[1]
Miran, M.; Amirshahrokhi, K.; Ajanii, Y.; Zadali, R.; Rutter, M.W.; Enayati, A. Chemical composition, traditional use in medicine,
and pharmacological activities of boswellia sacra flueck; Evidence-based Complementary and Alternative Medicine. Hindawi Limited, 2022, Vol. 2022
[9]
Lyketsos, C.G.; Carrillo, M.C.; Ryan, J.M.; Khachaturian, A.S.; Trzepacz, P.; Amatniek, J. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimer’s & dementia, 2011, 7, 532-539.
[10]
Harrison, C.; Sakai, K.; Johnston, D.; Holmes, C.; Boche, D.; Nicoll, J. Capillary angiopathy and aquaporin-4 after Aβ immunisation in Alzheimer’s disease: Potential relevance to Amyloid-Related Imaging Abnormalities. medRxiv, 2022.
[11]
Ahmed, H.; Haider, A.; Ametamey, S.M. N-Methyl-D-Aspartate (NMDA) receptor modulators: A patent review (2015-present). Expert Opin. Ther. Pat., 2020, 30(10), 743-767.
[14]
Yang, J-H; Huang, H-S; Zha, X-D; Chen, Q-F Research progress of pathogenesis, early diagnosis and therapy in Alzheimer's disease. Chinese Pharmacol Bull., 2007, 23, 847+848-850.
[16]
Walsh, S; Merrick, R; Richard, E; Nurock, S; Brayne, C. Lecanemab for Alzheimer’s disease. bmj, 2022, 379.
[21]
Vaz, M.; Silva, V.; Monteiro, C.; Silvestre, S.; Vaz, M.; Silvestre, S. Role of aducanumab in the treatment of alzheimer’s disease: Challenges and opportunities. Clin. Interv. Aging, 2022, 17, 797-810.
[22]
Honig, LS.; Reyderman, L.; Sabbagh, M.; Barakos, J.; Irizarry, M.; Dhadda, S ARIA in patients treated with lecanemab (BAN2401) in a phase 2 study in early Alzheimer’s disease. Alzheimers Dement., 2023, 9(1), e12377.
[23]
Wessels, AM; Dennehy, EB; Dowsett, SA Dickson, SP Meaningful Clinical Changes in Alzheimer’s Disease Measured With the iADRS and Illustrated Using the Donanemab TRAILBLAZER-ALZ Study Findings. Neurol. Clin. Pract., 2023, 13(2), e200127.
[24]
Lo, AC; Duggan, C.; Mancini, M.; Wang, H.; Shcherbinin, S.; Phase, I.I. NAVIGATE-AD study) Results of LY3202626 Effects on Patients with Mild Alzheimer’s Disease Dementia. J. Alzheimers Dis. Rep., 2021, 5(1), 321-336.
[37]
Menu, A. A review on the green synthesis of benzimidazole derivatives and their pharmacological activities. Catalysts, 2023, 13(2), 392.
[41]
Özkay, Y.; Özkay, Ü.D. Acetylcholine esterase inhibitory potential of some benzimidazole derivatives. Eur Int J Sci Technol., 2014, 3(7), 115-120.
[44]
Gouras, G.K.; Olsson, T.T.; Hansson, O. β-amyloid Peptides and
Amyloid Plaques in Alzheimer’s Disease. In: Neurotherapeutics; Springer: New York, 2015; 12, pp. 3-11.
[51]
Blokland, A. Brain research reviews acetylcholine: A neurotransmitter for learning and memory? Brain Res. Brain Res. Rev., 1996, 21.
[53]
Lombardo, S.; Maskos, U. Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment. In: Neuropharmacology; Elsevier Ltd, 2015; 96, pp. 255-262.
[62]
Masuyer, G.; Yates, C.J.; Sturrock, E.D.; Acharya, K.R. Angiotensin-I converting enzyme (ACE): Structure, biological roles, and
molecular basis for chloride ion dependence. In: Biological Chemistry; Walter de Gruyter GmbH, 2014; pp. 1135-1149.
[65]
Balu, D.; Karstens, A.J.; Loukenas, E.; Maldonado Weng, J.; York, J.M.; Valencia-Olvera, A.C. The role of APOE in transgenic mouse models of AD.Neuroscience Letters; Elsevier Ireland Ltd, 2019, p. 707.
[66]
Genin, E.; Hannequin, D.; Wallon, D.; Sleegers, K.; Hiltunen, M.; Combarros, O.; Bullido, M.J.; Engelborghs, S.; De Deyn, P.; Berr, C.; Pasquier, F.; Dubois, B.; Tognoni, G.; Fiévet, N.; Brouwers, N.; Bettens, K.; Arosio, B.; Coto, E.; Del Zompo, M.; Mateo, I.; Epelbaum, J.; Frank-Garcia, A.; Helisalmi, S.; Porcellini, E.; Pilotto, A.; Forti, P.; Ferri, R.; Scarpini, E.; Siciliano, G.; Solfrizzi, V.; Sorbi, S.; Spalletta, G.; Valdivieso, F.; Vepsäläinen, S.; Alvarez, V.; Bosco, P.; Mancuso, M.; Panza, F.; Nacmias, B.; Bossù, P.; Hanon, O.; Piccardi, P.; Annoni, G.; Seripa, D.; Galimberti, D.; Licastro, F.; Soininen, H.; Dartigues, J-F.; Kamboh, M.I.; Van Broeckhoven, C.; Lambert, J.C.; Amouyel, P.; Campion, D. APOE and Alzheimer disease: A major gene with semi-dominant inheritance.
Mol. Psychiatry, 2011,
16(9), 903-907.
[
http://dx.doi.org/10.1038/mp.2011.52] [PMID:
21556001]
[70]
Gao, L.; Zhang, Y.; Sterling, K.; Song, W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potentialTranslational Neurodegeneration; BioMed Central Ltd, 2022, p. 11.
[71]
Lin, T.W.; Harward, S.C.; Huang, Y.Z.; McNamara, J.O. Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy. In: Neuropharmacology; Elsevier Ltd, 2020. 167
[76]
Sharma, P.; Tripathi, M.K.; Shrivastava, S.K. Cholinesterase as a target for drug development in alzheimer’s disease. Methods Mol. Biol., 2020, 2089, 257-286.
[85]
Pariyar, R.; Jungwon, S. The Neuroprotective effect of DPP4 inhibitor in in-vitro and in-vivo neurodegenerative disease models. Int. J. Mol. Sci., 2019, 23(4), 2388.
[94]
Jo, S.; Yarishkin, O.; Hwang, Y.J.; Chun, Y.E.; Park, M.; Woo, D.H. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease; Nature Medicine. Nature Publishing Group, 2014, 20, 886-896.
[98]
Butterfield, D.A.; Pocernich, C.B. The glutamatergic system and alzheimer’s disease therapeutic implications. CNS Drugs, 2003, 17(9), 641-652.
[102]
Ma, T. GSK3 in Alzheimer’s disease: Mind the isoforms. J. Alzheimers Diseases , 2014, 39, 707-710.
[105]
Saeedi Saravi, S.S.; Saeedi Saravi, S.S.; Arefidoust, A.; Dehpour, A.R. The beneficial effects of HMG-CoA reductase inhibitors in the processes of neurodegeneration. In: Metabolic Brain Disease; Springer: New York, 2017; 32, pp. 949-965.
[142]
Neuen, BL; Young, T; Heerspink, HJL; Neal, B; Perkovic, V; Billot, L SGLT2 inhibitors for the prevention of kidney failure in
patients with type 2 diabetes: A systematic review and metaanalysis. lancet Diabetes Endocrinol., 2019, 7(11), 845-854.
[149]
Quadros Gomes, BA; Bastos Silva, JP; Rodrigues Romeiro, CF; dos Santos, SM; Rodrigues, CA; Gonçalves, PR Neuroprotective
mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1. Oxid Med Cell Longev., 2018, 2018