Abstract
The Knoevenagel condensation is a powerful and primary step for the development
of carbon-carbon bond transformations. These condensations offer versatile products/
intermediates for diverse uses in polymers, cosmetics, chemical industries, and medicinal
chemistry. Various homogenous and heterogenous catalysts have been found to
promote the Knoevenagel condensation reaction, both environmentally and economically.
Due to their attractive use in the production of pharmaceutical drugs, they are proven to be
the main force that drives the synthesis involving numerous multi-component and multistep
reactions. The present study, therefore, aims to summarise reported Knoevenagel
condensation reactions using metal-free catalysts resulting in pharmaceutically useful
compounds with anti-cancer, anti-tumor, anti-oxidant, anti-malarial, anti-diabetic, and anti-
bacterial activities. By considering factors like their structure-activity relationships
(SARs), the reaction conditions, and the steps involved, as well as the advantages and limitations
of the particular approach, we also provide a general framework and direction in
order to achieve superior characteristics of the catalyst.
Zhang Z.; Nie X.; Wang F.; Chen G.; Huang W.Q.; Xia L.; Zhang W.J.; Hao Z.Y.; Hong C.Y.; Wang L.H.; You Y.Z.; Rhodanine-based Knoevenagel reaction and ring-opening polymerization for efficiently constructing multicyclic polymers. Nat Commun 2020,11(1),3654
10.1038/s41467-020-17474-0
32694628
Long N.; Le Gresley A.; Wren S.P.; Thiazolidinediones: An in-depth study of their synthesis and application to medicinal chemistry in the treatment of diabetes mellitus. ChemMedChem 2021,16(11),1717-1736
10.1002/cmdc.202100177
33844475
Bora D.; Kaushal A.; Shankaraiah N.; Anticancer potential of spirocompounds in medicinal chemistry: A pentennial expedition. Eur J Med Chem 2021,215,113263
10.1016/j.ejmech.2021.113263
33601313
Dhakshinamoorthy A.; Jacob M.; Vignesh N.S.; Varalakshmi P.; Pristine and modified chitosan as solid catalysts for catalysis and biodiesel production: A minireview. Int J Biol Macromol 2021,167,807-833
10.1016/j.ijbiomac.2020.10.216
33144253
Veerakumar P; Thanasekaran P; Subburaj T; Lin K-C; A metal-free carbon-based catalyst: An overview and directions for future research. C 2018,4(4),54
10.3390/c4040054
Johari S.; Johan M.R.; Khaligh N.G.; An overview of metal-free sustainable nitrogen-based catalytic knoevenagel condensation reaction. Org Biomol Chem 2022,20(11),2164-2186
10.1039/D2OB00135G
35225313
Badiger K.B.; Kamanna K.; Knoevenagel condensation reaction catalysed by agro-waste extract as a greener solvent catalyst. Organic Communications 2021,14(1),81-91
10.25135/acg.oc.99.21.01.1948
Tokala R.; Bora D.; Shankaraiah N.; Contribution of knoevenagel condensation products toward the development of anticancer agents: An updated review. ChemMedChem 2022,17(8),e202100736
10.1002/cmdc.202100736
35226798
Heravi MM.; Janati F.; Zadsirjan, V Applications of Knoevenagel condensation reaction in the total synthesis of natural products. Monatshefte Für Chemie - Chem. Mon 2020,151,439-482
10.1007/s00706-020-02586-6
Johari S.; Zaharani L.; Gorjian H.; Johan M.R.; Khaligh N.G.; A novel sublimable organic salt: Synthesis, characterization, thermal behavior, and catalytic activity for the synthesis of arylidene, heteroarylidene, and alkylidene malonates. Res Chem Intermed 2022,48(1),361-377
10.1007/s11164-021-04587-4
Hassanzadeh F.; Daneshvar N.; Shirini F.; Mamaghani M.; Introduction of a new bis-derivative of succinimide (Bis-Su) as a sustainable and efficient basic organo-catalyst for the synthesis of arylidene malononitrile and tetrahydrobenzo[b]pyran derivatives under green conditions. Res Chem Intermed 2020,46(11),4971-4984
10.1007/s11164-020-04235-3
van Schijndel J.; Canalle L.A.; Molendijk D.; Meuldijk J.; The green Knoevenagel condensation: solvent-free condensation of benzaldehydes. Green Chem Lett Rev 2017,10(4),404-411
10.1080/17518253.2017.1391881
Sahu P.K.; Sahu P.K.; Kaurav M.S.; Messali M.; Almutairi S.M.; Sahu P.L.; Agarwal D.D.; Metal-free construction of fused pyrimidines via consecutive C–C and C–N bond formation in water. ACS Omega 2018,3(11),15035-15042
10.1021/acsomega.8b01993
31458170
Sadjadi S.; Koohestani F.; Bentonite with high loading of ionic liquid: A potent non-metallic catalyst for the synthesis of dihydropyrimidinones. J Mol Liq 2020,319,114393
10.1016/j.molliq.2020.114393
Nayl A.A.; Arafa W.A.A.; Ahmed I.M.; Abd-Elhamid A.I.; El-Fakharany E.M.; Abdelgawad M.A.; Gomha S.M.; Ibrahim H.M.; Aly A.A.; Bräse S.; Mourad A.K.; Novel pyridinium based ionic liquid promoter for aqueous knoevenagel condensation: Green and efficient synthesis of new derivatives with their anticancer evaluation. Molecules 2022,27(9),2940
10.3390/molecules27092940
35566291
Smith E.L.; Abbott A.P.; Ryder K.S.; Deep eutectic solvents (DESs) and their applications. Chem Rev 2014,114(21),11060-11082
10.1021/cr300162p
25300631
Liu P.; Hao J.W.; Mo L.P.; Zhang Z.H.; Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances 2015,5(60),48675-48704
10.1039/C5RA05746A
Srivastava S.; Knoevenagel condensation and michael addition in bio‐renewable deep eutectic solvent: facile synthesis of a library of bis‐enol derivatives. ChemistrySelect 2020,5(2),799-803
10.1002/slct.201904806
Wang Y.; Yao Q.X.; He J.R.; Liang Z.H.; Li X.; Cheng H.; Li L-L.; L-proline-catalyzed Knoevenagel reaction promoted by choline chloride-based deep eutectic solvents. Biomass Convers Biorefin 2022,12(S1),87-93
10.1007/s13399-021-01747-9
Navudu R.; Mannem G.R.; Margani T.; Rao Vanga U.M.; Bollikolla H.B.; Synthesis, anticancer and antioxidant evaluation of some new 2-Aryl and 2-Pyrazole-2,3-dihydroquinazolin-4(1H)-ones. Asian J Chem 2016,28(6),1321-1324
10.14233/ajchem.2016.19676
Guchhait S.K.; Sisodiya S.; Saini M.; Shah Y.V.; Kumar G.; Daniel D.P.; Hura N.; Chaudhary V.; Synthesis of polyfunctionalized pyrroles via a tandem reaction of michael addition and intramolecular cyanide-mediated nitrile-to-nitrile condensation. J Org Chem 2018,83(10),5807-5815
10.1021/acs.joc.8b00465
29671317
Porter D.W.; Bradley M.; Brown Z.; Charlton S.J.; Cox B.; Hunt P.; Janus D.; Lewis S.; Oakley P.; O’Connor D.; Reilly J.; Smith N.; Press N.J.; The discovery of potent, orally bioavailable pyrimidine-5-carbonitrile-6-alkyl CXCR2 receptor antagonists. Bioorg Med Chem Lett 2014,24(15),3285-3290
10.1016/j.bmcl.2014.06.011
24974342
Ata A.; Synthesis and biological evaluation of benzothiazole derivatives of pyrimidines, acrylonitriles, and coumarins. Heterocycles 2006,68,347
10.3987/COM-05-10609
Bolikolla H.B.; Merugu S.K.; Improved knoevenagel condensation protocol for the synthesis of cyanoacrylates and their anticancer activity. J Mex Chem Soc 2023,67(1),60-69
10.29356/jmcs.v67i1.1835
Jadhav C.K.; Nipate A.S.; Chate A.V.; Dofe V.S.; Sangshetti J.N.; Khedkar V.M.; Gill C.H.; Rapid construction of substituted dihydrothiophene ureidoformamides at room temperature using diisopropyl ethyl ammonium acetate: A green perspective. ACS Omega 2020,5(45),29055-29067
10.1021/acsomega.0c03575
33225136
Onteddu R.S.; Mutchu R.B.; Thripuram D.V.; Chandu B.; Chavakula L.R.; Golkonda R.M.; Kotra V.; Bollikolla B.H.; Synthesis and anticancer activity of some new 2‐benzyloxy‐5‐alkyne substituted pyrimidines: An application to sonogashira coupling. ChemistrySelect 2020,5(27),8194-8197
10.1002/slct.202001668
Jadhav C.K.; Nipate A.S.; Chate A.V.; Songire V.D.; Patil A.P.; Gill C.H.; Efficient rapid access to biginelli for the multicomponent synthesis of 1,2,3,4-tetrahydropyrimidines in room-temperature diisopropyl ethyl ammonium acetate. ACS Omega 2019,4(27),22313-22324
10.1021/acsomega.9b02286
31909314
Sui G.; Li T.; Zhang B.; Wang R.; Hao H.; Zhou W.; Recent advances on synthesis and biological activities of aurones. Bioorg Med Chem 2021,29,115895
10.1016/j.bmc.2020.115895
33271454
Mazziotti I.; Petrarolo G.; La Motta C.; Aurones: A golden resource for active compounds. Molecules 2021,27(1),2
10.3390/molecules27010002
35011233
Alsayari A.; Muhsinah A.B.; Hassan M.Z.; Ahsan M.J.; Alshehri J.A.; Begum N.; Aurone: A biologically attractive scaffold as anticancer agent. Eur J Med Chem 2019,166,417-431
10.1016/j.ejmech.2019.01.078
30739824
Popova A.V.; Bondarenko S.P.; Frasinyuk M.S.; Aurones: Synthesis and properties. Chem Heterocycl Compd 2019,55(4-5),285-299
10.1007/s10593-019-02457-x
Hassan G.S.; Georgey H.H.; George R.F.; Mohamed E.R.; Aurones and furoaurones: Biological activities and synthesis. Bull Fac Pharm Cairo Univ 2018,56(2),121-127
10.1016/j.bfopcu.2018.06.002
Harkat H.; Weibel J.; Pale P.; Chimie I; De ; Uni V.; Pasteur L; Versatile and expeditious synthesis of aurones via Au I-catalyzed cyclization. J Org Chem 2008,73(4),1620-1623
Taylor C.; Bolshan Y.; Metal-free methodology for the preparation of sterically hindered alkynoylphenols and its application to the synthesis of flavones and aurones. Tetrahedron Lett 2015,56(29),4392-4396
10.1016/j.tetlet.2015.05.097
Karadendrou M.A.; Kostopoulou I.; Kakokefalou V.; Tzani A.; Detsi A.; L-proline-based natural deep eutectic solvents as efficient solvents and catalysts for the ultrasound-assisted synthesis of aurones via knoevenagel condensation. Catalysts 2022,12(3),249
10.3390/catal12030249
Jeon R.; Park S.; Synthesis and biological activity of Benzoxazole containing thiazolidinedione derivatives. Arch Pharm Res 2004,27(11),1099-1105
10.1007/BF02975111
15595409
Bireddy S.R.; Konkala V.S.; Godugu C.; Dubey P.K.; A review on the synthesis and biological studies of 2,4-thiazolidinedione derivatives. Mini Rev Org Chem 2020,17(8),958-974
10.2174/1570193X17666200221123633
Nastasă C.; Tiperciuc B.; Pârvu A.; Duma M.; Ionuţ I.; Oniga O.; Synthesis of new N-substituted 5-arylidene-2,4-thiazolidinediones as anti-inflammatory and antimicrobial agents. Arch Pharm 2013,346(6),481-490
10.1002/ardp.201300021
23666636
Maccari R.; Ottanà R.; Ciurleo R.; Vigorita M.G.; Rakowitz D.; Steindl T.; Langer T.; Evaluation of in vitro aldose redutase inhibitory activity of 5-arylidene-2,4-thiazolidinediones. Bioorg Med Chem Lett 2007,17(14),3886-3893
10.1016/j.bmcl.2007.04.109
17512196
Steinrück H.P.; Wasserscheid P.; Ionic liquids in catalysis. Catal Lett 2015,145(1),380-397
10.1007/s10562-014-1435-x
McNeice P.; Marr P.C.; Marr A.C.; Basic ionic liquids for catalysis: The road to greater stability. Catal Sci Technol 2021,11(3),726-741
10.1039/D0CY02274H
Singh S.K.; Savoy A.W.; Ionic liquids synthesis and applications: An overview. J Mol Liq 2019,297,110238
10.1016/j.molliq.2019.112038
Nasirpour N.; Mohammadpourfard M.; Zeinali Heris S.; Ionic liquids: Promising compounds for sustainable chemical processes and applications. Chem Eng Res Des 2020,160,264-300
10.1016/j.cherd.2020.06.006
Talegaonkar R; Mohammad N; Ionic liquid mediated synthesis of 5-arylidine-2 , 4- thiazolidinedionesand antibacterial evaluation. 2022,10,56-60
Thorat B.R.; Nagre D.T.; Dhurandhar P.P.; Borase P.K.; Bavkar S.; Kasar R.R.; Narkar R.D.; Farooqui M.; Mali S.N.; L-proline catalyzed knoevenagel condensation of aldehydes with active methylene compounds and their molecular modeling studies for anti-SARS CoV-2 potentials. Curr Enzym Inhib 2022,18(2),145-159
10.2174/1573408018666220516104525
Mohammadi Ziarani G.; Moradi R.; Ahmadi T.; Gholamzadeh P.; The molecular diversity scope of 4-hydroxycoumarin in the synthesis of heterocyclic compounds via multicomponent reactions. Mol Divers 2019,23(4),1029-1064
10.1007/s11030-019-09918-7
30697671
Gill R.K.; Rawal R.K.; Bariwal J.; Recent advances in the chemistry and biology of benzothiazoles. Arch Pharm 2015,348(3),155-178
10.1002/ardp.201400340
25682746
Irfan A.; Batool F.; Zahra Naqvi S.A.; Islam A.; Osman S.M.; Nocentini A.; Alissa S.A.; Supuran C.T.; Benzothiazole derivatives as anticancer agents. J Enzyme Inhib Med Chem 2020,35(1),265-279
10.1080/14756366.2019.1698036
31790602
Sunderhaus J.D.; Martin S.F.; Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chemistry 2009,15(6),1300-1308
10.1002/chem.200802140
19132705
Malinakova H.; Recent advances in the discovery and design of multicomponent reactions for the generation of small-molecule libraries. Reports Org Chem 2015,75,75
10.2147/ROC.S65115
Kadam P.R.; Bodke Y.D.; Naik M.D.; Nagaraja O.; Manjunatha B.; One-pot three-component synthesis of thioether linked 4-hydroxycoumarin-benzothiazole derivatives under ambient condition and evaluation of their biological activity. Results Chem 2022,4,100303
10.1016/j.rechem.2022.100303
Patil V.; Tilekar K.; Mehendale-Munj S.; Mohan R.; Ramaa C.S.; Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2,4-thiazolidinedione derivatives. Eur J Med Chem 2010,45(10),4539-4544
10.1016/j.ejmech.2010.07.014
20667627
Havrylyuk D.; Zimenkovsky B.; Vasylenko O.; Day C.W.; Smee D.F.; Grellier P.; Lesyk R.; Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. Eur J Med Chem 2013,66,228-237
10.1016/j.ejmech.2013.05.044
23811085
Alegaon S.G.; Alagawadi K.R.; New thiazolidinedione-5-acetic acid amide derivatives: Synthesis, characterization and investigation of antimicrobial and cytotoxic properties. Med Chem Res 2012,21(6),816-824
10.1007/s00044-011-9598-0
Zimenkovskii B.S.; Kutsyk R.V.; Lesyk R.B.; Matyichuk V.S.; Obushak N.D.; Klyufinska T.I.; Synthesis and antimicrobial activity of 2,4-dioxothiazolidine-5-acetic acid amides. Pharm Chem J 2006,40(6),303-306
10.1007/s11094-006-0115-6
Rakowitz D.; Maccari R.; Ottanà R.; Vigorita M.G.; In vitro aldose reductase inhibitory activity of 5-benzyl-2,4-thiazolidinediones. Bioorg Med Chem 2006,14(2),567-574
10.1016/j.bmc.2005.08.056
16202614
Sucheta T.S.; Tahlan S.; Verma P.K.; Biological potential of thiazolidinedione derivatives of synthetic origin. Chem Cent J 2017,11(1),130
10.1186/s13065-017-0357-2
29222671
Kumar P.; Asati V.; Choubey A.; Synthesis and characterization of novel 3-(aminomethyl)5-benzylidenethiazolin-dine-2,4-dione derivatives as anticancer agents. Int J Adv Sci Res 2021,12(4),154-164
10.55218/JASR.202112420
Kaur R.; Kumar R.; Dogra N.; Kumar A.; Yadav A.K.; Kumar M.; Synthesis and studies of thiazolidinedione–isatin hybrids as α-glucosidase inhibitors for management of diabetes. Future Med Chem 2021,13(5),457-485
10.4155/fmc-2020-0022
33506699
El-Naggar M.; Eldehna W.; Almahli H.; Elgez A.; Fares M.; Elaasser M.; Abdel-Aziz H.; Novel thiazolidinone/thiazolo[3,2-a]benzimidazolone-isatin conjugates as apoptotic anti-proliferative agents towards breast cancer: One-pot synthesis and in vitro biological evaluation. Molecules 2018,23(6),1420
10.3390/molecules23061420
29895744
Hamzehloueian M.; Sarrafi Y.; Darroudi M.; Arani M.A.; Darestani R.N.; Safari F.; Synthesis, antibacterial and anticancer activities evaluation of new 4-thiazolidinone-indolin-2-one analogs. Biointerface Res Appl Chem 2021,12(6),8094-8104
10.33263/BRIAC126.80948104
Zhang R.R.; Liu J.; Zhang Y.; Hou M.Q.; Zhang M.Z.; Zhou F.; Zhang W.H.; Microwave-assisted synthesis and antifungal activity of novel coumarin derivatives: Pyrano[3,2- c]chromene-2,5-diones. Eur J Med Chem 2016,116,76-83
10.1016/j.ejmech.2016.03.069
27060759
Yavari I.; Askarian-Amiri M.; A synthesis of spiroindolo[2,1- b]quinazoline-6,2′-pyrido[2,1- b][1,3]oxazines from tryptanthrins and huisgen zwitterions. Synth Commun 2021,51,1-7
10.1080/00397911.2021.1899237
Kaur R.; Manjal S.K.; Rawal R.K.; Kumar K.; Recent synthetic and medicinal perspectives of tryptanthrin. Bioorg Med Chem 2017,25(17),4533-4552
10.1016/j.bmc.2017.07.003
28720329
Sadeghian Z.; Bayat M.; Safari F.; Synthesis and antitumor activity screening of spiro tryptanthrin-based heterocyclic compounds. Med Chem Res 2022,31(3),497-506
10.1007/s00044-022-02856-4
Araghi R.; Mirjalili B.B.F.; Zamani L.; Khabnadideh S.; Zomoridian K.; Faghih Z.; Arabi H.; Docking, synthesis and evaluation of the antifungal activity of pyrimido[4,5-b]quinolins. Iran J Pharm Res 2020,19(1),251-259
10.22037/ijpr.2020.1101010
32922484
Ranjbar S.; Edraki N.; Firuzi O.; Khoshneviszadeh M.; Miri R.; 5-Oxo-hexahydroquinoline: An attractive scaffold with diverse biological activities. Mol Divers 2019,23(2),471-508
10.1007/s11030-018-9886-4
30390186
Eghtedari M.; Azimzadeh Arani M.; Sarrafi Y.; Shafiei M.; Alimohammadi K.; Safari F.; Foroumadi A.; Synthesis and antitumor activity evaluation of novel pyrimidoquinoline derivatives. Polycycl Aromat Compd 2022,42(7),4359-4373
10.1080/10406638.2021.1892778
Küpeli Akkol E.; Genç Y.; Karpuz B.; Sobarzo-Sánchez E.; Capasso R.; Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers 2020,12(7),1959
10.3390/cancers12071959
32707666
Song X.F.; Fan J.; Liu L.; Liu X.F.; Gao F.; Coumarin derivatives with anticancer activities: An update. Arch Pharm 2020,353(8),2000025
10.1002/ardp.202000025
32383190
Gaber A.; Alsanie W.F.; Alhomrani M.; Alamri A.S.; El-Deen I.M.; Refat M.S.; Synthesis and characterization of some new coumarin derivatives as probable breast anticancer mcf-7 drugs. Crystals 2021,11(5),565
10.3390/cryst11050565
Pandey J.; Prajapati P.; Srivastava A.; Tandon P.; Sinha K.; Ayala A.P.; Bansal A.K.; Spectroscopic and molecular structure (monomeric and dimeric model) investigation of Febuxostat: A combined experimental and theoretical study. Spectrochim Acta A Mol Biomol Spectrosc 2018,203,1-12
10.1016/j.saa.2018.05.074
29852375
Pandey A.; Pandey A.; Dubey R.; Kant R.; Pandey J.; Synthesis and computational studies of potent antimicrobial and anticancer indolone scaffolds with spiro cyclopropyl moiety as a novel design element. J Indian Chem Soc 2022,99(7),100539
10.1016/j.jics.2022.100539
Sharma P.K.; Sharma H.P.; Chakole C.M.; Pandey J.; Chauhan M.K.; Application of vitamin E TPGS in ocular therapeutics - attributes beyond excipient. J Indian Chem Soc 2022,99(3),100387
10.1016/j.jics.2022.100387
Pandey A.; Dubey R.; Ravikant ; Pandey J.; Synthesis of uniquely substituted 4H-Chromeno[2,3-d] pyrimidin-2-one derivatives by l-Proline catalyzed green chemistry method. J Indian Chem Soc 2023,100(1),100862
10.1016/j.jics.2022.100862
Pratap R.; Ram V.J.; Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem Rev 2014,114(20),10476-10526
10.1021/cr500075s
25303539
Tanaka H.; Atsumi I.; Shirota O.; Sekita S.; Sakai E.; Sato M.; Murata J.; Murata H.; Darnaedi D.; Chen I.S.; Three new constituents from the roots of Erythrina variegata and their antibacterial activity against methicillin-resistant Staphylococcus aureus. Chem Biodivers 2011,8(3),476-482
10.1002/cbdv.201000068
21404431
Itokawa H.; Ibraheim Z.Z.; Qiao Y.F.; Takeya K.; Anthraquinones, naphthohydroquinones and naphthohydroquinone dimers from Rubia cordifolia and their cytotoxic activity. Chem Pharm Bull 1993,41(10),1869-1872
10.1248/cpb.41.1869
8281583
Khurana JM.; Nand B.; Saluja, P1, 8-Diazabicyclo [5. 4. 0] undec-7-ene: A highly efficient catalyst for one-pot synthesis of substituted tetrahydro-4 H-chromenes, tetrahydro [b] pyrans, pyrano [d] pyrimidines, and 4H-pyrans in aqueous medium. J Heterocycl Chem 2014,51(3),618-624
Thangamani A.; Grindstone chemistry: An efficient and green synthesis of 2-amino-4H-benzo[b]pyrans. J Appl Adv Res 2017,2,78-85
10.21839/jaar.2017.v2i2.65
Zanin L.L.; Jimenez D.E.Q.; de Jesus M.P.; Diniz L.F.; Ellena J.; Porto A.L.M.; Synthesis and X-ray crystal structures of polyfunctionalized 4H-chromene derivatives via tricomponent reaction with Knoevenagel adducts as intermediates in aqueous medium. J Mol Struct 2021,1223,129226
10.1016/j.molstruc.2020.129226
Strugstad M.; Despotovski S.; A summary of extraction, synthesis, properties, and potential uses of juglone: A literature review. BC J Ecosyst Manag 2013,13(3),1-16
10.22230/jem.2012v13n3a119
Tang Y.T.; Li Y.; Chu P.; Ma X.D.; Tang Z.Y.; Sun Z.L.; Molecular biological mechanism of action in cancer therapies: Juglone and its derivatives, the future of development. Biomed Pharmacother 2022,148,112785
10.1016/j.biopha.2022.112785
35272138
Lozynskyi A.V.; Kaminskyy D.V.; Romanchyshyn K.B.; Semenciv N.G.; Ogurtsov V.V.; Nektegayev I.O.; Lesyk R.B.; Screening of antioxidant and anti-inflammatory activities among thiopyrano[2,3-d]thiazoles. Biopolim Kletka 2015,31(2),131-137
10.7124/bc.0008D8
Kryshchyshyn A.; Roman O.; Lozynskyi A.; Lesyk R.; Thiopyrano[2,3-d]thiazoles as new efficient scaffolds in medicinal chemistry. Sci Pharm 2018,86(2),26
10.3390/scipharm86020026
29903979
Lozynskyi A.; Golota S.; Zimenkovsky B.; Atamanyuk D.; Gzella A.; Lesyk R.; Synthesis, anticancer and antiviral activities of novel thiopyrano[2,3-d]thiazole-6-carbalde-hydes. Phosphorus Sulfur Silicon Relat Elem 2016,191(9),1245-1249
10.1080/10426507.2016.1166108
Ivasechko I.; Lozynskyi A.; Senkiv J.; Roszczenko P.; Kozak Y.; Finiuk N.; Klyuchivska O.; Kashchak N.; Manko N.; Maslyak Z.; Lesyk D.; Karkhut A.; Polovkovych S.; Czarnomysy R.; Szewczyk O.; Kozytskiy A.; Karpenko O.; Khyluk D.; Gzella A.; Bielawski K.; Bielawska A.; Dzubak P.; Gurska S.; Hajduch M.; Stoika R.; Lesyk R.; Molecular design, synthesis and anticancer activity of new thiopyrano[2,3-d]thiazoles based on 5-hydroxy-1,4-naphthoquinone (juglone). Eur J Med Chem 2023,252,115304
10.1016/j.ejmech.2023.115304
37001390
Mhiri C.; Boubakri L.; Ternane R.; Mansour L.; Harrath A.H.; Al-Tamimi J.; Baklouti L.; Hamdi N.; Three‐component, one‐pot synthesis of pyrano[3,2‐c]chromene derivatives catalyzed by ammonium acetate: Synthesis, characterization, cation binding, and biological determination. J Heterocycl Chem 2020,57(1),291-298
10.1002/jhet.3776
Baitha A.; Gopinathan A.; Krishnan K.; Dabholkar V.V.; Synthesis of 2‐amino‐4‐(2‐ethoxybenzo[d][1,3]dioxol‐5‐yl)‐4H‐pyran‐3‐carbonitrile derivatives and their biological evaluation. J Heterocycl Chem 2018,55(5),1189-1192
10.1002/jhet.3152
Zheng J.; He M.; Xie B.; Yang L.; Hu Z.; Zhou H.B.; Dong C.; Enantioselective synthesis of novel pyrano[3,2- c]chromene derivatives as AChE inhibitors via an organocatalytic domino reaction. Org Biomol Chem 2018,16(3),472-479
10.1039/C7OB02794J
29265146
Raj V.; Lee J.; 2H/4H-Chromenes-A versatile biologically attractive scaffold. Front Chem 2020,8,623
10.3389/fchem.2020.00623
Yousefi M.R.; Goli-Jolodar O.; Shirini F.; Piperazine: An excellent catalyst for the synthesis of 2-amino-3-cyano-4H-pyrans derivatives in aqueous medium. Bioorg Chem 2018,81,326-333
10.1016/j.bioorg.2018.08.026
30179795
Gardelly M.; Trimech B.; Belkacem M.A.; Harbach M.; Abdelwahed S.; Mosbah A.; Bouajila J.; Ben Jannet H.; Synthesis of novel diazaphosphinanes coumarin derivatives with promoted cytotoxic and anti-tyrosinase activities. Bioorg Med Chem Lett 2016,26(10),2450-2454
10.1016/j.bmcl.2016.03.108
27080182
Tashrifi Z.; Mohammadi-Khanaposhtani M.; Hamedifar H.; Larijani B.; Ansari S.; Mahdavi M.; Synthesis and pharmacological properties of polysubstituted 2-amino-4H-pyran-3-carbonitrile derivatives. Mol Divers 2020,24(4),1385-1431
10.1007/s11030-019-09994-9
31555954
Nongrum R.; Nongthombam G.S.; Kharkongor M.; Star Rani J.W.; Rahman N.; Kathing C.; Myrboh B.; Nongkhlaw R.; A nano-organo catalyzed route towards the efficient synthesis of benzo[b]pyran derivatives under ultrasonic irradiation. RSC Advances 2016,6(110),108384-108392
10.1039/C6RA24108E
Gholamhosseini-Nazari M.; Esmati S.; Safa K.D.; Khataee A.; Teimuri-Mofrad R.; Fe3O4@SiO2-BenzIm-Fc[Cl]/ZnCl2: A novel and efficient nano-catalyst for the one-pot three-component synthesis of pyran annulated bis-heterocyclic scaffolds under ultrasound irradiation. Res Chem Intermed 2019,45(4),1841-1862
10.1007/s11164-018-3704-6
Rayadurgam J.; Sabbasani, RR Synthesis of D-ribose and D-galactose derived chiral ionic liquids as recyclable chiral solvent for michael addition reaction. Trends Carbohydr Res 2015,7,60-67
Garg P.; Reddy S.R.; Biomass‐derived sugar ionic liquid as a sustainable organocatalyst: An efficient synthesis of functionalized dihydropyrano coumarins. Asian J Org Chem 2022,11(9),e202200322
10.1002/ajoc.202200322
Mohamadpour F.; Visible light irradiation promoted catalyst-free and solvent-free synthesis of pyrano[2,3-d]pyrimidine scaffolds at room temperature. J Saudi Chem Soc 2020,24(8),636-641
10.1016/j.jscs.2020.06.006
Brahmachari G.; Nurjamal K.; Ultrasound-assisted and trisodium citrate dihydrate-catalyzed green protocol for efficient and one-pot synthesis of substituted chromeno[3′,4′:5,6]pyrano[2,3-d]pyrimidines at ambient conditions. Tetrahedron Lett 2019,60(29),1904-1908
10.1016/j.tetlet.2019.06.028
Khumalo M.R.; Maddila S.N.; Maddila S.; Jonnalagadda S.B.; A facile and one-pot synthesis of new tetrahydrobenzo[b]pyrans in water under microwave irradiation. BMC Chem 2019,13(1),132
10.1186/s13065-019-0651-2
31788672
Aminkhani A.; Talati M.; Sharifi R.; Chalabian F.; Katouzian F.; Highly efficient one‐pot three‐component synthesis and antimicrobial activity of 2‐amino‐4 H ‐chromene derivatives. J Heterocycl Chem 2019,56(6),1812-1819
10.1002/jhet.3555
Adibian F.; Pourali A.R.; Maleki B.; Baghayeri M.; Amiri A.; One‐pot synthesis of dihydro-1H-indeno[1,2-b] pyridines and tetrahydrobenzo[b] pyran derivatives using a new and efficient nanocomposite catalyst based on N‐butylsulfonate‐functionalized MMWCNTs-D-NH2. Polyhedron 2020,175,114179
10.1016/j.poly.2019.114179
Mahmoudi Z.; Ghasemzadeh M.A.; Kabiri-Fard H.; Fabrication of UiO-66 nanocages confined Brønsted ionic liquids as an efficient catalyst for the synthesis of dihydropyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidines. J Mol Struct 2019,1194,1-10
10.1016/j.molstruc.2019.05.079
Koohestani F.; Sadjadi S.; Polyionic liquid decorated chitosan beads as versatile metal-free catalysts for catalyzing chemical reactions in aqueous media. J Mol Liq 2021,334,115754
10.1016/j.molliq.2021.115754
Nahar L.; Talukdar A.D.; Nath D.; Nath S.; Mehan A.; Ismail F.M.D.; Sarker S.D.; Naturally occurring calanolides: Occurrence, biosynthesis, and pharmacological properties including therapeutic potential. Molecules 2020,25(21),4983
10.3390/molecules25214983
33126458
Zghab I.; Trimeche B.; Mansour M.B.; Hassine M.; Touboul D.; Jannet H.B.; Regiospecific synthesis, antibacterial and anticoagulant activities of novel isoxazoline chromene derivatives. Arab J Chem 2017,10,S2651-S2658
10.1016/j.arabjc.2013.10.008
El-Agrody A.M.; Halawa A.H.; Fouda A.M.; Al-Dies A.A.M.; The anti-proliferative activity of novel 4H-benzo[h]chromenes, 7H-benzo[h]-chromeno[2,3-d]pyrimi-dines and the structure–activity relationships of the 2-, 3-positions and fused rings at the 2, 3-positions. J Saudi Chem Soc 2017,21(1),82-90
10.1016/j.jscs.2016.03.002
Saczewski J.; Paluchowska A.; Klenc J.; Raux E.; Barnes S.; Sullivan S.; Duszynska B.; Bojarski A.J.; Strekowski L.; Synthesis of 4‐substituted 2‐(4‐methylpiperazino)pyrimidines and quinazoline analogs as serotonin 5‐HT 2A receptor ligands. J Heterocycl Chem 2009,46(6),1259-1265
10.1002/jhet.236
Yao C.; Yu C.; Li T.; Tu S.; An efficient synthesis of 4 H-Benzo[g]chromene-5,10-dione de-rivatives through triethylbenzylammonium chloride catalyzed multicomponent reaction under solvent-free conditions. Chin J Chem 2009,27(10),1989-1994
10.1002/cjoc.200990334
Khurana J.M.; Nand B.; Saluja P.; DBU: A highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino-4H benzo[g]chromenes in aqueous medium. Tetrahedron 2010,66(30),5637-5641
10.1016/j.tet.2010.05.082
Thanh NH; Phuong HT; Giang LNT; Giang NTQ; Ha NTT; Anh DTT; 4-(Dimethylamino)pyridine as an efficient catalyst for one-pot synthesis of 1,4-pyranonaphthoquinone derivatives via microwave-assisted sequential three component reaction in green solvent. Nat Prod Commun 2021,16,1934578X2110539
10.1177/1934578X211053951
Jiang L.; Peng P.; Li M.; Li L.; Zhao M.; Yuan M.; Yuan M.; Efficient synthesis of 3-sulfonyl-2-sulfonylmethyl-2H-chromenes via tandem knoevenagel condensation/oxa-michael addition protocol. Catalysts 2022,12(5),491
10.3390/catal12050491
Kumar A.; Thadkapally S.; Menon R.S.; Base-mediated cyclocondensation of salicylaldehydes and 2-bromoallyl sulfones for the synthesis of 3-sulfonylchromene derivatives and their regioselective friedel–crafts heteroarylation reactions. J Org Chem 2015,80(21),11048-11056
10.1021/acs.joc.5b02324
26465821
Bellucci M.C.; Sacchetti A.; Volonterio A.; Multicomponent approach to libraries of substituted dihydroorotic acid amides. ACS Comb Sci 2019,21(10),705-715
10.1021/acscombsci.9b00144
31454221
Arcadia C.E.; Kennedy E.; Geiser J.; Dombroski A.; Oakley K.; Chen S.L.; Sprague L.; Ozmen M.; Sello J.; Weber P.M.; Reda S.; Rose C.; Kim E.; Rubenstein B.M.; Rosenstein J.K.; Multicomponent molecular memory. Nat Commun 2020,11(1),691
10.1038/s41467-020-14455-1
32019933
Ghashghaei O.; Seghetti F.; Lavilla R.; Selectivity in multiple multicomponent reactions: Types and synthetic applications. Beilstein J Org Chem 2019,15,521-534
10.3762/bjoc.15.46
30873236
Elinson M.N.; Ryzhkova Y.E.; Vereshchagin A.N.; Ryzhkov F.V.; Kalashnikova V.M.; Egorov M.P.; Direct and efficient electrocatalytic multicomponent assembling of arylaldehydes, malononitrile, and pyrazolin-5-ones into spirocyclopropyl pyrazolone scaffold. Monatsh Chem 2021,152(6),641-648
10.1007/s00706-021-02784-w
Kuznetcova A.V.; Odin I.S.; Golovanov A.A.; Grigorev I.M.; Vasilyev A.V.; Multicomponent reaction of conjugated enynones with malononitrile and sodium alkoxides: Complex reaction mechanism of the formation of pyridine derivatives. Tetrahedron 2019,75(33),4516-4530
10.1016/j.tet.2019.06.041
Hajra S.; Abu Saleh S.K.; Hazra A.; Singh M.S.; Organocatalytic domino reaction of spiroaziridine oxindoles and malononitrile for the enantiopure synthesis of spiro dihydropyrrole-3,3′-oxindoles. J Org Chem 2019,84(12),8194-8201
10.1021/acs.joc.9b01226
31142119
Saleem F.; Kanwal ; Mohammed Khan K.; Chigurupati S.; Andriani Y.; Solangi M.; Hameed S.; Abdel Monem Abdel Hafez A.; Begum F.; Arif Lodhi M.; Taha M.; Rahim F.; Tengku Muhammad T.S.; Perveen S.; Dicyanoanilines as potential and dual inhibitors of α-amylase and α-glucosidase enzymes: Synthesis, characterization, in vitro, in silico, and kinetics studies. Arab J Chem 2022,15(3),103651
10.1016/j.arabjc.2021.103651
Abaee M.S.; Hatamifard A.; Mojtahedi M.M.; Notash B.; Naderi S.; Pseudo-five-component organocatalyzed synthesis of dicyanoanillines using only malononitrile and aromatic aldehydes. Synth Commun 2022,52(3),346-355
10.1080/00397911.2021.2024573
Alvim H.G.O.; da Silva Júnior E.N.; Neto B.A.D.; What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs. RSC Advances 2014,4(97),54282-54299
10.1039/C4RA10651B
Dömling A.; Wang W.; Wang K.; Chemistry and biology of multicomponent reactions. Chem Rev 2012,112(6),3083-3135
10.1021/cr100233r
22435608
Bienaymé H.; Hulme C.; Oddon G.; Schmitt P.; Maximizing synthetic efficiency: Multi-component transformations lead the way. Chemistry 2000,6(18),3321-3329
10.1002/1521-3765(20000915)6:18<3321:AID-CHEM3321>3.0.CO;2-A
11039522
Trotsko N.; Przekora A.; Zalewska J.; Ginalska G.; Paneth A.; Wujec M.; Synthesis and in vitro antiproliferative and antibacterial activity of new thiazolidine-2,4-dione derivatives. J Enzyme Inhib Med Chem 2018,33(1),17-24
10.1080/14756366.2017.1387543
29098896
Sindhu J.; Singh H.; Khurana J.M.; Sharma C.; Aneja K.R.; Multicomponent domino process for the synthesis of some novel 5-(arylidene)-3-((1-aryl-1H-1,2,3-triazol-4-yl)methyl)-thiazolidine-2,4-diones using PEG-400 as an efficient reaction medium and their antimicrobial evaluation. Chin Chem Lett 2015,26(1),50-54
10.1016/j.cclet.2014.09.006
Nyaki H.Y.; Mahmoodi N.O.; Synthesis and characterization of derivatives including thiazolidine-2,4-dione/1-H-imidazole and evaluation of antimicrobial, antioxidant, and cytotoxic properties of new synthetic heterocyclic compounds. Res Chem Intermed 2021,47(10),4129-4155
10.1007/s11164-021-04525-4
Sharma P.; Reddy T.S.; Kumar N.P.; Senwar K.R.; Bhargava S.K.; Shankaraiah N.; Conventional and microwave-assisted synthesis of new 1 H -benzimidazole-thiazolidinedione derivatives: A potential anticancer scaffold. Eur J Med Chem 2017,138,234-245
10.1016/j.ejmech.2017.06.035
28668476
Prabhakaran S.; Nivetha N.; Patil S.M.; Mary Martiz R.; Ramu R.; Sreenivasa S.; Velmathi S.; One-pot three-component synthesis of novel phenyl-pyrano-thiazol-2-one derivatives and their anti-diabetic activity studies. Results Chem 2022,4,100439
10.1016/j.rechem.2022.100439
Chadha N.; Bahia M.S.; Kaur M.; Silakari O.; Thiazolidine-2,4-dione derivatives: Programmed chemical weapons for key protein targets of various pathological conditions. Bioorg Med Chem 2015,23(13),2953-2974
10.1016/j.bmc.2015.03.071
25890697
da Rocha Junior L.F.; de Melo Rêgo M.J.B.; Cavalcanti M.B.; Pereira M.C.; Pitta M.G.R.; de Oliveira P.S.S.; Gonçalves S.M.C.; Duarte A.L.B.P.; de Lima M.C.A.; Pitta I.R.; Pitta M.G.R.; Synthesis of a novel thiazolidinedione and evaluation of its modulatory effect on IFN- γ, IL-6, IL-17A, and IL-22 production in PBMCs from rheumatoid arthritis patients. BioMed Res Int 2013,2013,1-8
10.1155/2013/926060
24078927
Youssef A.M.; Sydney White M.; Villanueva E.B.; El-Ashmawy I.M.; Klegeris A.; Synthesis and biological evaluation of novel pyrazolyl-2,4-thiazolidinediones as anti-inflammatory and neuroprotective agents. Bioorg Med Chem 2010,18(5),2019-2028
10.1016/j.bmc.2010.01.021
20138770
Kavetsou E.; Gkionis L.; Galani G.; Gkolfinopoulou C.; Argyri L.; Pontiki E.; Chroni A.; Hadjipavlou-Litina D.; Detsi A.; Synthesis of prenyloxy coumarin analogues and evaluation of their antioxidant, lipoxygenase (LOX) inhibitory and cytotoxic activity. Med Chem Res 2017,26(4),856-866
10.1007/s00044-017-1800-6
Chatterjee B.; Sharma A.; Fruit enzymes and their application: A review. Int J Clin Biomed Res 2018,4(2),84
10.5455/ijcbr.2018.42.18
Lončarić M.; Strelec I.; Pavić V.; Rastija V.; Karnaš M.; Molnar M.; Green synthesis of thiazolidine-2,4-dione derivatives and their lipoxygenase inhibition activity with QSAR and molecular docking studies. Front Chem 2022,10,912822
10.3389/fchem.2022.912822
35864866
Medina F.G.; Marrero J.G.; Macías-Alonso M.; González M.C.; Córdova-Guerrero I.; Teissier García A.G.; Osegueda-Robles S.; Coumarin heterocyclic derivatives: Chemical synthesis and biological activity. Nat Prod Rep 2015,32(10),1472-1507
10.1039/C4NP00162A
26151411
Barot K.P.; Jain S.V.; Kremer L.; Singh S.; Ghate M.D.; Recent advances and therapeutic journey of coumarins: Current status and perspectives. Med Chem Res 2015,24(7),2771-2798
10.1007/s00044-015-1350-8
Borges F.; Roleira F.; Milhazes N.; Santana L.; Uriarte E.; Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr Med Chem 2005,12(8),887-916
10.2174/0929867053507315
15853704
Roussaki M.; Kontogiorgis C.A.; Hadjipavlou-Litina D.; Hamilakis S.; Detsi A.; A novel synthesis of 3-aryl coumarins and evaluation of their antioxidant and lipoxygenase inhibitory activity. Bioorg Med Chem Lett 2010,20(13),3889-3892
10.1016/j.bmcl.2010.05.022
20627725
Dvornikova I.A.; Buravlev E.V.; Fedorova I.V.; Shevchenko O.G.; Chukicheva I.Y.; Kutchin A.V.; Synthesis and antioxidant properties of benzimidazole derivatives with isobornylphenol fragments. Russ Chem Bull 2019,68(5),1000-1005
10.1007/s11172-019-2510-7
Anastassova N.; Argirova M.; Yancheva D.; Aluani D.; Tzankova V.; Hristova-Avakumova N.; In vitro assessment of the neuroprotective and antioxidant properties of new benzimidazole derivatives as potential drug candidates for the treatment of Parkinson’s disease. Proceedings 2019,22(1),54
10.3390/proceedings2019022054
Ayhan-Kılcıgil G.; Kus C.; Özdamar E.D.; Can-Eke B.; Iscan M.; Synthesis and antioxidant capacities of some new benzimidazole derivatives. Arch Pharm 2007,340(11),607-611
10.1002/ardp.200700088
17994646
Patagar D.N.; Batakurki S.R.; Kusanur R.; Patra S.M.; Saravanakumar S.; Ghate M.; Synthesis, antioxidant and anti-diabetic potential of novel benzimidazole substituted coumarin-3-carboxamides. J Mol Struct 2023,1274,134589
10.1016/j.molstruc.2022.134589