Abstract
Background: Lupus nephritis is associated with a six-fold increase in mortality compared
with the general population. MicroRNAs studies revealed that increased MicroRNA -21
and MicroRNA -155 levels represent risk factors for active LN patients. MicroRNAs can be
used as biomarkers in the diagnosis of clinical stages of LN.
Objectives: The present study aimed to determine the level of miR-124 in patients with lupus
nephritis by reverse transcriptase real-time polymerase chain reaction compared to healthy control
and correlate its levels with biochemical findings in those patients.
Methods: The study was a case-control study that included fifty patients with lupus nephritis in
addition to fifty healthy controls. Blood samples from the participants were subjected to the determination
of serological markers of SLE. Moreover, real-time PCR was used for the determination
of miR-124.
Results: The comparison of Micro-RNA124 between patients and control subjects revealed a
statistically significant decrease in Micro-RNA124 in patients (1.193 ± 0.56) compared to the
control (3.36 ± 0.50, p <0.001); the comparison of the level of MicroRNA 124 in the patients
with different clinical and serological findings of SLE revealed a significant decrease in the level
of MicroRNA 124 in patients with muscular findings (1.02 ± 0.5) compared to the patients
with negative manifestations (1.47 ± 0.5, p =0.005).
Conclusion: In the present study, a comparison of MicroRNA-124 in LN patients with different
stages compared to normal control showed a statistically significant decrease in Micro-RNA124
in patients with lupus nephritis p <0.001 with significant correlation to the patients’ different
clinical and serological findings of SLE. Therefore, it may be used as a new noninvasive therapeutic
approach to monitor response to therapy, predict relapses, and identify the degree of the
activity of the disease or the progression to the chronic stage.
Graphical Abstract
[1]
Moroni, G. Severe lupus nephritis in the present days. Nephrol. Front. Nephrol., 2022, 22, 1-8.
[4]
Hanly, J.G.; O’Keeffe, A.G.; Su, L.; Urowitz, M.B.; Romero-Diaz, J.; Gordon, C.; Bae, S.C.; Bernatsky, S.; Clarke, A.E.; Wallace, D.J.; Merrill, J.T.; Isenberg, D.A.; Rahman, A.; Ginzler, E.M.; Fortin, P.; Gladman, D.D.; Sanchez-Guerrero, J.; Petri, M.; Bruce, I.N.; Dooley, M.A.; Ramsey-Goldman, R.; Aranow, C.; Alarcón, G.S.; Fessler, B.J.; Steinsson, K.; Nived, O.; Sturfelt, G.K.; Manzi, S.; Khamashta, M.A.; van Vollenhoven, R.F.; Zoma, A.A.; Ramos-Casals, M.; Ruiz-Irastorza, G.; Lim, S.S.; Stoll, T.; Inanc, M.; Kalunian, K.C.; Kamen, D.L.; Maddison, P.; Peschken, C.A.; Jacobsen, S.; Askanase, A.; Theriault, C.; Thompson, K.; Farewell, V. The frequency and outcome of lupus nephritis: Results from an international inception cohort study.
Rheumatology, 2016,
55(2), 252-262.
[
http://dx.doi.org/10.1093/rheumatology/kev311] [PMID:
26342222]
[11]
Dziedziejko, V.; Taheri, M. Exploring the role of non-coding rnas in the pathophysiology of systemic lupus erythematosus. Int. J. Mol. Sci., 2020, 10, 5050.
[18]
Zhang, L.; Zhang, X.; Si, F. MicroRNA-124 represents a novel diagnostic marker in human lupus nephritis and plays an inhibitory effect on the growth and inflammation of renal mesangial cells by targeting TRAF6. Int. J. Clin. Exp. Pathol., 2019, 12(5), 1578-1588.
[19]
Tangtanatakul, P.; Klinchanhom, S.; Sodsai, P.; Sutichet, T.; Promjeen, C.; Avihingsanon, Y.; Hirankarn, N. Down-regulation of let-7a and miR-21 in urine exosomes from lupus nephritis patients during disease flare. Am. J. Transl. Res., 2017, 9, 3796-3803.
[20]
Wang, W.; Gao, J.; Wang, F. MiR-663a/MiR-423-5p are involved in the pathogenesis of lupus nephritis via modulating the activation of NF-kappaB by targeting TNIP2. Am. J. Transl. Res., 2017, 9, 3796-3803.
[24]
Petri, M.; Orbai, A.M.; Alarcón, G.S.; Gordon, C.; Merrill, J.T.; Fortin, P.R.; Bruce, I.N.; Isenberg, D.; Wallace, D.J.; Nived, O.; Sturfelt, G.; Ramsey-Goldman, R.; Bae, S.C.; Hanly, J.G.; Sánchez-Guerrero, J.; Clarke, A.; Aranow, C.; Manzi, S.; Urowitz, M.; Gladman, D.; Kalunian, K.; Costner, M.; Werth, V.P.; Zoma, A.; Bernatsky, S.; Ruiz-Irastorza, G.; Khamashta, M.A.; Jacobsen, S.; Buyon, J.P.; Maddison, P.; Dooley, M.A.; van Vollenhoven, R.F.; Ginzler, E.; Stoll, T.; Peschken, C.; Jorizzo, J.L.; Callen, J.P.; Lim, S.S.; Fessler, B.J.; Inanc, M.; Kamen, D.L.; Rahman, A.; Steinsson, K.; Franks, A.G., Jr; Sigler, L.; Hameed, S.; Fang, H.; Pham, N.; Brey, R.; Weisman, M.H.; McGwin, G., Jr; Magder, L.S. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus.
Arthritis Rheum., 2012,
64(8), 2677-2686.
[
http://dx.doi.org/10.1002/art.34473] [PMID:
22553077]
[27]
Koukos, G.; Polytarchou, C.; Kaplan, J.L.; Morley-Fletcher, A.; Gras-Miralles, B.; Kokkotou, E.; Baril-Dore, M.; Pothoulakis, C.; Winter, H.S.; Ili-opoulos, D. MicroRNA-124 regulates STAT3 expression and is down-regulated in colon tis-sues of pediatric patients with ulcerative coli-tis. Gastroenterology, 2013, 145, 842-852.
[29]
Cristian, C. Urinary biomarkers in lupus nephritis. J. Transl., 2020, 3, 100042.
[32]
Shao, B.Y.; Zhang, S.F.; Li, H.D.; Meng, X.M.; Chen, H.Y. Epigenetics and inflammation in diabetic nephropathy. Front. Physiol., 2021, 12, 649587.
[33]
Sjöwall, C.; Zickert, A.; Skogh, T.; Wetterö, J.; Gunnarsson, I. Serum levels of autoantibodies against C-reactive protein correlate with renal disease activity and response to therapy in lupus nephritis. Arthritis Research &. Therapy, 2009, 11(6), R188.