; Saeed, M. Moringa oleifera: Miracle plant with a plethora of medicinal, therapeutic, and economic importance. Horticulturae, 2022, 8(6), 492.
[http://dx.doi.org/10.3390/horticulturae8060492]
[80]
Hagiwara, A.; Hidaka, M.; Takeda, S.; Yoshida, H.; Kai, H.; Sugita, C.; Watanabe, W.; Kurokawa, M. Anti-allergic action of aqueous extract of Moringa oleifera Lam. leaves in mice. European J. Med. Plants, 2016, 16(3), 1-10.
[http://dx.doi.org/10.9734/EJMP/2016/28566]
[81]
Alejandra Sánchez-Muñoz, M.; Valdez-Solana, M.A.; Campos-Almazán, M.I.; Flores-Herrera, Ó.; Esparza-Perusquía, M.; Olvera-Sánchez, S.; García-Arenas, G.; Avitia-Domínguez, C.; Téllez-Valencia, A.; Sierra-Campos, E. Streptozotocin-induced adaptive modification of mitochondrial supercomplexes in liver of Wistar rats and the protective effect of Moringa oleifera Lam. Biochem. Res. Int., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/5681081] [PMID: 29686903]
[82]
Olayaki, L.A.; Irekpita, J.E.; Yakubu, M.T.; Ojo, O.O. Methanolic extract of Moringa oleifera leaves improves glucose tolerance, glycogen synthesis and lipid metabolism in alloxan-induced diabetic rats. J. Basic Clin. Physiol. Pharmacol., 2015, 26(6), 585-593.
[http://dx.doi.org/10.1515/jbcpp-2014-0129] [PMID: 26124050]
[83]
Aju, B.Y.; Rajalakshmi, R.; Mini, S. Protective role of Moringa oleifera leaf extract on cardiac antioxidant status and lipid peroxidation in streptozotocin induced diabetic rats. Heliyon, 2019, 5(12), e02935.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02935] [PMID: 31872118]
[84]
Oguntibeju, O.O.; Aboua, G.Y.; Omodanisi, E.I. Effects of Moringa oleifera on oxidative stress, apoptotic and inflammatory biomarkers in streptozotocin-induced diabetic animal model. S. Afr. J. Bot., 2020, 129, 354-365.
[http://dx.doi.org/10.1016/j.sajb.2019.08.039]
[85]
Sierra-Campos, E.; Valdez-Solana, M.; Avitia-Domínguez, C.; Campos-Almazán, M.; Flores-Molina, I.; García-Arenas, G.; Téllez-Valencia, A. Effects of Moringa oleifera leaf extract on diabetes-induced alterations in paraoxonase 1 and catalase in rats analyzed through progress kinetic and blind docking. Antioxidants, 2020, 9(9), 840.
[http://dx.doi.org/10.3390/antiox9090840] [PMID: 32911700]
[86]
Oldoni, T.L.C.; Merlin, N.; Bicas, T.C.; Prasniewski, A.; Carpes, S.T.; Ascari, J.; de Alencar, S.M.; Massarioli, A.P.; Bagatini, M.D.; Morales, R.; Thomé, G. Antihyperglycemic activity of crude extract and isolation of phenolic compounds with antioxidant activity from Moringa oleifera Lam. leaves grown in Southern Brazil. Food Res. Int., 2021, 141, 110082.
[http://dx.doi.org/10.1016/j.foodres.2020.110082] [PMID: 33641964]
[87]
Gupta, R.; Mathur, M.; Bajaj, V.K.; Katariya, P.; Yadav, S.; Kamal, R.; Gupta, R.S. Evaluation of antidiabetic and antioxidant activity of Moringa oleifera in experimental diabetes. J. Diabetes, 2012, 4(2), 164-171.
[http://dx.doi.org/10.1111/j.1753-0407.2011.00173.x] [PMID: 22103446]
[88]
Khan, W.; Parveen, R.; Chester, K.; Parveen, S.; Ahmad, S. Hypoglycemic potential of aqueous extract of Moringa oleifera leaf and in vivo GC-MS metabolomics. Front. Pharmacol., 2017, 8, 577.
[http://dx.doi.org/10.3389/fphar.2017.00577] [PMID: 28955221]
[89]
Abd El Latif, A.; El Bialy, B.E.S.; Mahboub, H.D.; Abd Eldaim, M.A. Moringa oleifera leaf extract ameliorates alloxan-induced diabetes in rats by regeneration of β cells and reduction of pyruvate carboxylase expression. Biochem. Cell Biol., 2014, 92(5), 413-419.
[http://dx.doi.org/10.1139/bcb-2014-0081] [PMID: 25289966]
[90]
Azad, S.B.; Ansari, P.; Azam, S.; Hossain, S.M.; Shahid, M.I-B.; Hasan, M.; Hannan, J.M.A. Anti-hyperglycaemic activity of Moringa oleifera is partly mediated by carbohydrase inhibition and glucose-fibre binding. Biosci. Rep., 2017, 37(3), BSR20170059.
[http://dx.doi.org/10.1042/BSR20170059]
[91]
Al-Malki, A.L.; El Rabey, H.A. The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. BioMed Res. Int., 2015, 2015, 1-13.
[http://dx.doi.org/10.1155/2015/381040] [PMID: 25629046]
[92]
Wang, F.; Zhong, H.H.; Chen, W.K.; Liu, Q.P.; Li, C.Y.; Zheng, Y.F.; Peng, G.P. Potential hypoglycaemic activity phenolic glycosides from Moringa oleifera seeds. Nat. Prod. Res., 2017, 31(16), 1869-1874.
[http://dx.doi.org/10.1080/14786419.2016.1263846] [PMID: 27966373]
[93]
Jaja-Chimedza, A.; Zhang, L.; Wolff, K.; Graf, B.L.; Kuhn, P.; Moskal, K.; Carmouche, R.; Newman, S.; Salbaum, J.M.; Raskin, I. A dietary isothiocyanate-enriched moringa (Moringa oleifera) seed extract improves glucose tolerance in a high-fat-diet mouse model and modulates the gut microbiome. J. Funct. Foods, 2018, 47, 376-385.
[http://dx.doi.org/10.1016/j.jff.2018.05.056] [PMID: 30930963]
[94]
Tang, Y.; Choi, E.J.; Han, W.C.; Oh, M.; Kim, J.; Hwang, J.Y.; Park, P.J.; Moon, S.H.; Kim, Y.S.; Kim, E.K. Moringa oleifera from Cambodia ameliorates oxidative stress, hyperglycemia, and kidney dysfunction in type 2 diabetic mice. J. Med. Food, 2017, 20(5), 502-510.
[http://dx.doi.org/10.1089/jmf.2016.3792] [PMID: 28467233]
[95]
Omabe, M.; Nwudele, C.; Omabe, K.N.; Okorocha, A.E. Anion gap toxicity in alloxan induced type 2 diabetic rats treated with antidiabetic noncytotoxic bioactive compounds of ethanolic extract of Moringa oleifera. J. Toxicol., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/406242] [PMID: 25548560]
[96]
Taweerutchana, R.; Lumlerdkij, N.; Vannasaeng, S.; Akarasereenont; P Sriwijitkamol, A. Effect of moringa oleifera leaf capsules on glycemic control in therapy-naïve type 2 diabetes patients: A randomized placebo controlled study. Evid. Based Complement. Alternat. Med., 2017, 2017, 6581390.
[http://dx.doi.org/10.1155/2017/6581390]
[97]
Leone, A.; Bertoli, S.; Di Lello, S.; Bassoli, A.; Ravasenghi, S.; Borgonovo, G.; Forlani, F.; Battezzati, A. Effect of Moringa oleifera leaf powder on postprandial blood glucose response: in vivo study on Saharawi people living in refugee camps. Nutrients, 2018, 10(10), 1494.
[http://dx.doi.org/10.3390/nu10101494] [PMID: 30322091]
[98]
Vargas-Sánchez, K.; Garay-Jaramillo, E.; González-Reyes, R.E. Effects of Moringa oleifera on glycaemia and insulin levels: a review of animal and human studies. Nutrients, 2019, 11(12), 2907.
[http://dx.doi.org/10.3390/nu11122907] [PMID: 31810205]
[99]
Kushwaha, S.; Chawla, P.; Kochhar, A. Effect of supplementation of drumstick (Moringa oleifera) and amaranth (Amaranthus tricolor) leaves powder on antioxidant profile and oxidative status among postmenopausal women. J. Food Sci. Technol., 2014, 51(11), 3464-3469.
[http://dx.doi.org/10.1007/s13197-012-0859-9] [PMID: 26396347]
[100]
Murakami, A.; Kitazono, Y.; Jiwajinda, S.; Koshimizu, K.; Ohigashi, H. Niaziminin, a thiocarbamate from the leaves of Moringa oleifera, holds a strict structural requirement for inhibition of tumor-promoter-induced Epstein-Barr virus activation. Planta Med., 1998, 64(4), 319-323.
[http://dx.doi.org/10.1055/s-2006-957442] [PMID: 9619112]
[101]
Gómez-Martínez, S.; Díaz-Prieto, L.E.; Vicente Castro, I.V.; Jurado, C.; Iturmendi, N.; Martín-Ridaura, M.C.; Calle, N.; Dueñas, M.; Picón, M.J.; Marcos, A.; Nova, E. Moringa oleifera leaf supplementation as a glycemic control strategy in subjects with prediabetes. Nutrients, 2021, 14(1), 57.
[http://dx.doi.org/10.3390/nu14010057] [PMID: 35010932]
[102]
Pareek, A.; Pant, M.; Gupta, M.M.; Kashania, P.; Ratan, Y.; Jain, V.; Pareek, A.; Chuturgoon, A.A. Moringa oleifera: an updated comprehensive review of its pharmacological activities, ethnomedicinal, phytopharmaceutical formulation, clinical, phytochemical, and toxicological aspects. Int. J. Mol. Sci., 2023, 24(3), 2098.
[http://dx.doi.org/10.3390/ijms24032098] [PMID: 36768420]
[103]
Kumar, N.; Sharma, S. Pharmacology, ethnopharmacology, and phytochemistry of medicinally active Moringa oleifera: A review. Nat. Prod. J., 2023, 13(8), e010323214188.
[http://dx.doi.org/10.2174/2210315513666230301094259]
[104]
Mbikay, M. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A review. Front. Pharmacol., 2012, 3, 24.
[http://dx.doi.org/10.3389/fphar.2012.00024] [PMID: 22403543]
[105]
Munir, K.M.; Chandrasekaran, S.; Gao, F.; Quon, M.J. Mechanisms for food polyphenols to ameliorate insulin resistance and endothelial dysfunction: Therapeutic implications for diabetes and its cardiovascular complications. Am. J. Physiol. Endocrinol. Metab., 2013, 305(6), E679-E686.
[http://dx.doi.org/10.1152/ajpendo.00377.2013] [PMID: 23900418]
[106]
Anitha, N.A.T.; Anuradha, C.V. Taurine modulates kallikrein activity and glucose metabolism in insulin resistant rats. Amino Acids, 2002, 22(1), 27-38.
[http://dx.doi.org/10.1007/s726-002-8199-3] [PMID: 12025872]
[107]
Kumari, D.J. Hypoglycemic effect of Moringa oleifera and Azadirachta indica in type-2 diabetes. Bioscan, 2010, 5, 211-214.
[108]
Tende, J.A.; Ezekiel, I.; Dikko, A.A.U.; Goji, A.D.T. Effect of ethanolic leaves extract of moringa oleifera on blood glucose levels of streptozocin-induced diabetics and normoglycemic wistar rats. Br. J. Pharmacol. Toxicol., 2011, 2, 1-4.
[109]
Mohamed, M.A.; Ahmed, M.A.; El Sayed, R.A. Molecular effects of Moringa leaf extract on insulin resistance and reproductive function in hyperinsulinemic male rats. J. Diabetes Metab. Disord., 2019, 18(2), 487-494.
[http://dx.doi.org/10.1007/s40200-019-00454-7] [PMID: 31890674]
[110]
Rakotoarivelo, N.H.; Rakotoarivony, F.; Ramarosandratana, A.V.; Jeannoda, V.H.; Kuhlman, A.R.; Randrianasolo, A.; Bussmann, R.W. Medicinal plants used to treat the most frequent diseases encountered in Ambalabe rural community, Eastern Madagascar. J. Ethnobiol. Ethnomed., 2015, 11(1), 68.
[http://dx.doi.org/10.1186/s13002-015-0050-2] [PMID: 26369781]
[111]
Michel, J.; Abd Rani, N.Z.; Husain, K. A review on the potential use of medicinal plants from Asteraceae and Lamiaceae plant family in cardiovascular diseases. Front. Pharmacol., 2020, 11, 852.
[http://dx.doi.org/10.3389/fphar.2020.00852] [PMID: 32581807]
[112]
Omodanisi, E.; Aboua, Y.; Oguntibeju, O. Assessment of the anti-hyperglycaemic, anti-inflammatory and antioxidant activities of the methanol extract of Moringa oleifera in diabetes-induced nephrotoxic male wistar rats. Molecules, 2017, 22(4), 439.
[http://dx.doi.org/10.3390/molecules22040439] [PMID: 28333074]
[113]
Arulselvan, P.; Gothai, S.; Muniandy, K.; Zarin, M.A.; Sean, T.W.; Kumar, S.S.; Munusamy, M.A.; Fakurazi, S. Chemical composition of Moringa oleifera ethyl acetate fraction and its biological activity in diabetic human dermal fibroblasts. Pharmacogn. Mag., 2017, 13(51), 462.
[http://dx.doi.org/10.4103/pm.pm_368_16] [PMID: 29142400]
[114]
Abd, H.H.; Ahmed, H.A.; Mutar, T.F. Moringa oleifera leaves extract modulates toxicity, sperms alterations, oxidative stress, and testicular damage induced by tramadol in male rats. Toxicol. Res., 2020, 9(2), 101-106.
[http://dx.doi.org/10.1093/toxres/tfaa009] [PMID: 32440341]
[115]
Xiong, Y.; Rajoka, M.S.R.; Mehwish, H.M.; Zhang, M.; Liang, N.; Li, C.; He, Z. Virucidal activity of Moringa A from Moringa oleifera seeds against Influenza A Viruses by regulating TFEB. Int. Immunopharmacol., 2021, 95, 107561.
[http://dx.doi.org/10.1016/j.intimp.2021.107561] [PMID: 33744778]
[116]
Sõukand, R. Pieroni, A.; Biró, M.; Dénes, A.; Dogan, Y.; Hajdari, A.; Kalle, R.; Reade, B.; Mustafa, B.; Nedelcheva, A.; Quave, C.L.; Ł;uczaj, Ł. An ethnobotanical perspective on traditional fermented plant foods and beverages in Eastern Europe. J. Ethnopharmacol., 2015, 170, 284-296.
[http://dx.doi.org/10.1016/j.jep.2015.05.018] [PMID: 25985766]
[117]
Albrahim, T.; Binobead, M.A. Roles of Moringa oleifera leaf extract in improving the impact of high dietary intake of monosodium glutamate-induced liver toxicity, oxidative stress, genotoxicity, DNA damage, and PCNA alterations in male rats. Oxid. Med. Cell. Longev., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/4501097] [PMID: 30647808]
[118]
Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[119]
Mazumder, U.K.; Gupta, M.; Chakrabarti, S.; Pal, D. Evaluation of hematological and hepatorenal functions of methanolic extract of Moringa oleifera Lam. root treated mice. NIScPR, 1999, 37(06)
[120]
Ajibade, T.O.; Arowolo, R.; Olayemi, F.O. Phytochemical screening and toxicity studies on the methanol extract of the seeds of moringa oleifera. J. Complement. Integr. Med., 2013, 10(1), 11-16.
[http://dx.doi.org/10.1515/jcim-2012-0015] [PMID: 23652639]
[121]
Patriota, L.L.S.; Ramos, D.B.M.; dos Santos, A.C.L.A.; Silva, Y.A.; Gama e Silva, M.; Torres, D.J.L.; Procópio, T.F.; de Oliveira, A.M.; Coelho, L.C.B.B.; Pontual, E.V.; da Silva, D.C.N.; Paiva, P.M.G.; de Lorena, V.M.B.; Mendes, R.L.; Napoleão, T.H. Antitumor activity of Moringa oleifera (drumstick tree) flower trypsin inhibitor (MoFTI) in sarcoma 180-bearing mice. Food Chem. Toxicol., 2020, 145, 111691.
[http://dx.doi.org/10.1016/j.fct.2020.111691] [PMID: 32810586]
[122]
Stohs, S.J.; Hartman, M.J. Review of the safety and efficacy of Moringa oleifera. Phytother. Res., 2015, 29(6), 796-804.
[http://dx.doi.org/10.1002/ptr.5325] [PMID: 25808883]
[123]
Siddiqui, S.; Upadhyay, S.; Ahmad, I.; Hussain, A.; Ahamed, M. Cytotoxicity of Moringa oleifera fruits on human liver cancer and molecular docking analysis of bioactive constituents against caspase-3 enzyme. J. Food Biochem., 2021, 45(5), e13720.
[http://dx.doi.org/10.1111/jfbc.13720] [PMID: 33856706]
[124]
Teshome, D.; Tiruneh, C.; Berihun, G. Toxicity of methanolic extracts of seeds of Moringa stenopetala, moringaceae in rat embryos and fetuses. BioMed Res. Int., 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/5291083] [PMID: 33628785]