Central Nervous System Agents in Medicinal Chemistry

Author(s): Sania Grover, Raj Kumar Narang and Shamsher Singh*

DOI: 10.2174/0118715249267700231116053516

DownloadDownload PDF Flyer Cite As
GABA-transaminase: A Key Player and Potential Therapeutic Target for Neurological Disorders

Page: [57 - 67] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Neurological disorders such as epilepsy, autism, Huntington's disease, multiple sclerosis, and Alzheimer's disease alter brain functions like cognition, mood, movements, and language, severely compromising the well-being of persons, suffering from their negative effects. The neurotransmitters (GABA, glutamate, norepinephrine, dopamine) are found to be involved in neuronal signaling and neurotransmission. GABA, a "commanding neurotransmitter" is directly or indirectly associated with various neurological disorders. GABA is metabolized to succinic semialdehyde by a mitochondrial gamma-aminobutyric acid-transaminase (GABA-T) enzyme. Therefore, the alterations in the GABA performance in the distinct regions of the brain via GABA-T overstimulation or inhibition would play a vital role in the pathogenesis of various neurological disorders. This review emphasizes the leading participation of GABA-T in neurological disorders like Huntington's disease, epilepsy, autism, Alzheimer's disease, and multiple sclerosis. In Huntington's disease, epilepsy, and multiple sclerosis, the surfeited performance of GABA-T results in diminished levels of GABA, whereas in autism, the subsidence of GABA-T activity causes the elevation in GABA contents, which is responsible for behavioral changes in these disorders. Therefore, GABA-T inhibitors (in Huntington's disease, epilepsy, and multiple sclerosis) or agonists (in autism) can be used therapeutically. In the context of Alzheimer's disease, some researchers favor the stimulation of GABA-T activity whereas some disagree with it. Therefore, the activity of GABA-T concerning Alzheimer's disease is still unclear. In this way, studies of GABA-T enzymatic activity in contrast to neurological disorders could be undertaken to understand and be considered a therapeutic target for several GABA-ergic CNS diseases.

Keywords: GABA, GABA-T, epilepsy, autism, huntington's disease, multiple sclerosis, alzheimer's disease.

Graphical Abstract

[1]
Li, H.; Cao, Y. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids, 2010, 39(5), 1107-1116.
[http://dx.doi.org/10.1007/s00726-010-0582-7] [PMID: 20364279]
[2]
Sarasa, S.B.; Mahendran, R.; Muthusamy, G.; Thankappan, B.; Selta, D.R.F.; Angayarkanni, J. A brief review on the non-protein amino acid, gamma-amino butyric acid (GABA): its production and role in microbes. Curr. Microbiol., 2020, 77(4), 534-544.
[http://dx.doi.org/10.1007/s00284-019-01839-w] [PMID: 31844936]
[3]
National Center for Biotechnology Information. PubChem Compound Summary for CID 119, Gamma-Aminobutyric Acid. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Gamma-Aminobutyric-Acid (Accessed on: 24 August, 2023).
[4]
Boonstra, E.; de Kleijn, R.; Colzato, L.S.; Alkemade, A.; Forstmann, B.U.; Nieuwenhuis, S. Neurotransmitters as food supplements: The effects of GABA on brain and behavior. Front. Psychol., 2015, 6, 1520.
[http://dx.doi.org/10.3389/fpsyg.2015.01520] [PMID: 26500584]
[5]
Jewett, B.E.; Sharma, S. Physiology, GABA. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2018.
[6]
Kuffler, S.W. Mechanisms of activation and motor control of stretch receptors in lobster and crayfish. J. Neurophysiol., 1954, 17(6), 558-574.
[http://dx.doi.org/10.1152/jn.1954.17.6.558] [PMID: 13212426]
[7]
Florey, E. An inhibitory and an excitatory factor of mammalian central nervous system, and their action of a single sensory neuron. Arch. Int. Physiol., 1954, 62(1), 33-53.
[http://dx.doi.org/10.3109/13813455409145367] [PMID: 13149232]
[8]
Roberts, E.; Frankel, S. γ-aminobutyric acid in brain: Its formation from glutamic acid. J. Biol. Chem., 1950, 187(1), 55-63.
[http://dx.doi.org/10.1016/S0021-9258(19)50929-2] [PMID: 14794689]
[9]
Sherif, F.M.; Saleem Ahmed, S. Basic aspects of GABA-transaminase in neuropsychiatric disorders. Clin. Biochem., 1995, 28(2), 145-154.
[http://dx.doi.org/10.1016/0009-9120(94)00074-6] [PMID: 7628073]
[10]
Sherif, F.M. GABA-Transaminase in brain and blood platelets: Basic and clinical aspects. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1994, 18(8), 1219-1233.
[http://dx.doi.org/10.1016/0278-5846(94)90089-2] [PMID: 7863013]
[11]
Seo, H.S.; Jeong, E.K.; Choi, S.; Kwon, Y.; Park, H.J.; Kim, I. Changes of neurotransmitters in youth with internet and smartphone addiction: A comparison with healthy controls and changes after cognitive behavioral therapy. AJNR Am. J. Neuroradiol., 2020, 41(7), 1293-1301.
[http://dx.doi.org/10.3174/ajnr.A6632] [PMID: 32616578]
[12]
Solas, M.; Puerta, E.; Ramirez, M. Treatment options in alzheimer s disease: The GABA story. Curr. Pharm. Des., 2015, 21(34), 4960-4971.
[http://dx.doi.org/10.2174/1381612821666150914121149] [PMID: 26365140]
[13]
Bown, A.W.; Shelp, B.J. The Metabolism and Functions of [gamma]-Aminobutyric Acid. Plant Physiol., 1997, 115(1), 1-5.
[http://dx.doi.org/10.1104/pp.115.1.1] [PMID: 12223787]
[14]
Pearl, P.L.; Gibson, K.M. Clinical aspects of the disorders of GABA metabolism in children. Curr. Opin. Neurol., 2004, 17(2), 107-113.
[http://dx.doi.org/10.1097/00019052-200404000-00005] [PMID: 15021235]
[15]
Kilb, W.; Kirischuk, S. GABA release from astrocytes in health and disease. Int. J. Mol. Sci., 2022, 23(24), 15859.
[http://dx.doi.org/10.3390/ijms232415859] [PMID: 36555501]
[16]
Lee, X.Y.; Tan, J.S.; Cheng, L.H. Gamma aminobutyric acid (GABA) enrichment in plant-based food–A mini review. Food Rev. Int., 2022, 1-22.
[http://dx.doi.org/10.1080/87559129.2022.2097257]
[17]
Neff, R.; Kambara, K.; Bertrand, D. Ligand gated receptor interactions: A key to the power of neuronal networks. Biochem. Pharmacol., 2021, 190, 114653.
[http://dx.doi.org/10.1016/j.bcp.2021.114653] [PMID: 34129858]
[18]
Tang, B.L. Amyloid precursor protein (APP) and GABAergic neurotransmission. Cells, 2019, 8(6), 550.
[http://dx.doi.org/10.3390/cells8060550] [PMID: 31174368]
[19]
Jayakumar, A.R.; Sujatha, R.; Paul, V.; Asokan, C.; Govindasamy, S.; Jayakumar, R. Role of nitric oxide on GABA, glutamic acid, activities of GABA-T and GAD in rat brain cerebral cortex. Brain Res., 1999, 837(1-2), 229-235.
[http://dx.doi.org/10.1016/S0006-8993(99)01692-3] [PMID: 10434007]
[20]
Blancquaert, L.; Baba, S.P.; Kwiatkowski, S.; Stautemas, J.; Stegen, S.; Barbaresi, S.; Chung, W.; Boakye, A.A.; Hoetker, J.D.; Bhatnagar, A.; Delanghe, J.; Vanheel, B.; Veiga-da-Cunha, M.; Derave, W.; Everaert, I. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by β-alanine transamination. J. Physiol., 2016, 594(17), 4849-4863.
[http://dx.doi.org/10.1113/JP272050] [PMID: 27062388]
[21]
Zuhra, K.; Augsburger, F.; Majtan, T.; Szabo, C. Cystathionine-β-synthase: Molecular regulation and pharmacological inhibition. Biomolecules, 2020, 10(5), 697.
[http://dx.doi.org/10.3390/biom10050697] [PMID: 32365821]
[22]
Morales, J.F.; Chuguransky, S.; Alberca, L.N.; Alice, J.I.; Goicoechea, S.; Ruiz, M.E.; Bellera, C.L.; Talevi, A. Positive predictive value surfaces as a complementary tool to assess the performance of virtual screening methods. Mini Rev. Med. Chem., 2020, 20(14), 1447-1460.
[http://dx.doi.org/10.2174/1871525718666200219130229] [PMID: 32072906]
[23]
Vega Rasgado, L.A.; Reyes, G.C.; Vega Díaz, F. Role of nitric oxide synthase on brain GABA transaminase activity and GABA levels. Acta Pharm., 2018, 68(3), 349-359.
[http://dx.doi.org/10.2478/acph-2018-0022] [PMID: 31259693]
[24]
Park, J.Y.; Lee, Y.; Lee, H.J.; Kwon, Y.S.; Chun, W. In silico screening of GABA aminotransferase inhibitors from the constituents of Valeriana officinalis by molecular docking and molecular dynamics simulation study. J. Mol. Model., 2020, 26(9), 228.
[http://dx.doi.org/10.1007/s00894-020-04495-1] [PMID: 32780180]
[25]
Wood, J.D.; Peesker, S.J.; Gorecki, D.K.J.; Tsui, D. Effect of L -cycloserine on brain GABA metabolism. Can. J. Physiol. Pharmacol., 1978, 56(1), 62-68.
[http://dx.doi.org/10.1139/y78-009] [PMID: 638858]
[26]
McManus, D.J.; Baker, G.B.; Martin, I.L.; Greenshaw, A.J.; McKenna, K.F. Effects of the antidepressant/antipanic drug phenelzine on GABA concentrations and GABA-transaminase activity in rat brain. Biochem. Pharmacol., 1992, 43(11), 2486-2489.
[http://dx.doi.org/10.1016/0006-2952(92)90331-C] [PMID: 1610412]
[27]
Valdizán, E.M.; Armijo, J.A. Effects of single and multiple increasing doses of vigabatrin on brain gaba metabolism and correlation with vigabatrin plasma concentration. Biochem. Pharmacol., 1992, 43(10), 2143-2150.
[http://dx.doi.org/10.1016/0006-2952(92)90173-G] [PMID: 1599502]
[28]
Hsu, Y.T.; Chang, Y.G.; Chern, Y. Insights into GABA A ergic system alteration in Huntington’s disease. Open Biol., 2018, 8(12), 180165.
[http://dx.doi.org/10.1098/rsob.180165] [PMID: 30518638]
[29]
Qureshi, F.H.; Qureshi, S.H.; Zia, T.; Khawaja, F. Huntington’s disease (HD): A brief review. European Journal of Public Health Studies, 2022, 5(1)
[http://dx.doi.org/10.46827/ejphs.v5i1.115]
[30]
Irfan, Z.; Khanam, S.; Karmakar, V.; Firdous, S.M.; El Khier, B.S.I.A.; Khan, I.; Rehman, M.U.; Khan, A. Pathogenesis of Huntington’s Disease: An emphasis on molecular pathways and prevention by natural remedies. Brain Sci., 2022, 12(10), 1389.
[http://dx.doi.org/10.3390/brainsci12101389] [PMID: 36291322]
[31]
Santarelli, S.; Londero, C.; Soldano, A.; Candelaresi, C.; Todeschini, L.; Vernizzi, L.; Bellosta, P. Drosophila melanogaster as a model to study autophagy in neurodegenerative diseases induced by proteinopathies. Front. Neurosci., 2023, 17, 1082047.
[http://dx.doi.org/10.3389/fnins.2023.1082047] [PMID: 37274187]
[32]
Deepa, S.; Rymbai, E.; Praveen, T.K.; Saravanan, J. Neuroprotective effects of farnesol on motor and cognitive impairment against 3-nitropropionic acid-induced Huntington’s disease. Thaiphesatchasan, 2021, 45(1), 16-23.
[33]
Schwarcz, R.; Bennett, J.P., Jr; Coyle, J.T. Inhibitors of GABA metabolism: Implications for Huntington’s disease. Ann. Neurol., 1977, 2(4), 299-303.
[http://dx.doi.org/10.1002/ana.410020407] [PMID: 152600]
[34]
Perry, T.L.; Wright, J.M.; Hansen, S.; MacLeod, P.M. Isoniazid therapy of Huntington disease. Neurology, 1979, 29(3), 370-375.
[http://dx.doi.org/10.1212/WNL.29.3.370] [PMID: 156313]
[35]
Hu, Y.Q.; Zhang, S.; Zhao, F.; Gao, C.; Feng, L.S.; Lv, Z.S.; Xu, Z.; Wu, X. Isoniazid derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 133, 255-267.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.002] [PMID: 28390957]
[36]
Khazipov, R. GABAergic synchronization in epilepsy. Cold Spring Harb. Perspect. Med., 2016, 6(2), a022764.
[http://dx.doi.org/10.1101/cshperspect.a022764] [PMID: 26747834]
[37]
Gernert, M.; Feja, M. Bypassing the blood–brain barrier: Direct intracranial drug delivery in epilepsies. Pharmaceutics, 2020, 12(12), 1134.
[http://dx.doi.org/10.3390/pharmaceutics12121134] [PMID: 33255396]
[38]
Dutta, S.; Iyer, K.K.; Vanhatalo, S.; Breakspear, M.; Roberts, J.A. Mechanisms underlying pathological cortical bursts during metabolic depletion. Nat. Commun., 2023, 14(1), 4792.
[http://dx.doi.org/10.1038/s41467-023-40437-0] [PMID: 37553358]
[39]
Wang, F.; Xie, X.; Xing, X.; Sun, X. Excitatory synaptic transmission in ischemic stroke: A new outlet for classical neuroprotective strategies. Int. J. Mol. Sci., 2022, 23(16), 9381.
[http://dx.doi.org/10.3390/ijms23169381] [PMID: 36012647]
[40]
Treiman, D.M. GABAergic mechanisms in epilepsy. Epilepsia, 2001, 42(s3), 8-12.
[http://dx.doi.org/10.1046/j.1528-1157.2001.042suppl.3008.x] [PMID: 11520315]
[41]
Bradford, H.F. Glutamate, GABA and epilepsy. Prog. Neurobiol., 1995, 47(6), 477-511.
[http://dx.doi.org/10.1016/0301-0082(95)00030-5] [PMID: 8787032]
[42]
Moto, F.C.O.; Arsa’a, A.; Ngoupaye, G.T.; Taiwe, G.S.; Njapdounke, J.S.K.; Kandeda, A.K.; Nkantchoua, G.C.N.; Omam Omam, J.P.; Pale, S.; Kouemou, N.E.; Ayissi Mbomo, E.R.; Pahaye, D.B.; Ojong, L.; Mairara, V.; Ngo Bum, E. Anxiolytic and antiepileptic properties of the aqueous extract of Cissus quadrangularis (Vitaceae) in mice pilocarpine model of epilepsy. Front. Pharmacol., 2018, 9, 751.
[http://dx.doi.org/10.3389/fphar.2018.00751] [PMID: 30065650]
[43]
Ängehagen, M.; Ben-Menachem, E.; Rönnbäck, L.; Hansson, E. Novel mechanisms of action of three antiepileptic drugs, vigabatrin, tiagabine, and topiramate. Neurochem. Res., 2003, 28(2), 333-340.
[http://dx.doi.org/10.1023/A:1022393604014] [PMID: 12608706]
[44]
Lanctôt, K.L.; Amatniek, J.; Ancoli-Israel, S.; Arnold, S.E.; Ballard, C.; Cohen-Mansfield, J.; Ismail, Z.; Lyketsos, C.; Miller, D.S.; Musiek, E.; Osorio, R.S.; Rosenberg, P.B.; Satlin, A.; Steffens, D.; Tariot, P.; Bain, L.J.; Carrillo, M.C.; Hendrix, J.A.; Jurgens, H.; Boot, B. Neuropsychiatric signs and symptoms of Alzheimer’s disease: New treatment paradigms. Alzheimers Dement., 2017, 3(3), 440-449.
[http://dx.doi.org/10.1016/j.trci.2017.07.001] [PMID: 29067350]
[45]
Marcinkowska, M.; Śniecikowska, J.; Fajkis, N.; Paśko, P.; Franczyk, W.; Kołaczkowski, M. Management of dementia-related psychosis, agitation and aggression: A review of the pharmacology and clinical effects of potential drug candidates. CNS Drugs, 2020, 34(3), 243-268.
[http://dx.doi.org/10.1007/s40263-020-00707-7] [PMID: 32052375]
[46]
Paudel, Y.N.; Angelopoulou, E.; Jones, N.C.; O’Brien, T.J.; Kwan, P.; Piperi, C.; Othman, I.; Shaikh, M.F. Tau related pathways as a connecting link between epilepsy and Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(10), 4199-4212.
[http://dx.doi.org/10.1021/acschemneuro.9b00460] [PMID: 31532186]
[47]
Li, Y.; Sun, H.; Chen, Z.; Xu, H.; Bu, G.; Zheng, H. Implications of GABAergic neurotransmission in Alzheimer’s disease. Front. Aging Neurosci., 2016, 8, 31.
[http://dx.doi.org/10.3389/fnagi.2016.00031] [PMID: 26941642]
[48]
Imbimbo, B.P.; Lombard, J.; Pomara, N. Pathophysiology of Alzheimer’s disease. Neuroimaging Clin. N. Am., 2005, 15(4), 727-753. ix.
[http://dx.doi.org/10.1016/j.nic.2005.09.009] [PMID: 16443487]
[49]
Sharma, K.; Pradhan, S.; Duffy, L.K.; Yeasmin, S.; Bhattarai, N.; Schulte, M.K. Role of receptors in relation to plaques and tangles in Alzheimer’s disease pathology. Int. J. Mol. Sci., 2021, 22(23), 12987.
[http://dx.doi.org/10.3390/ijms222312987] [PMID: 34884789]
[50]
Pardillo-Díaz, R.; Pérez-García, P.; Castro, C.; Nunez-Abades, P.; Carrascal, L. Oxidative stress as a potential mechanism underlying membrane hyperexcitability in neurodegenerative diseases. Antioxidants, 2022, 11(8), 1511.
[http://dx.doi.org/10.3390/antiox11081511] [PMID: 36009230]
[51]
Calvo-Flores Guzmán, B.; Vinnakota, C.; Govindpani, K.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. The GABAergic system as a therapeutic target for Alzheimer’s disease. J. Neurochem., 2018, 146(6), 649-669.
[http://dx.doi.org/10.1111/jnc.14345] [PMID: 29645219]
[52]
Louzada, P.R.; Lima, A.C.P.; Mendonca-Silva, D.L.; Noël, F.; De Mello, F.G.; Ferreira, S.T. Taurine prevents the neurotoxicity of β-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders. FASEB J., 2004, 18(3), 511-518.
[http://dx.doi.org/10.1096/fj.03-0739com] [PMID: 15003996]
[53]
Manzano, S.; Agüera, L.; Aguilar, M.; Olazarán, J. A review on tramiprosate (Homotaurine) in alzheimer’s disease and other neurocognitive disorders. Front. Neurol., 2020, 11, 614.
[http://dx.doi.org/10.3389/fneur.2020.00614] [PMID: 32733362]
[54]
Caltagirone, C.; Ferrannini, L.; Marchionni, N.; Nappi, G.; Scapagnini, G.; Trabucchi, M. The potential protective effect of tramiprosate (homotaurine) against Alzheimer’s disease: A review. Aging Clin. Exp. Res., 2012, 24(6), 580-587.
[http://dx.doi.org/10.3275/8585] [PMID: 22961121]
[55]
Lee, B.Y.; Ban, J.Y.; Seong, Y.H. Chronic stimulation of GABAA receptor with muscimol reduces amyloid β protein (25–35)-induced neurotoxicity in cultured rat cortical cells. Neurosci. Res., 2005, 52(4), 347-356.
[http://dx.doi.org/10.1016/j.neures.2005.04.008] [PMID: 15896866]
[56]
Winkelman, M.J.; Szabo, A.; Frecska, E. The potential of psychedelics for the treatment of Alzheimer’s disease and related dementias. Eur. Neuropsychopharmacol., 2023, 76, 3-16.
[http://dx.doi.org/10.1016/j.euroneuro.2023.07.003] [PMID: 37451163]
[57]
Shao, H.; Zhang, Y.; Dong, Y.; Yu, B.; Xia, W.; Xie, Z. Chronic treatment with anesthetic propofol improves cognitive function and attenuates caspase activation in both aged and Alzheimer’s disease transgenic mice. J. Alzheimers Dis., 2014, 41(2), 499-513.
[http://dx.doi.org/10.3233/JAD-132792] [PMID: 24643139]
[58]
Aisen, P.S.; Gauthier, S.; Ferris, S.H.; Saumier, D.; Haine, D.; Garceau, D.; Duong, A.; Suhy, J.; Oh, J.; Lau, W.C.; Sampalis, J. Tramiprosate in mild-to-moderate Alzheimer’s disease-a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch. Med. Sci., 2011, 1(1), 102-111.
[http://dx.doi.org/10.5114/aoms.2011.20612] [PMID: 22291741]
[59]
Zhang, Y.; Shan, G.J.; Zhang, Y.X.; Cao, S.J.; Zhu, S.N.; Li, H.J.; Ma, D.; Wang, D.X. Propofol compared with sevoflurane general anaesthesia is associated with decreased delayed neurocognitive recovery in older adults. Br. J. Anaesth., 2018, 121(3), 595-604.
[http://dx.doi.org/10.1016/j.bja.2018.05.059] [PMID: 30115258]
[60]
Zhang, Y.; Zhen, Y.; Dong, Y.; Xu, Z.; Yue, Y.; Golde, T.E.; Tanzi, R.E.; Moir, R.D.; Xie, Z. Anesthetic propofol attenuates the isoflurane-induced caspase-3 activation and Aβ oligomerization. PLoS One, 2011, 6(11), e27019.
[http://dx.doi.org/10.1371/journal.pone.0027019] [PMID: 22069482]
[61]
Zhang, Y.; Shao, H.; Dong, Y.; Swain, C.A.; Yu, B.; Xia, W.; Xie, Z. Chronic treatment with anesthetic propofol attenuates β-amyloid protein levels in brain tissues of aged mice. Transl. Neurodegener., 2014, 3(1), 8.
[http://dx.doi.org/10.1186/2047-9158-3-8] [PMID: 24725331]
[62]
Sherif, F.; Gottfries, C.G.; Alafuzoff, I.; Oreland, L. Brain gamma aminobutyrate aminotransferase (GABA-T) and monoamine oxidase (MAO) in patients with Alzheimer’s disease. J. Neural Transm. Park. Dis. Dement. Sect., 1992, 4(3), 227-240.
[http://dx.doi.org/10.1007/BF02260906] [PMID: 1627256]
[63]
Aoyagi, T.; Wada, T.; Kojima, F.; Nagai, M.; Harada, S.; Takeuchi, T.; Hirokawa, K. Increase in aminobutyrate aminotransferase and cholineacetyltransferase in cerebrum of aged rats. Chem. Pharm. Bull., 1990, 38(6), 1750-1752.
[http://dx.doi.org/10.1248/cpb.38.1750] [PMID: 2208390]
[64]
Paudel, R.; Raj, K.; Gupta, Y.K.; Singh, S. Oxiracetam and zinc ameliorates autism-like symptoms in propionic acid model of rats. Neurotox. Res., 2020, 37(4), 815-826.
[http://dx.doi.org/10.1007/s12640-020-00169-1] [PMID: 32026359]
[65]
Samsam, M.; Ahangari, R.; Naser, S.A. Pathophysiology of autism spectrum disorders: Revisiting gastrointestinal involvement and immune imbalance. World J. Gastroenterol., 2014, 20(29), 9942-9951.
[http://dx.doi.org/10.3748/wjg.v20.i29.9942] [PMID: 25110424]
[66]
McDougle, C.J.; Erickson, C.A.; Stigler, K.A.; Posey, D.J. Neurochemistry in the pathophysiology of autism. J. Clin. Psychiatry, 2005, 66(Suppl. 10), 9-18.
[PMID: 16401145]
[67]
Coghlan, S.; Horder, J.; Inkster, B.; Mendez, M.A.; Murphy, D.G.; Nutt, D.J. GABA system dysfunction in autism and related disorders: From synapse to symptoms. Neurosci. Biobehav. Rev., 2012, 36(9), 2044-2055.
[http://dx.doi.org/10.1016/j.neubiorev.2012.07.005] [PMID: 22841562]
[68]
Cohen, B.I. Use of a GABA-transaminase agonist for treatment of infantile autism. Med. Hypotheses, 2002, 59(1), 115-116.
[http://dx.doi.org/10.1016/S0306-9877(02)00157-3] [PMID: 12160695]
[69]
van Kooten, I.A.J.; Hof, P.R.; van Engeland, H.; Steinbusch, H.W.M.; Patterson, P.H.; Schmitz, C. Autism: neuropathology, alterations of the GABAergic system, and animal models. Int. Rev. Neurobiol., 2005, 71, 1-26.
[http://dx.doi.org/10.1016/S0074-7742(05)71001-1] [PMID: 16512344]
[70]
Mirza, R.; Sharma, B. A selective peroxisome proliferator-activated receptor-γ agonist benefited propionic acid induced autism-like behavioral phenotypes in rats by attenuation of neuroinflammation and oxidative stress. Chem. Biol. Interact., 2019, 311, 108758.
[http://dx.doi.org/10.1016/j.cbi.2019.108758] [PMID: 31348919]
[71]
Al-Lahham, S.H.; Peppelenbosch, M.P.; Roelofsen, H.; Vonk, R.J.; Venema, K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2010, 1801(11), 1175-1183.
[http://dx.doi.org/10.1016/j.bbalip.2010.07.007]
[72]
Tiwari, A.; Khera, R.; Rahi, S.; Mehan, S.; Makeen, H.A.; Khormi, Y.H.; Rehman, M.U.; Khan, A. Neuroprotective effect of α-mangostin in ameliorating propionic acid-induced experimental model of autism in Wistar rats. Brain Sci., 2021, 11(3), 288.
[http://dx.doi.org/10.3390/brainsci11030288] [PMID: 33669120]
[73]
Abdelli, L.S.; Samsam, A.; Naser, S.A. Propionic acid induces gliosis and neuro-inflammation through modulation of PTEN/AKT pathway in autism spectrum disorder. Sci. Rep., 2019, 9(1), 8824.
[http://dx.doi.org/10.1038/s41598-019-45348-z] [PMID: 31217543]
[74]
Morland, C.; Frøland, A.S.; Pettersen, M.N.; Storm-Mathisen, J.; Gundersen, V.; Rise, F.; Hassel, B. Propionate enters GABAergic neurons, inhibits GABA transaminase, causes GABA accumulation and lethargy in a model of propionic acidemia. Biochem. J., 2018, 475(4), 749-758.
[http://dx.doi.org/10.1042/BCJ20170814] [PMID: 29339464]
[75]
Dhossche, D.; Applegate, H.; Abraham, A.; Maertens, P.; Bland, L.; Bencsath, A.; Martinez, J. Elevated plasma gamma-aminobutyric acid (GABA) levels in autistic youngsters: Stimulus for a GABA hypothesis of autism. Med. Sci. Monit., 2002, 8(8), PR1-PR6.
[PMID: 12165753]
[76]
Dobson, R.; Giovannoni, G. Multiple sclerosis-a review. Eur. J. Neurol., 2019, 26(1), 27-40.
[http://dx.doi.org/10.1111/ene.13819] [PMID: 30300457]
[77]
Pukoli, D.; Vécsei, L. Smouldering Lesion in MS: Microglia, lymphocytes and pathobiochemical mechanisms. Int. J. Mol. Sci., 2023, 24(16), 12631.
[http://dx.doi.org/10.3390/ijms241612631] [PMID: 37628811]
[78]
Kapoor, T.; Mehan, S. Neuroprotective methodologies in the treatment of multiple sclerosis current status of clinical and pre-clinical findings. Curr. Drug Discov. Technol., 2021, 18(1), 31-46.
[http://dx.doi.org/10.2174/1570163817666200207100903] [PMID: 32031075]
[79]
Sospedra, M.; Martin, R. Immunology of multiple sclerosis. Annu. Rev. Immunol., 2005, 23(1), 683-747.
[http://dx.doi.org/10.1146/annurev.immunol.23.021704.115707] [PMID: 15771584]
[80]
Bhandage, A.K.; Jin, Z.; Korol, S.V.; Shen, Q.; Pei, Y.; Deng, Q.; Espes, D.; Carlsson, P.O.; Kamali-Moghaddam, M.; Birnir, B. GABA regulates release of inflammatory cytokines from peripheral blood mononuclear cells and CD4+ T cells and is immunosuppressive in type 1 diabetes. EBioMedicine, 2018, 30, 283-294.
[http://dx.doi.org/10.1016/j.ebiom.2018.03.019] [PMID: 29627388]
[81]
Stamoula, E.; Siafis, S.; Dardalas, I.; Ainatzoglou, A.; Matsas, A.; Athanasiadis, T.; Sardeli, C.; Stamoulas, K.; Papazisis, G. Antidepressants on multiple sclerosis: A review of in vitro and in vivo models. Front. Immunol., 2021, 12, 677879.
[http://dx.doi.org/10.3389/fimmu.2021.677879] [PMID: 34093579]
[82]
Benson, C.A.; Wong, G.; Tenorio, G.; Baker, G.B.; Kerr, B.J. The MAO inhibitor phenelzine can improve functional outcomes in mice with established clinical signs in experimental autoimmune encephalomyelitis (EAE). Behav. Brain Res., 2013, 252, 302-311.
[http://dx.doi.org/10.1016/j.bbr.2013.06.019] [PMID: 23777648]
[83]
Ishikawa, A.; Ishiguro, S.I.; Tamai, M. Changes in GABA metabolism in streptozotocin-induced diabetic rat retinas. Curr. Eye Res., 1996, 15(1), 63-71.
[http://dx.doi.org/10.3109/02713689609017612] [PMID: 8631205]
[84]
Lingeshwar, P.; Kaur, G.; Singh, N.; Singh, S.; Mishra, A.; Shukla, S.; Ramakrishna, R.; Laxman, T.S.; Bhatta, R.S.; Siddiqui, H.H.; Hanif, K. A study on the involvement of GABA-transaminase in MCT induced pulmonary hypertension. Pulm. Pharmacol. Ther., 2016, 36, 10-21.
[http://dx.doi.org/10.1016/j.pupt.2015.11.002] [PMID: 26608704]
[85]
Ferenci, P.; Jacobs, R.; Pappas, S.C.; Schafer, D.F.; Jones, E.A. Enzymes of cerebral GABA metabolism and synaptosomal GABA uptake in acute liver failure in the rabbit: Evidence for decreased cerebral GABA-transaminase activity. J. Neurochem., 1984, 42(5), 1487-1490.
[http://dx.doi.org/10.1111/j.1471-4159.1984.tb02816.x] [PMID: 6707648]
[86]
Sawynok, J. Gabaergic mechanisms in antinociception. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1984, 8(4-6), 581-586.
[http://dx.doi.org/10.1016/0278-5846(84)90018-6] [PMID: 6085175]