Progress in Cardiac Magnetic Resonance Feature Tracking for Evaluating Myocardial Strain in Type-2 Diabetes Mellitus

Article ID: e160124225667 Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

The global prevalence of type-2 diabetes mellitus (T2DM) has caused harm to human health and economies. Cardiovascular disease is one main cause of T2DM mortality. Increased prevalence of diabetes and associated heart failure (HF) is common in older populations, so accurately evaluating heart-related injury and T2DM risk factors and conducting early intervention are important. Quantitative cardiovascular system imaging assessments, including functional imaging during cardiovascular disease treatment, are also important. The left-ventricular ejection fraction (LVEF) has been traditionally used to monitor cardiac function; it is often preserved or increased in early T2DM, but subclinical heart deformation and dysfunction can occur. Myocardial strains are sensitive to global and regional heart dysfunction in subclinical T2DM. Cardiac magnetic resonance feature-tracking technology (CMR-FT) can visualize and quantify strain and identify subclinical myocardial injury for early management, especially with preserved LVEF. Meanwhile, CMR-FT can be used to evaluate the multiple cardiac chambers involvement mediated by T2DM and the coexistence of complications. This review discusses CMR-FT principles, clinical applications, and research progress in the evaluation of myocardial strain in T2DM.

[1]
ElSayed NA, Aleppo G, Aroda VR, et al. 2. Classification and diagnosis of diabetes: Standards of care in diabetes-2023. Diabetes Care 2023; 46 (Suppl. 1): S19-40.
[http://dx.doi.org/10.2337/dc23-S002] [PMID: 36507649]
[2]
Lin SM, Liu PPS, Tu YK, et al. Risk of heart failure in elderly patients with atrial fibrillation and diabetes taking different oral anticoagulants: a nationwide cohort study. Cardiovasc Diabetol 2023; 22(1): 1.
[http://dx.doi.org/10.1186/s12933-022-01688-1] [PMID: 36609317]
[3]
Mandell BF. Some complexities of diabetes and the heart. Cleve Clin J Med 2023; 90(1): 13-4.
[http://dx.doi.org/10.3949/ccjm.90b.01023] [PMID: 36596603]
[4]
Ritchie RH, Abel ED. Basic mechanisms of diabetic heart disease. Circ Res 2020; 126(11): 1501-25.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.315913] [PMID: 32437308]
[5]
Dibato JE, Montvida O, Zaccardi F, et al. Association of cardiometabolic multimorbidity and depression with cardiovascular events in early-onset adult type 2 diabetes: A multiethnic study in the U.S. Diabetes Care 2021; 44(1): 231-9.
[http://dx.doi.org/10.2337/dc20-2045] [PMID: 33177170]
[6]
Joseph JJ, Deedwania P, Acharya T, et al. Comprehensive management of cardiovascular risk factors for adults with type 2 diabetes: A scientifc statement from the American Heart Association. Circulation 2022; 145(9): e722-59.
[http://dx.doi.org/10.1161/CIR.0000000000001040] [PMID: 35000404]
[7]
Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 2013; 18(2): 149-66.
[http://dx.doi.org/10.1007/s10741-012-9313-3] [PMID: 22453289]
[8]
Kee OT, Harun H, Mustafa N, et al. Cardiovascular complications in a diabetes prediction model using machine learning: a systematic review. Cardiovasc Diabetol 2023; 22(1): 13.
[http://dx.doi.org/10.1186/s12933-023-01741-7] [PMID: 36658644]
[9]
Dal Canto E, Ceriello A, Rydén L, et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol 2019; 26(2_suppl)(Suppl.): 25-32.
[http://dx.doi.org/10.1177/2047487319878371] [PMID: 31722562]
[10]
Murtaza G, Virk HUH, Khalid M, et al. Diabetic cardiomyopathy - A comprehensive updated review. Prog Cardiovasc Dis 2019; 62(4): 315-26.
[http://dx.doi.org/10.1016/j.pcad.2019.03.003] [PMID: 30922976]
[11]
Zou R, Shi W, Qiu J, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol 2022; 21(1): 106.
[http://dx.doi.org/10.1186/s12933-022-01532-6] [PMID: 35705980]
[12]
Karagiannidis E, Moysidis DV, Papazoglou AS, et al. Prognostic significance of metabolomic biomarkers in patients with diabetes mellitus and coronary artery disease. Cardiovasc Diabetol 2022; 21(1): 70.
[http://dx.doi.org/10.1186/s12933-022-01494-9] [PMID: 35525960]
[13]
Balcıoğlu AS, Müderrisoğlu H. Diabetes and cardiac autonomic neuropathy: Clinical manifestations, cardiovascular consequences, diagnosis and treatment. World J Diabetes 2015; 6(1): 80-91.
[http://dx.doi.org/10.4239/wjd.v6.i1.80] [PMID: 25685280]
[14]
Potockova V, Mala S, Hoskovcova L, et al. Thermal quantitative sensory testing as a screening tool for cardiac autonomic neuropathy in patients with diabetes mellitus. Brain Behav 2022; 12(3): e2506.
[http://dx.doi.org/10.1002/brb3.2506] [PMID: 35212197]
[15]
Guo S. Mechanisms of heart failure in type 2 diabetes mellitus. Austin J Clin Cardiol 2014; 1(1)
[16]
Eitel I, Stiermaier T, Lange T, et al. Cardiac magnetic resonance myocardial feature tracking for optimized prediction of cardiovascular events following myocardial infarction. JACC Cardiovasc Imaging 2018; 11(10): 1433-44.
[http://dx.doi.org/10.1016/j.jcmg.2017.11.034] [PMID: 29454776]
[17]
Maceira AM, Guardiola S, Ripoll C, Cosin-Sales J, Belloch V, Salazar J. Detection of subclinical myocardial dysfunction in cocaine addicts with feature tracking cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2020; 22(1): 70.
[http://dx.doi.org/10.1186/s12968-020-00663-7] [PMID: 32981526]
[18]
Schuster A, Hor KN, Kowallick JT, Beerbaum P, Kutty S. Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications. Circ Cardiovasc Imaging 2016; 9(4): e004077.
[http://dx.doi.org/10.1161/CIRCIMAGING.115.004077] [PMID: 27009468]
[19]
Tadic M, Cuspidi C, Calicchio F, Grassi G, Mancia G. Diabetic cardiomyopathy: How can cardiac magnetic resonance help? Acta Diabetol 2020; 57(9): 1027-34.
[http://dx.doi.org/10.1007/s00592-020-01528-2] [PMID: 32285200]
[20]
Donato M, Gelpi RJ. Assessment of longitudinal myocardial stiffness is not enough to evaluate diastolic function: What is the relevance of the stiffness of cardiomyocytes in the transverse direction? Circ J 2013; 77(3): 608-9.
[http://dx.doi.org/10.1253/circj.CJ-13-0061] [PMID: 23370455]
[21]
Marwick TH, Shah SJ, Thomas JD. Myocardial strain in the assessment of patients with heart failure: A review. JAMA Cardiol 2019; 4(3): 287-94.
[http://dx.doi.org/10.1001/jamacardio.2019.0052] [PMID: 30810702]
[22]
Pedrizzetti G, Claus P, Kilner PJ, Nagel E. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson 2016; 18(1): 51.
[http://dx.doi.org/10.1186/s12968-016-0269-7] [PMID: 27561421]
[23]
Ng ACT, Delgado V, Bertini M, et al. Findings from left ventricular strain and strain rate imaging in asymptomatic patients with type 2 diabetes mellitus. Am J Cardiol 2009; 104(10): 1398-401.
[http://dx.doi.org/10.1016/j.amjcard.2009.06.063] [PMID: 19892057]
[24]
Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: A report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 2010; 55(23): 2614-62.
[http://dx.doi.org/10.1016/j.jacc.2009.11.011] [PMID: 20513610]
[25]
Callegari A, Marcora S, Burkhardt B, et al. Myocardial deformation in fontan patients assessed by cardiac magnetic resonance feature tracking: Correlation with function, clinical course, and biomarkers. Pediatr Cardiol 2021; 42(7): 1625-34.
[http://dx.doi.org/10.1007/s00246-021-02650-w] [PMID: 34313807]
[26]
Schneeweis C, Qiu J, Schnackenburg B, et al. Value of strain analysis with feature tracking in dobutamine stress cardiac magnetic resonance imaging for detecting coronary artery disease. J Cardiovasc Magn Reson 2014; 16(S1): P179.
[http://dx.doi.org/10.1186/1532-429X-16-S1-P179]
[27]
Lange T, Stiermaier T, Backhaus SJ, et al. Functional and prognostic implications of cardiac magnetic resonance feature tracking-derived remote myocardial strain analyses in patients following acute myocardial infarction. Clin Res Cardiol 2021; 110(2): 270-80.
[http://dx.doi.org/10.1007/s00392-020-01747-1] [PMID: 33083869]
[28]
Shehata ML, Cheng S, Osman NF, Bluemke DA, Lima JAC. Myocardial tissue tagging with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2009; 11(1): 55.
[http://dx.doi.org/10.1186/1532-429X-11-55] [PMID: 20025732]
[29]
Collier P, Phelan D, Klein A. A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol 2017; 69(8): 1043-56.
[http://dx.doi.org/10.1016/j.jacc.2016.12.012] [PMID: 28231932]
[30]
Youssef A, Ibrahim ESH, Korosoglou G, Abraham MR, Weiss RG, Osman NF. Strain-encoding cardiovascular magnetic resonance for assessment of right-ventricular regional function. J Cardiovasc Magn Reson 2008; 10(1): 33.
[http://dx.doi.org/10.1186/1532-429X-10-33] [PMID: 18601713]
[31]
Pryds K, Larsen AH, Hansen MS, et al. Myocardial strain assessed by feature tracking cardiac magnetic resonance in patients with a variety of cardiovascular diseases – A comparison with echocardiography. Sci Rep 2019; 9(1): 11296.
[http://dx.doi.org/10.1038/s41598-019-47775-4] [PMID: 31383914]
[32]
Erley J, Genovese D, Tapaskar N, et al. Echocardiography and cardiovascular magnetic resonance based evaluation of myocardial strain and relationship with late gadolinium enhancement. J Cardiovasc Magn Reson 2019; 21(1): 46.
[http://dx.doi.org/10.1186/s12968-019-0559-y] [PMID: 31391036]
[33]
Zhu T, Zeng W, Chen Y, et al. 2D/3D CMR tissue tracking versus CMR tagging in the assessment of spontaneous T2DM rhesus monkeys with isolated diastolic dysfunction. BMC Med Imaging 2018; 18(1): 47.
[http://dx.doi.org/10.1186/s12880-018-0288-y] [PMID: 30477437]
[34]
van Everdingen WM, Zweerink A, Nijveldt R, et al. Comparison of strain imaging techniques in CRT candidates: CMR tagging, CMR feature tracking and speckle tracking echocardiography. Int J Cardiovasc Imaging 2018; 34(3): 443-56.
[http://dx.doi.org/10.1007/s10554-017-1253-5] [PMID: 29043465]
[35]
Nazir SA, Shetye AM, Khan JN, et al. Inter-study repeatability of circumferential strain and diastolic strain rate by CMR tagging, feature tracking and tissue tracking in ST-segment elevation myocardial infarction. Int J Cardiovasc Imaging 2020; 36(6): 1133-46.
[http://dx.doi.org/10.1007/s10554-020-01806-8] [PMID: 32152811]
[36]
Auger DA, Ghadimi S, Cai X, et al. Reproducibility of global and segmental myocardial strain using cine DENSE at 3 T: A multicenter cardiovascular magnetic resonance study in healthy subjects and patients with heart disease. J Cardiovasc Magn Reson 2022; 24(1): 23.
[http://dx.doi.org/10.1186/s12968-022-00851-7] [PMID: 35369885]
[37]
Yoneyama K, Venkatesh BA, Wu CO, et al. Diabetes mellitus and insulin resistance associate with left ventricular shape and torsion by cardiovascular magnetic resonance imaging in asymptomatic individuals from the multi-ethnic study of atherosclerosis. J Cardiovasc Magn Reson 2018; 20(1): 53.
[http://dx.doi.org/10.1186/s12968-018-0472-9] [PMID: 30064457]
[38]
Zhou S, Zhang Z, Zhang Z, et al. Evaluation of left ventricular systolic and diastolic function in subjects with prediabetes and diabetes using cardiovascular magnetic resonance-feature tracking. Acta Diabetol 2022; 59(4): 491-9.
[http://dx.doi.org/10.1007/s00592-021-01822-7] [PMID: 34779950]
[39]
Ito H, Ishida M, Makino W, et al. Cardiovascular magnetic resonance feature tracking for characterization of patients with heart failure with preserved ejection fraction: Correlation of global longitudinal strain with invasive diastolic functional indices. J Cardiovasc Magn Reson 2020; 22(1): 42.
[http://dx.doi.org/10.1186/s12968-020-00636-w] [PMID: 32498688]
[40]
Sengupta PP, Krishnamoorthy VK, Abhayaratna WP, et al. Disparate patterns of left ventricular mechanics differentiate constrictive pericarditis from restrictive cardiomyopathy. JACC Cardiovasc Imaging 2008; 1(1): 29-38.
[http://dx.doi.org/10.1016/j.jcmg.2007.10.006] [PMID: 19356402]
[41]
Nesti L, Pugliese NR, Sciuto P, et al. Effect of empagliflozin on left ventricular contractility and peak oxygen uptake in subjects with type 2 diabetes without heart disease: results of the EMPA-HEART trial. Cardiovasc Diabetol 2022; 21(1): 181.
[http://dx.doi.org/10.1186/s12933-022-01618-1] [PMID: 36096863]
[42]
Habek JC, Lakusic N, Kruzliak P, Sikic J, Mahovic D, Vrbanic L. Left ventricular diastolic function in diabetes mellitus type 2 patients: correlation with heart rate and its variability. Acta Diabetol 2014; 51(6): 999-1005.
[http://dx.doi.org/10.1007/s00592-014-0658-z] [PMID: 25274395]
[43]
Tanaka H, Tatsumi K, Matsuzoe H, Matsumoto K, Hirata K. Impact of diabetes mellitus on left ventricular longitudinal function of patients with non-ischemic dilated cardiomyopathy. Cardiovasc Diabetol 2020; 19(1): 84.
[http://dx.doi.org/10.1186/s12933-020-01063-y] [PMID: 32534593]
[44]
Di Mario C, Genovese S, Lanza GA, et al. Role of continuous glucose monitoring in diabetic patients at high cardiovascular risk: an expert-based multidisciplinary Delphi consensus. Cardiovasc Diabetol 2022; 21(1): 164.
[http://dx.doi.org/10.1186/s12933-022-01598-2] [PMID: 36030229]
[45]
Xie L, Dong Z, Yang Z, et al. Assessment of left ventricular deformation in patients with type 2 diabetes mellitus by cardiac magnetic resonance tissue tracking. Sci Rep 2020; 10(1): 13126.
[http://dx.doi.org/10.1038/s41598-020-69977-x] [PMID: 32753616]
[46]
Zhang Y, Yan W, Jiang L, et al. Aggravation of functional mitral regurgitation on left ventricle stiffness in type 2 diabetes mellitus patients evaluated by CMR tissue tracking. Cardiovasc Diabetol 2021; 20(1): 158.
[http://dx.doi.org/10.1186/s12933-021-01354-y] [PMID: 34332579]
[47]
Shao G, Cao Y, Cui Y, et al. Early detection of left atrial and bi-ventricular myocardial strain abnormalities by MRI feature tracking in normotensive or hypertensive T2DM patients with preserved LV function. BMC Cardiovasc Disord 2020; 20(1): 196.
[http://dx.doi.org/10.1186/s12872-020-01469-2] [PMID: 32326882]
[48]
Yang S, Chen X, Zhao K, et al. Reverse remodeling of left atrium assessed by cardiovascular magnetic resonance feature tracking in hypertrophic obstructive cardiomyopathy after septal myectomy. J Cardiovasc Magn Reson 2023; 25(1): 13.
[http://dx.doi.org/10.1186/s12968-023-00915-2] [PMID: 36775820]
[49]
Vukomanovic V, Suzic-Lazic J, Celic V, et al. Is there association between left atrial function and functional capacity in patients with uncomplicated type 2 diabetes? Int J Cardiovasc Imaging 2020; 36(1): 15-22.
[http://dx.doi.org/10.1007/s10554-019-01680-z] [PMID: 31367802]
[50]
Giubertoni A, Boggio E, Ubertini E, et al. Atrial conduit function quantitation precardioversion predicts early arrhythmia recurrence in persistent atrial fibrillation patients. J Cardiovasc Med (Hagerstown) 2019; 20(4): 169-79.
[http://dx.doi.org/10.2459/JCM.0000000000000756] [PMID: 30829875]
[51]
Smiseth OA, Baron T, Marino PN, Marwick TH, Flachskampf FA. Imaging of the left atrium: Pathophysiology insights and clinical utility. Eur Heart J Cardiovasc Imaging 2021; 23(1): 2-13.
[http://dx.doi.org/10.1093/ehjci/jeab191] [PMID: 34601594]
[52]
Morris DA, Belyavskiy E, Aravind-Kumar R, et al. Potential usefulness and clinical relevance of adding left atrial strain to left atrial volume index in the detection of left ventricular diastolic dysfunction. JACC Cardiovasc Imaging 2018; 11(10): 1405-15.
[http://dx.doi.org/10.1016/j.jcmg.2017.07.029] [PMID: 29153567]
[53]
Tadic M, Cuspidi C. Left atrial function in diabetes: Does it help? Acta Diabetol 2021; 58(2): 131-7.
[http://dx.doi.org/10.1007/s00592-020-01557-x] [PMID: 32519220]
[54]
Shang Y, Zhang X, Leng W, et al. Left atrium passive ejection fraction is the most sensitive index of type 2 diabetes mellitus-related cardiac changes. Int J Cardiovasc Imaging 2018; 34(1): 141-51.
[http://dx.doi.org/10.1007/s10554-017-1213-0] [PMID: 28721548]
[55]
Claus P, Omar AMS, Pedrizzetti G, Sengupta PP, Nagel E. Tissue tracking technology for assessing cardiac mechanics: Principles, normal values, and clinical applications. JACC Cardiovasc Imaging 2015; 8(12): 1444-60.
[http://dx.doi.org/10.1016/j.jcmg.2015.11.001] [PMID: 26699113]
[56]
Erley J, Tanacli R, Genovese D, et al. Myocardial strain analysis of the right ventricle: Comparison of different cardiovascular magnetic resonance and echocardiographic techniques. J Cardiovasc Magn Reson 2020; 22(1): 51.
[http://dx.doi.org/10.1186/s12968-020-00647-7] [PMID: 32698811]
[57]
Salzano A, D’Assante R, Iacoviello M, et al. Progressive right ventricular dysfunction and exercise impairment in patients with heart failure and diabetes mellitus: Insights from the T.O.S.CA. Registry. Cardiovasc Diabetol 2022; 21(1): 108.
[http://dx.doi.org/10.1186/s12933-022-01543-3] [PMID: 35710369]
[58]
Huang J, Li L, Fan L, Chen D. Evaluation of right ventricular systolic and diastolic dysfunctions in patients with type 2 diabetes mellitus with poor glycemic control by layer specific global longitudinal strain and strain rate. Diabetol Metab Syndr 2022; 14(1): 49.
[http://dx.doi.org/10.1186/s13098-022-00820-1] [PMID: 35395870]
[59]
Widya RL, van der Meer RW, Smit JWA, et al. Right ventricular involvement in diabetic cardiomyopathy. Diabetes Care 2013; 36(2): 457-62.
[http://dx.doi.org/10.2337/dc12-0474] [PMID: 23139371]
[60]
Tadic M, Vukomanovic V, Cuspidi C, et al. The relationship between right ventricular deformation and heart rate variability in asymptomatic diabetic patients. J Diabetes Complications 2017; 31(7): 1152-7.
[http://dx.doi.org/10.1016/j.jdiacomp.2017.04.007] [PMID: 28456356]
[61]
Inoue K, Khan FH, Remme EW, et al. Determinants of left atrial reservoir and pump strain and use of atrial strain for evaluation of left ventricular filling pressure. Eur Heart J Cardiovasc Imaging 2021; 23(1): 61-70.
[http://dx.doi.org/10.1093/ehjci/jeaa415] [PMID: 33496314]
[62]
Mochizuki Y, Tanaka H, Matsumoto K, et al. Impaired mechanics of left ventriculo-atrial coupling in patients with diabetic nephropathy. Circ J 2016; 80(9): 1957-64.
[http://dx.doi.org/10.1253/circj.CJ-16-0488] [PMID: 27385281]
[63]
Tadic M, Cuspidi C, Pencic B, Jozika L, Celic V. Relationship between right ventricular remodeling and heart rate variability in arterial hypertension. J Hypertens 2015; 33(5): 1090-7.
[http://dx.doi.org/10.1097/HJH.0000000000000511] [PMID: 25668353]
[64]
Shi R, Shi K, Huang S, et al. Association between heart failure with preserved left ventricular ejection fraction and impaired left atrial phasic function in hypertrophic cardiomyopathy: evaluation by cardiac MRI feature tracking. J Magn Reson Imaging 2022; 56(1): 248-59.
[http://dx.doi.org/10.1002/jmri.28000] [PMID: 34799953]
[65]
Zhang Y, Li XM, Shen MT, Huang S, Li Y, Yang ZG. Atrioventricular coupling and left atrial abnormality in type 2 diabetes mellitus with functional mitral regurgitation patients verified by cardiac magnetic resonance imaging. Cardiovasc Diabetol 2022; 21(1): 100.
[http://dx.doi.org/10.1186/s12933-022-01536-2] [PMID: 35681217]
[66]
Buckberg GD, Group R. The ventricular septum: The lion of right ventricular function, and its impact on right ventricular restoration. Eur J Cardiothorac Surg 2006; 29 (Suppl. 1): S272-8.
[http://dx.doi.org/10.1016/j.ejcts.2006.02.011] [PMID: 16567103]
[67]
Li XM, Yan WF, Jiang L, et al. Impact of T2DM on right ventricular systolic dysfunction and interventricular interactions in patients with essential hypertension: Evaluation using CMR tissue tracking. Cardiovasc Diabetol 2022; 21(1): 238.
[http://dx.doi.org/10.1186/s12933-022-01678-3] [PMID: 36352469]
[68]
Dibble CT, Lima JAC, Bluemke DA, et al. Regional left ventricular systolic function and the right ventricle: the multi-ethnic study of atherosclerosis right ventricle study. Chest 2011; 140(2): 310-6.
[http://dx.doi.org/10.1378/chest.10-1750] [PMID: 21330384]
[69]
Shi R, Yang ZG, Guo YK, et al. The right ventricular dysfunction and ventricular interdependence in patients with DM: Assessment using cardiac MR feature tracking. Cardiovasc Diabetol 2023; 22(1): 93.
[http://dx.doi.org/10.1186/s12933-023-01806-7] [PMID: 37085847]
[70]
Li G, Zhang Z, Gao Y, et al. Age- and sex-specific reference values of biventricular strain and strain rate derived from a large cohort of healthy Chinese adults: A cardiovascular magnetic resonance feature tracking study. J Cardiovasc Magn Reson 2022; 24(1): 63.
[http://dx.doi.org/10.1186/s12968-022-00881-1] [PMID: 36404299]
[71]
Li XM, Jiang L, Guo YK, et al. The additive effects of type 2 diabetes mellitus on left ventricular deformation and myocardial perfusion in essential hypertension: A 3.0 T cardiac magnetic resonance study. Cardiovasc Diabetol 2020; 19(1): 161.
[http://dx.doi.org/10.1186/s12933-020-01138-w] [PMID: 32998742]
[72]
Climie RE, van Sloten TT, Bruno RM, et al. Macrovasculature and microvasculature at the crossroads between Type 2 diabetes mellitus and hypertension. Hypertension 2019; 73(6): 1138-49.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.11769] [PMID: 31067192]
[73]
Yan W, Gao Y, Zhang Y, et al. Impact of type 2 diabetes mellitus on left ventricular diastolic function in patients with essential hypertension: evaluation by volume-time curve of cardiac magnetic resonance. Cardiovasc Diabetol 2021; 20(1): 73.
[http://dx.doi.org/10.1186/s12933-021-01262-1] [PMID: 33766020]
[74]
Lip S, Jeemon P, McCallum L, Dominiczak AF, McInnes GT, Padmanabhan S. Contrasting mortality risks among subgroups of treated hypertensive patients developing new-onset diabetes. Eur Heart J 2016; 37(12): 968-74.
[http://dx.doi.org/10.1093/eurheartj/ehv557] [PMID: 26508167]
[75]
Zhang G, Shi K, Yan WF, et al. Effects of diabetes mellitus on left ventricular function and remodeling in hypertensive patients with heart failure with reduced ejection fraction: Assessment with 3.0 T MRI feature tracking. Cardiovasc Diabetol 2022; 21(1): 69.
[http://dx.doi.org/10.1186/s12933-022-01504-w] [PMID: 35524215]
[76]
Shi K, Yang MX, Huang S, et al. Effect of diabetes mellitus on the development of left ventricular contractile dysfunction in women with heart failure and preserved ejection fraction. Cardiovasc Diabetol 2021; 20(1): 185.
[http://dx.doi.org/10.1186/s12933-021-01379-3] [PMID: 34521391]
[77]
Backhaus SJ, Kowallick JT, Stiermaier T, et al. Cardiac Magnetic Resonance Myocardial Feature Tracking for Optimized Risk Assessment After Acute Myocardial Infarction in Patients With Type 2 Diabetes. Diabetes 2020; 69(7): 1540-8.
[http://dx.doi.org/10.2337/db20-0001] [PMID: 32335515]
[78]
Gao Y, Xu H, Guo Y, et al. Impact of myocardial scars on left ventricular deformation in type 2 diabetes mellitus after myocardial infarction by contrast-enhanced cardiac magnetic resonance. Cardiovasc Diabetol 2021; 20(1): 215.
[http://dx.doi.org/10.1186/s12933-021-01407-2] [PMID: 34696783]
[79]
Wang J, Yang ZG, Guo YK, et al. Incremental effect of coronary obstruction on myocardial microvascular dysfunction in type 2 diabetes mellitus patients evaluated by first-pass perfusion CMR study. Cardiovasc Diabetol 2023; 22(1): 154.
[http://dx.doi.org/10.1186/s12933-023-01873-w] [PMID: 37381007]
[80]
Wang J, Li Y, Guo YK, et al. The adverse impact of coronary artery disease on left ventricle systolic and diastolic function in patients with type 2 diabetes mellitus: A 3.0T CMR study. Cardiovasc Diabetol 2022; 21(1): 30.
[http://dx.doi.org/10.1186/s12933-022-01467-y] [PMID: 35193565]
[81]
Chen S, Shen Y, Liu YH, et al. Impact of glycemic control on the association of endothelial dysfunction and coronary artery disease in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2021; 20(1): 64.
[http://dx.doi.org/10.1186/s12933-021-01257-y] [PMID: 33714276]
[82]
Shen MT, Li Y, Guo YK, et al. Impact of type 2 diabetes mellitus on left ventricular deformation in non-ischemic dilated cardiomyopathy patients assessed by cardiac magnetic resonance imaging. Cardiovasc Diabetol 2022; 21(1): 94.
[http://dx.doi.org/10.1186/s12933-022-01533-5] [PMID: 35659302]
[83]
Zhou F, Deng M, Deng LL, et al. Evaluation of the effects of glycated hemoglobin on cardiac function in patients with short-duration type 2 diabetes mellitus: A cardiovascular magnetic resonance study. Diabetes Res Clin Pract 2021; 178108952.
[http://dx.doi.org/10.1016/j.diabres.2021.108952] [PMID: 34273454]
[84]
Cho S, Huh H, Park S, et al. Impact of albuminuria on the various causes of death in diabetic patients: A nationwide population-based study. Sci Rep 2023; 13(1): 295.
[http://dx.doi.org/10.1038/s41598-022-23352-0] [PMID: 36609387]
[85]
Cariou B, Leiter LA, Müller-Wieland D, et al. Efficacy and safety of alirocumab in insulin-treated patients with type 1 or type 2 diabetes and high cardiovascular risk: Rationale and design of the ODYSSEY DM–INSULIN trial. Diabetes Metab 2017; 43(5): 453-9.
[http://dx.doi.org/10.1016/j.diabet.2017.01.004] [PMID: 28347654]
[86]
Meyer CG, Frick M, Lotfi S, et al. Regional left ventricular function after transapical vs. transfemoral transcatheter aortic valve implantation analysed by cardiac magnetic resonance feature tracking. Eur Heart J Cardiovasc Imaging 2014; 15(10): 1168-76.
[http://dx.doi.org/10.1093/ehjci/jeu103] [PMID: 24906997]
[87]
Cioffi G, Mazzone C, Barbati G, et al. Combined circumferential and longitudinal left ventricular systolic dysfunction in patients with asymptomatic aortic stenosis. Echocardiography 2015; 32(7): 1064-72.
[http://dx.doi.org/10.1111/echo.12825] [PMID: 25370995]
[88]
Shen LT, Jiang L, Zhu YW, et al. Additive effect of aortic regurgitation degree on left ventricular strain in patients with type 2 diabetes mellitus evaluated via cardiac magnetic resonance tissue tracking. Cardiovasc Diabetol 2022; 21(1): 37.
[http://dx.doi.org/10.1186/s12933-022-01471-2] [PMID: 35277181]
[89]
Krishnasamy R, Hawley CM, Stanton T, et al. Left ventricular global longitudinal strain is associated with cardiovascular risk factors and arterial stiffness in chronic kidney disease. BMC Nephrol 2015; 16(1): 106.
[http://dx.doi.org/10.1186/s12882-015-0098-1] [PMID: 26187506]
[90]
Zhang Y, Wang J, Ren Y, et al. The additive effects of kidney dysfunction on left ventricular function and strain in type 2 diabetes mellitus patients verified by cardiac magnetic resonance imaging. Cardiovasc Diabetol 2021; 20(1): 11.
[http://dx.doi.org/10.1186/s12933-020-01203-4] [PMID: 33413395]
[91]
Qian WL, Yang ZG, Shi R, et al. Left atrioventricular interaction and impaired left atrial phasic function in type 2 diabetes mellitus patients with or without anemia: a cardiac magnetic resonance study. Cardiovasc Diabetol 2023; 22(1): 178.
[http://dx.doi.org/10.1186/s12933-023-01910-8] [PMID: 37443014]
[92]
Piché ME, Tchernof A, Després JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res 2020; 126(11): 1477-500.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.316101] [PMID: 32437302]
[93]
Găman MA, Cozma MA, Dobrică EC, Bacalbașa N, Bratu OG, Diaconu CC. Dyslipidemia: A trigger for coronary heart disease in romanian patients with diabetes. Metabolites 2020; 10(5): 195.
[http://dx.doi.org/10.3390/metabo10050195] [PMID: 32423050]
[94]
Ma CX, Ma XN, Guan CH, Li YD, Mauricio D, Fu SB. Cardiovascular disease in type 2 diabetes mellitus: Progress toward personalized management. Cardiovasc Diabetol 2022; 21(1): 74.
[95]
Qian WL, Xu R, Shi R, et al. The worsening effect of anemia on left ventricular function and global strain in type 2 diabetes mellitus patients: A 3.0 T CMR feature tracking study. Cardiovasc Diabetol 2023; 22(1): 15.
[http://dx.doi.org/10.1186/s12933-023-01745-3] [PMID: 36694151]
[96]
Tian X, Chen S, Wang P, et al. Insulin resistance mediates obesity-related risk of cardiovascular disease: A prospective cohort study. Cardiovasc Diabetol 2022; 21(1): 289.
[http://dx.doi.org/10.1186/s12933-022-01729-9] [PMID: 36564775]
[97]
Katsiki N, Tentolouris N, Mikhailidis DP. Dyslipidaemia in type 2 diabetes mellitus. Curr Opin Cardiol 2017; 32(4): 422-9.
[http://dx.doi.org/10.1097/HCO.0000000000000407] [PMID: 28362666]
[98]
Jiang L, Shi K, Guo Y, et al. The additive effects of obesity on myocardial microcirculation in diabetic individuals: a cardiac magnetic resonance first-pass perfusion study. Cardiovasc Diabetol 2020; 19(1): 52.
[http://dx.doi.org/10.1186/s12933-020-01028-1] [PMID: 32375795]
[99]
Claus P, Omar AMS, Pedrizzetti G, Sengupta PP, Nagel E. Tissue Tracking Technology for Assessing Cardiac Mechanics. JACC Cardiovasc Imaging 2015; 8(12): 1444-60.
[http://dx.doi.org/10.1016/j.jcmg.2015.11.001] [PMID: 26699113]
[100]
Lange T, Schuster A. Quantification of Myocardial Deformation Applying CMR-Feature-Tracking—All About the Left Ventricle? Curr Heart Fail Rep 2021; 18(4): 225-39.
[http://dx.doi.org/10.1007/s11897-021-00515-0] [PMID: 33931818]
[101]
Xu J, Yang W, Zhao S, Lu M. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives. Eur Radiol 2022; 32(8): 5424-35.
[http://dx.doi.org/10.1007/s00330-022-08629-2] [PMID: 35201410]